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LIN YANG

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Recent years have seen an explosion of internet image collections. The explo-

sion was brought about by the popularity of photo sharing sites such as Flickr and

Picasa Web Albums, where millions of internet users upload their personal photos

online and share these photos with the public. The wealth of images provides an

excellent resource for perceiving the world through the eyes of others. However, the

gigantic volume of images also poses a challenge to the consumption of this unorga-

nized visual information.

In this dissertation, we present research on canonical view mining. Given

an image collection, we leverage a combination of computer vision and data mining

techniques to infer and remove images of noisy and redundant views. The remaining

images, which we term canonical views, exhibit both representativeness and diversity

in image content, and form a succinct visual summary of the original image collection.

The main contribution of this dissertation is the development and evaluation

of a fully automatic pipeline for canonical view mining. We also demonstrate two ap-

plications of canonical views in the context of image browsing and object recognition.

Finally, we analyze the scalability of the pipeline for canonical view mining and pro-

pose an approximation algorithm that effectively removes the scalability bottleneck

with low impact on the resulting canonical views.
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CHAPTER 1

INTRODUCTION

Recent years have seen an explosion of internet image collections. The explo-

sion was brought about by the vast popularity of photo sharing sites such as Flickr [4],

Picasa Web Albums [14], and Facebook [3]. Millions of internet users upload their

personal photos online and share the photos with the public. The volume of internet

image collections has grown to multiple billions, and it keeps growing at a staggering

speed.

Internet image collections provide an excellent resource for perceiving the

world through the eyes of others. Nowadays, if someone is planning a trip to Rome,

not only can she gain a rich resource of textual information from online articles about

Rome, but she can also gain a wealth of visual information from internet image col-

lections. By initiating a search for the keyword Rome on Flickr, one gains nearly three

million images in the search results. This gigantic collection of images is contributed

by a huge body of internet users, captured from all possible angles, through all kinds

of events. The wealth of visual information, presented properly, offers an extremely

rich experience of Rome.

Current tools, however, are not optimal for presenting internet image collec-

tions. Photo sharing sites employ a text-based paradigm for serving images. Upon

uploading an image, the owner can annotate the image with a list of keywords (tags)
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Figure 1.1: The first page of search results for the keyword Rome on Flickr. Even
though all the retrieved images are annotated with the tag Rome, most of them have
irrelevant content (or are at least not recognizable as Rome).

to describe the content of the image. From the search engine’s perspective, the an-

notation of tags effectively converts the image to a text document. Henceforth a text

search engine can handle the remaining tasks: on the back end of the search engine,

images are indexed by tags, often in a inverted index structure to improve query-time

efficiency [108]; on the front end of the search engine, a user initiates a query by

entering one or more keywords. The search engine retrieves the images annotated

with the same keywords and presents these images to the user as search results. The

presentation often assumes the form of pages and pages of thumbnails linking to the

original images.

While the text-based paradigm has demonstrated enormous success in web

search engines such as Google [7], it fails to achieve comparable performance for
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image search: even the top-ranked image search results contain a massive amount of

noise (images of irrelevant content to the query keywords). The reasons are twofold:

(1) Image tags are sparse. Unlike a text document (such as a webpage) which often

consists of hundreds or thousands of words, an image is often annotated with only a

few tags. A recent study by Sigurbjörnsson and van Zwol [90] reports that 64% of

Flickr images are annotated with ≤ 3 tags. The sparsity of tag annotation results in

incomplete interpretation of image content. (2) Image tags are inaccurate. There is

no predefined dictionary or ontology for tag annotation. People are free to annotate

an image with any tag that makes sense to them. The lack of specificity causes

inaccuracies. For example, an image taken through the window of a plane may

be annotated with plane, whereas the search engine user may expect the image to

capture the physical appearance of a plane. A recent study by Kennedy et al. [63]

reports that only about 50% of the tags annotated to a Flickr image actually describe

the content of the image. Because of the sparsity and inaccuracy of tag annotation,

noise abounds in image search results. Figure 1.1 shows the first page of search results

for the keyword Rome on Flickr. Even though all the images are annotated with the tag

Rome, most of them have irrelevant content (or are at least not recognizable as Rome).

The images relevant to Rome are scattered across thousands of pages of thumbnails.

If a user has little knowledge of Rome, it is likely that she will comb through several

pages of thumbnails (hundreds of images) without seeing the big picture of Rome.

