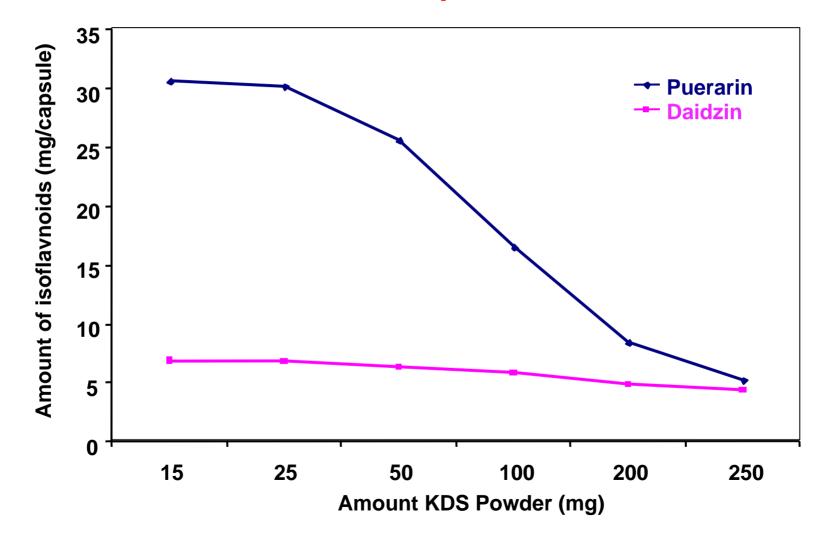
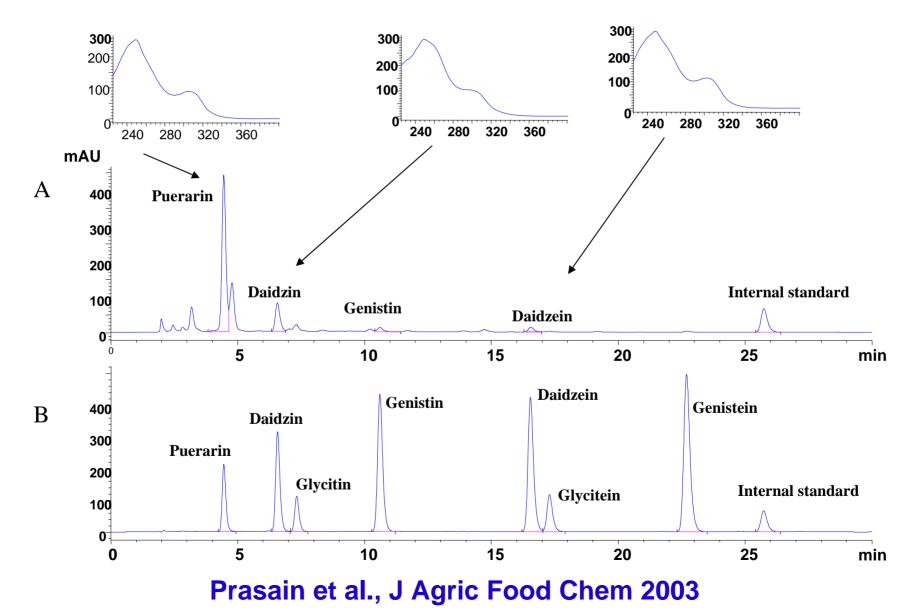

Isoflavone workshop Oxford, MS August 21, 2006

Extraction methods of botanicals for qualitative and quantitative analysis

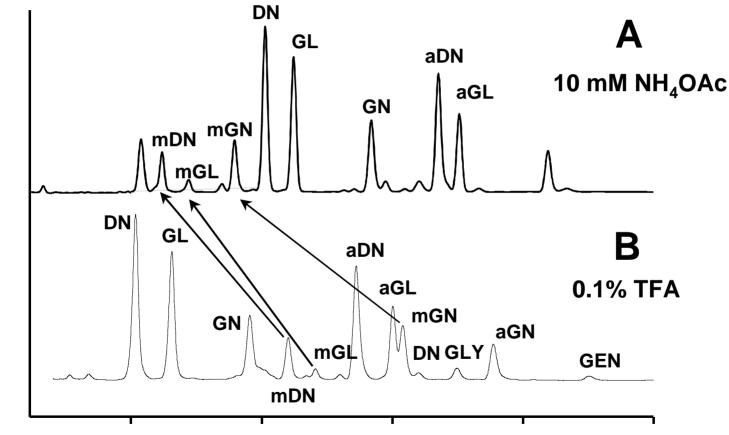
Jeevan Prasain, PhD Purdue-UAB Botanicals Center University of Alabama at Birmingham



Commonly used extraction methods for botanicals


Among the modern sampling techniques, SFE seems to offer high selectivity, minimum degradation of thermally labile analytes, and elimination of the use of organic solvents (e.g. use of pure CO_2). On the other hand, such as difficulties in extracting polar compounds and high susceptibility to matrix effects, are problematic in the extraction of botanical materials.