Noise is just one side of the problem in image search results. Since internet

image collections have grown to a gigantic volume, for any non-obscure keyword, it is

quite likely that a huge number of images are truly relevant to the keyword. Let us



4

assume that we have an ideal solution for measuring the relevance of images to the

query keywords, and accordingly rank the images relevant to the keyword Rome. Since

images of similar content should be assigned similar relevance scores, there would be

blocks of redundant views in the ranking. Given the volume of images relevant to

Rome, the first many pages of search results would be dominated by a few popular

landmarks, each contributing a large number of images, while the other significant

aspects of Rome would be greatly demoted. The redundancy issue is not obvious

in Figure 1.1, because the text-based search results are dominated by random noise.

In our experiments, we observe a high volume of redundancy when the images are

ranked by a more sophisticated relevance metric (see Chapter 4). The sheer volume of

internet image collections determines that presenting all relevant images for human

browsing is not a viable solution.

Approach and Contributions

We present canonical view mining. Given an image collection, we leverage a

combination of computer vision and data mining techniques to automatically infer

and remove images of noisy and redundant views. The remaining images, or the

canonical views, exhibit both representativeness and diversity in their photographed

views, and form a succinct visual summary of the original image collection.

We make the key observation that the representativeness of a view can be

inferred without knowing high-level semantics of the image (i.e., what photographed

objects are in this image), which is a persistent yet unsolvable problem in computer
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vision [36]. Rather, we draw help from a large body of photographers to infer the

representativeness of views: we make the assumption that each photographer captures

views that she considers to be representative, and thereby infer representative views

by analyzing the scene distribution in the entire image collection. In this way, the

difficult problem of inferring high-level semantics from a single image is bypassed

by detecting and aggregating similar views among a collection of images, for which

automatic and robust tools are at hand. The success of this approach is a powerful

demonstration of the wisdom of crowds [96]: the aggregation of opinions within a

crowd results in information that is otherwise difficult to obtain.

Pipeline

The pipeline for canonical view mining consists of two main components (Fig-

ure 1.2):

1. Image encoding and matching. The input images are encoded and pairwise

matched by scale-invariant feature transform (SIFT) [73]. The matched fea-

tures between each pair of images are verified by a geometric constraint to

ensure robustness [44]. The matching of SIFT features establishes the simi-

larity metric among images. With the similarity metric defined, a similarity

graph can be formed over the image collection, with vertices representing im-

ages and weighted edges indicating the similarity between images. Several large

connected components of the similarity graph are visualized in the central part

of Figure 1.2 for one of the experimental datasets (for clarity, small connected
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components are trimmed; the visualization is generated by GraphViz [11]). In

the visualization, the lengths of edges are inversely proportional to their weights.

Therefore nearby vertices are likely to share redundant views. The similarity

graph serves as the basis for subsequent representative view and canonical view

ranking.

2. Representative view and canonical view ranking. First of all, a ranking of rep-

resentative views is computed. Relying on the wisdom of crowds, we interpret

a representative view as an image whose photographed scene is shared by many

other images. In the similarity graph, such images are characterized by vertices

that connect to many neighbors with high-weight edges. The representativeness

of each image is quantified by the eigenvector centrality of the corresponding

vertex in the similarity graph and solved using the power method [42]. The

ranking of representative views, unfortunately, contains a massive amount of

redundant views. A reranking scheme is applied to images to demote redun-

dant views. The reranking scheme, which is based on adaptive non-maximal

suppression [27], forces the top-ranked images to be not only representative, but

also diverse. The output of the pipeline is a ranking of canonical views over the

image collection.

Contributions

The main contribution of this dissertation is the development and evaluation

of a fully automatic pipeline for canonical view mining. Secondly, we demonstrate
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two applications of canonical views in the context of image browsing and object recog-

nition. Finally, we analyze the scalability of the pipeline for canonical view mining

and propose an approximation algorithm that effectively removes the scalability bot-

tleneck with low impact on the resulting canonical views.

Automatic canonical view mining. We develop a fully automatic pipeline for

canonical view mining. The pipeline is completely data-driven and requires no user in-

put. Specifically, it does not require parameter tuning across different input datasets,

which would be a painstaking process given the enormous amount of input datasets

that can be obtained from internet image collections. Moreover, the pipeline does

not require the number of canonical views to be known a priori. Instead, it computes

a ranking of canonical views such that the top-ranked images are both representa-

tive and diverse, thereby approximating canonical views in a range of granularities.

Once the ranking is computed offline, any number of canonical views for any subset

(including the full set) of the image collection can be retrieved in real-time.

Evaluations of canonical views. Besides showing qualitative results of canon-

ical views, we introduce three quantitative measurements to evaluate the canonical

views by quantifying the amount of noise, redundancy, and summarization power for

the top-ranked canonical views. Based on the quantitative measurements, we evalu-

ate the pipeline for canonical view mining on a variety of datasets, and compare the

proposed pipeline to several other methods, including the search engines of Flickr [4],

Google Images [9] and the previous work of [53, 92].

Applications of canonical views. We demonstrate the applications of canon-

ical views in the context of image browsing and object recognition. First of all, we
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discuss the incorporation of the pipeline for canonical view mining with current image

search engines, so that canonical views can be retrieved from image search results in

real-time and presented to the user for enhanced image browsing. Secondly, we ex-

tend the applications of canonical views beyond image browsing, to non-parametric

object recognition (object recognition based on nearest neighbor search instead of

parametric modeling for object classes). By removing noise and redundancy from

the database, we expect the set of canonical views to compress the database into a

compact representation while still preserving most of the representative power for the

purpose of object recognition. We validate this hypothesis on the place recognition

problem, in which we estimate the geographic location of a query image by scene

matching to a large database of images of known locations. By leveraging canonical

views, we observe a significant improvement in the efficiency of query processing with

minimal loss in the success rate of place recognition.

Scalable image matching / canonical view mining. Finally, we analyze the

scalability of the pipeline for canonical view mining. We single out the stage of

pairwise image matching as the scalability bottleneck and propose an approximation

algorithm to remove the bottleneck. We evaluate the approximation algorithm by

efficiency and accuracy for pairwise image matching. We demonstrate that the ap-

proximation algorithm speeds up pairwise image matching (and the entire pipeline for

canonical view mining) by two orders of magnitude with low impact on the resulting

canonical views.
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Scope and Limitations

One fundamental assumption of canonical view mining is the validity of wis-

dom of crowds in the input image collection. That is, the input image collection should

be contributed by a large body of independent sources as opposed to one centralized

source. Internet image collections, being contributed by millions of internet users,

make excellent input for canonical view mining. Obviously, not all image collections

fulfill this assumption. For example, several industrial applications have initiated

large-scale image acquisition with a unified procedure. One of the most prominent

examples, the Google Street View [10], captures omnidirectional street level imagery

at fixed intervals from cameras mounted on a vehicle. In a large city, Google Street

View probably provides a denser coverage than internet image collections. However,

the images in Google Street View reveal no wisdom of crowds. The scenes captured

by these images form a roughly uniform distribution, which makes it impossible to

infer which views are representative for the city.

Another assumption of canonical view mining is the existence of a robust

similarity metric among the input images. Theoretically, any visual feature (such

as color, texture) extracted from the images or even the metadata attached to the

images (such as tags) can be used to establish the similarity metric. However, few

of these features can robustly match the same photographed objects across different

views. The development of robust features for image matching is an ongoing research

topic in computer vision [102]. In this dissertation, we do not intend to improve

the state of the art of image matching. Rather, we conduct a comparative study
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on two widely used visual features on a controlled dataset and select the one that

offers a better accuracy for image matching (see Chapter 3). The selected visual

feature, SIFT, demonstrates extremely high precision and recall for matching objects

of rigid appearances. On the other hand, SIFT cannot match object classes such as

animals and plants, whose appearances undergo nonrigid transformations (deforma-

tions) from one image to another. Therefore the pipeline for canonical view mining is

only tested on image collections of rigid objects. Fortunately, the class of rigid objects

covers the most interesting targets for canonical view mining. In this dissertation,

we demonstrate canonical view mining in three image categories: images of places

(such as cities, national parks, landmarks), images of products (such as commercial

advertisements), and images of artworks (such as paintings and sculptures).