Extractability of isoflavone glucoside conjugates puerarin and daidzin with various quantities of KDS powder in 5 mL of 80% aq. MeOH


The ratio of KDS powder/extracting solvent is critical for efficient extraction

HPLC-chromatograms of [A] a kudzu dietary supplement; [B] isoflavone standards

RP-HPLC of isoflavone conjugates *value of changing the mobile phase pH*

Absorbance (262 nm)

Elution time (min)

Extraction of malonyl/acetyl glycosides at room temperature or higher temperatures may lead to change in composition

TABLE I

Effect of extraction temperature on isoflavone concentrations in 80% aqueous methanol extracts of around soybeans¹

Isoflavone and temperature	60MalGlc	βGlc	60AcGlc	Aglucone	Total	
	$\mu g/g$					
Daidzein						
4°C	352.1 ± 5.0	55.6 ± 0.8	73.4 ± 0.6	ND	481.1	
Room temperature	302.5 ± 1.3	71.0 ± 0.1	71.8 ± 0.7	ND	445.3	
80°C	69.6 ± 7.3	393.7 ± 9.3	ND	ND	463.3	
Genistein						
4°C	545.9 ± 8.8	57.2 ± 0.5	5.4 ± 0.1	ND	608.5	
Room temperature	467.5 ± 3.7	87.9 ± 0.2	4.3 ± 0.1	3.8 ± 0.1	563.5	
80°C	69.6 ± 7.3	393.7 ± 9.3	ND	ND	463.3	
Glycitein						
4°C	139.5 ± 3.3	42.1 ± 0.4	ND	ND	181.6	
Room temperature	125.7 ± 1.7	48.7 ± 1.4	ND	ND	174.4	
80°C	ND	150.8 ± 2.3	ND	ND	150.8	

 $^{I}\overline{x} \pm$ SD. Concentrations are in aglucone units. 60MalGlc, 6''-0-malonyl- β -glucoside; β Glc, β -glucoside; 60AcGlc, 6''-0-acetyl- β -glucoside; ND, none detected.

Barnes et al., Am J Clin Nutr. 1998

Even prolonged storage at 4°C causes conversion to the β-glucoside conjugates

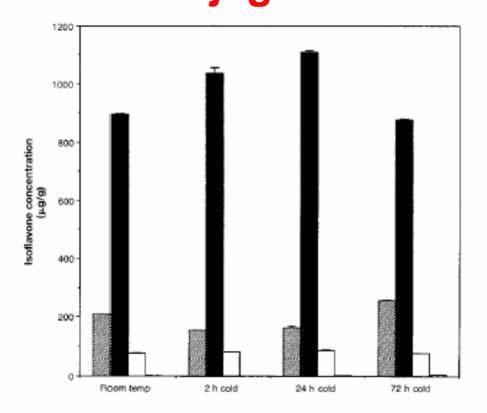


FIGURE 3. Mean (\pm SD) total concentrations of isoflavone glucoside conjugates from ground soybeans extracted with 80% aqueous methanol at room temperature (temp) for 2 h or at 4°C (cold) for 2 and 24 h, or after storage at 4 °C for 24 or 72 h. For each set of bars, from left to right, the bars represent β-glucosides, 6''-O-malonyl-β-glucosides, 6''-Oacetyl-β-glucosides, and aglucones. n = 2.

An efficient isoflavone recovery could be achieved with extraction using 70% ethanol containing 0.1 % acetic acid for one hour with agitation

Table 1 - Average (± SD) concentration of total isoflavones (mg/100g) in soybean flour (Kinako), extracted with and without agitation (CV=6.8%)¹.

Extraction time (hours)	Constant agitation	Without agitation	Mean	
1	205.4 aA (±13.3)	228.4 aA (±10.8)	216.9 a	
4	218.2 aA (±6.2)	198.9 abA (±11.6)	208.9 ab	
8	223.0 aA (±1.3)	164.6 bcB (±6.8)	193.8 ab	
12	225.4 aA (±9.8)	135.6 cB (±18.9)	180.5 b	
16	229.9 aA (±17.1)	183.3 abB (±37.6)	206.6 ab	
20	229.6 aA (±5.5)	208.1 abA (±2.5)	218.8 a	
24	189.0 aA (±4.9)	218.7 aA (±7.7)	203.6 ab	

^{¬1}Mean values followed by the same capital letter in the lines and the same small letter in the columns are not significantly different (Tukey $P \le 0.05$).

Mercedes et al. Brazilian Archives of Biology and Technology, 2002.

Conclusions

- The ratio of botanicals/dietary supplements to extracting solvents needs to be optimized for efficient extraction.
- The isoflavone glucoside conjugates are easily altered during extraction, processing, and cooking. However, the total concentration of isoflavones does not change.
- The 6OMalGlc conjugates are unstable when exposed to heat or prolonged times after extraction.
- Room temperature extraction also led to a loss of the 6OMalGlc conjugates, but at much slower rate.