Structure of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we

review the study of canonical views in the human vision and computer vision lit-

erature. In Chapter 3, we lay down the groundwork for canonical view mining by

establishing the similarity metric among images. In Chapter 4, we describe the algo-

rithm for canonical view mining, and demonstrate the application of canonical views

for large-scale image browsing. In Chapter 5, we systematically evaluate the qual-

ity of canonical views and compare the proposed pipeline for canonical view mining

to other methods. In Chapter 6, we extend the applications of canonical views to

non-parametric object recognition, and demonstrate it on a specific problem of place
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recognition. In Chapter 7, we recognize the scalability bottleneck in the pipeline

for canonical view mining, and propose an approximation algorithm to remove the

bottleneck. In Chapter 8, we conclude this dissertation and present ideas for future

work.
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Figure 1.2: The pipeline of canonical view mining. See text for details.
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CHAPTER 2

PREVIOUS WORK

In this chapter, we review the study of canonical views in the human vision

and computer vision literature. The early work on canonical views originated in the

human vision literature, where it focused on finding preferred viewpoints for familiar

objects. We briefly review the early work and discuss its applicability to internet

image collections. In the computer vision literature, the study of canonical views has

recently gained popularity with the proliferation of internet image collections. By

fundamental approach to the problem, we divide previous work into clustering-based

methods and ranking-based methods. A clustering-based method groups images into

visually proximal clusters and computes a set of canonical views by selecting images

from different clusters. A ranking-based method computes a ranking of images, such

that the top k images approximate a k-set of canonical views for the image collection.

We review each category by discussing one representative work in detail, followed by

a brief description of the rest. We conclude this chapter by acknowledging a recent

thread of work that tackles large-scale image browsing in a different approach, by

reconstructing the photographed scene from the images and enabling scene browsing

in the 3D space.
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Early Work

The study of canonical views predates internet image collections. The early

work originated in the study of human vision. The term canonical view was first used

by Palmer et al. in their seminal work on finding preferred viewpoints for familiar

objects [81]. In their experiments, Palmer et al. showed each object in 12 viewpoints

(front, back, side, top, and intermediate viewpoints at 45◦ angles to these) and asked

human observers to perform a series of tasks:

• Assign a goodness rating to images captured from different viewpoints of the

object.

• Identify the viewpoint that agrees with their mental image of the object.

• Actively select a viewpoint to photograph the object.

• Name the object as quickly as possible from different viewpoints.

The most preferred viewpoint by human observers is defined as the canonical

view for the object. Palmer et al. found that the canonical views are consistent

across all four tasks. Specifically, human observers prefer off-axis views in viewing,

imagining, photographing, and recognizing objects. According to their explanation,

off-axis views are consistently preferred because they can maximize the amount of

visible surface while avoiding self-occlusion. The work of Palmer et al. was followed

by a number of experiments in a similar setting with human observers performing a

series of viewing tasks and rating preferred viewpoints in each task [43,83,84].
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Unfortunately, the early work has very limited applicability to internet image

collections. First of all, the canonical views in the early work are defined and se-

lected by surveying human observers, which is not affordable on the scale of internet

image collections. Secondly, the geometric property of canonical views (maximizing

the amount of visible surface and avoiding self-occlusion) is not applicable to many

photographed objects in internet image collections. For example, a canonical view

for a famous landmark should be an image that captures its iconic appearance, which

does not necessarily maximize the amount of visible surface or avoid self-occlusion.

Thirdly, the early work selects a single canonical view, and the selection takes place

in a small number of viewpoints of a single object. On the other hand, an internet

image collection may contain tens of thousands of images of countless photographed

objects, and in most cases, multiple canonical views are required to form a reasonable

summary for the entire collection.

Clustering-based Methods

Most previous work in the computer vision literature reduces canonical view

mining to a clustering problem. Given a collection of images, the fundamental idea of

clustering-based methods is to group images into visually proximal clusters. Ideally,

images of the same cluster all share the same view (therefore the view is frequently

photographed), and images of different clusters share no view in common. Therefore

one image (often the image corresponding to the centroid of a cluster) can be selected

from each cluster to form a set of canonical views for the image collection.
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Figure 2.1: The pipeline of canonical view selection [92].

One representative work of clustering-based methods is the work of Simon et

al. [92]. Simon et al. study canonical view selection for images of tourist attractions.

The pipeline of their algorithm is illustrated by Figure 2.1.

Given an image collection, the algorithm starts by encoding and matching

images in a pairwise manner: SIFT features are extracted from images and used for

image matching [73]; the SIFT matches between a pair of images are verified by a

geometric constraint using Random Sample Consensus (RANSAC) [44]. The result

of this step is a set of verified SIFT matches among all images. A detailed description

of SIFT feature extraction and matching can be found in Chapter 3.

The verified SIFT matches among all images are organized into tracks. A

track consists of multiple SIFT features that correspond to the same object point.

A term-document matrix [32] is formed where terms correspond to SIFT tracks and

documents correspond to images. In the term-document matrix, a cell of non-zero

value indicates that the corresponding term (SIFT track) appears in the corresponding

document (image). By definition, a SIFT track can only appear in an image 0 or 1
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1 2 3 4 5
R 1 1 1 1 1
G 1 1 1 0 0
B 0 0 1 1 1

Figure 2.2: Organizing SIFT matches into tracks and a term-document matrix. On
the left, the SIFT matches corresponding to three object points are organized into
three tracks. On the right, a term-document matrix is formed, where the row headers
R, G, B correspond to the red, green, blue tracks, and the column headers 1, 2, 3,
4, 5 correspond to the five images in the order of appearance. In the term-document
matrix, a cell of value 1 indicates that the corresponding term (SIFT track) appears
in the corresponding document (image). This figure is best viewed in color.

times. Therefore the term-document matrix consists of 0 and 1 values. This step is

illustrated by Figure 2.2.

The purpose of SIFT matching and tracking is to establish a similarity metric

among the images. Let the set of images be denoted by P = {P1, P2, · · · , Pn},

and their corresponding columns in the term-document matrix be denoted by V =

{V1, V2, · · · , Vn}. Simon et al. define the similarity between two images as the dot

product of their corresponding columns in the term-document matrix:

similarity(Pi, Pj) =
Vi · Vj

‖Vi‖‖Vj‖
. (2.1)

The similarity values range from 0 to 1, where 0 indicates two images sharing

no SIFT tracks in common, and 1 indicates two images sharing the exact same set of

SIFT tracks. With the similarity metric, images can be grouped into visually proxi-

mal clusters. Simon et al. adopts greedy k-means [29] for the clustering step. Greedy

k-means is a variant of the classic spherical k-means algorithm [33]. It demonstrates

superior performance compared to spherical k-means when the data points to be clus-
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tered are in a high-dimensional space and the initial seeding is not close to optimum.

Greedy k-means aims to maximize the following objective function:

Q(C) =
∑

Pi∈P

similarity(Pi, Cc(i)) − α|C| − β
∑

Ci∈C

∑

Cj∈C

similarity(Ci, Cj) (2.2)

where C = {C1, C2, · · · , Ck} is the set of canonical views, and Cc(i) denotes the closest

canonical view to image Pi: Cc(i) = argmaxC∈C similarity(Pi, C). The first term in

the objective function encourages each image Pi to be represented by at least one

canonical view (notice that this term alone forms the objective function for spherical

k-means). The second term imposes a punishment when too many canonical views

are selected. The third term imposes a punishment when the canonical views are

similar to each other. α and β are user-defined parameters to balance the influences

of the three terms.

Greedy k-means attempts to maximize Q(C) in an iterative procedure. The

set of canonical views is initialized to be empty. During each iteration, the remaining

images are scanned to find the one that maximizes the gain in Q(C), which is added

to the canonical set. The procedure repeats until no remaining image can bring a

positive gain in Q(C), at which point C contains the canonical views for the image

collection. The algorithm for canonical view selection is provided in Algorithm 1.

The work of Simon et al. illustrates the basic workflow of clustering-based

methods. First of all, a similarity metric is established among images. Secondly, a

clustering algorithm is applied to group images into clusters based on the similarity

metric. Finally, a set of canonical views is formed by selecting images from the
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Algorithm 1 Select canonical views C from images P using greedy k-means.

C ⇐ ∅
repeat

∆Q ⇐ 0, C ⇐ null
for P ∈ P\C do

∆Q′ ⇐ Q(C ∪ {P})−Q(C)
if ∆Q′ > ∆Q then

∆Q ⇐ ∆Q′, C ⇐ P
end if

end for

if ∆Q > 0 then

C ⇐ C ∪ {C}
end if

until ∆Q = 0

Table 2.1: A summary of clustering-based methods for canonical view selection. Each
row summarizes one method, with its similarity metric, clustering algorithm, and the
targeted image type.

Similarity metric Clustering algorithm Image type

[92] SIFT greedy k-means places
[30] SIFT spectral clustering places
[34] color+texture+SIFT minimizing within-cluster variation any
[52] color moments affinity propagation any
[54] SIFT degree centrality products
[56] visual + textual hierarchical clustering any
[64] color+texture k-means places
[103] color+shape+texture folding, maxmin, reciprocal election any
[86] text + Gist joint k-means concepts
[106] visual words greedy selection any

clusters. Most previous work follows this workflow, which is described in the sequel

and summarized in Table 2.1.

In [30], Crandall et al. investigate the organization of a gigantic collection of 35

million geo-tagged images. Images are clustered by mean-shift [40] on the metropoli-

tan level and on the landmark level. Images of each metropolitan or landmark area

are encoded by SIFT features. A similarity graph is formed with vertices represent-
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ing images and weighted edges indicating the similarity between images measured by

their SIFT matches. Spectral clustering [89] is applied to the similarity graph. Ver-

tices (images) are partitioned by the second eigenvector of the Laplacian matrix of

the graph (the Fiedler vector). The vertex (image) with the largest weighted degree

from each cluster is selected as the canonical view for the metropolitan or landmark

area.

In [34], Fan et al. propose a novel scheme to explore internet image collections.

Latent semantic analysis (LSA) [32] is adopted to extract topics from all the image

tags. A topic network is formed with vertices representing tags and weighted edges

indicating the similarity between tags. For each topic, a set of images annotated with

the corresponding tag are grouped. The grouped images are encoded by a combination

of global (color and texture) and local features, and are clustered by minimizing the

trace of a within-cluster scatter matrix. A small set of images that are close to cluster

centroids are selected for exploring the corresponding topic.

In [52], Jia et al. adopt affinity propagation [38] to select a set of exemplars

that can best represent an internet image collection. A similarity graph is formed with

similarities measured by color moments of images. Affinity propagation finds clusters

by iteratively passing messages between each pair of neighboring vertices until a set

of exemplars and corresponding clusters emerge. Affinity propagation does not allow

the number of clusters (exemplars) to be specified directly. The number of clusters

is influenced by a preference parameter associated with each vertex in the similarity

graph, as well as the message-passing procedure. Therefore, the algorithm needs to
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be run multiple times with different preference values in order to produce the desired

number of clusters.

In [54], Jing et al. propose an algorithm for selecting a single iconic view for

an image category of a commercial product. SIFT features are used to encode images

and measure the similarity between images. A similarity graph is formed over the

image category. The vertex (image) whose accumulated similarity with other vertices

is the highest is selected as the iconic view for the category. Their work can be

regarded as a simplified clustering-based method, where all input images are treated

as a single cluster and a single canonical view is selected for the cluster.

In [56], Jing et al. present Google Image Swirl [8], which builds upon the Google

Images search engine [9] and organizes image search results into an exemplar tree for

hierarchical browsing. Upon receiving a user query, Google Image Swirl retrieves the

top 1000 search results, and builds a pairwise similarity matrix among the images.

The similarity among images is measured by a combination of visual features such as

color, texture, local features, face features, as well as textual keywords associated with

the images. Hierarchical clustering is applied to the similarity matrix to recursively

partition the images into a hierarchical tree. A user starts browsing the search results

from the top-level clusters and traverses down the hierarchical tree along the clusters

that best matches his/her needs.

In [64], Kennedy et al. leverage both metadata and visual features for canonical

view selection. The proposed method starts by learning spatial-temporal patterns of

image tags and discovering tags related to landmarks. Tags related to landmarks

appear in peaks in the spatial domain but uniformly in the temporal domain. For
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each discovered landmark, images with corresponding tags are retrieved and clustered

using k-means based on global color and texture features. A set of statistics on both

metadata and visual features are computed to give a representativeness score to each

cluster and all images within the cluster. Canonical views are selected as top-ranked

images from top-ranked clusters.

In [103], Leuken et al. propose to diversify image search results by cluster-

ing. Similarity among images is measured by six visual features that characterize

the color, shape, and texture of images. The influences of different visual features

are dynamically normalized by the variances in their own domains, so that the dis-

criminative features (with small variances) are weighed more heavily than the others.

Three clustering algorithms are proposed – Folding, Maxmin, and Reciprocal Election

– all of which are lightweight techniques that cluster image search results and select

exemplars from all clusters to form a diverse set of images.

In [86], Raguram and Lazebnik propose to compute iconic views for images

of abstract concepts (e.g., images tagged with love). They use Gist features [80] to

encode the scene structure and probabilistic latent semantic analysis (pLSA) [47] on

image tags to encode the textual topic for each image and perform joint clustering

based on visual and textual features. Images in a resulting cluster are both percep-

tually and semantically similar. Iconic views are selected by choosing the image with

highest visual quality [61] from each cluster.

In [106], Yang et al. propose a lightweight technique for canonical view selec-

tion from image search results. After encoding images using SIFT features, Yang et

al. collect SIFT features from all images and cluster the SIFT features using k-means
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into a small set of visual words [93]. Each visual word corresponds to a cluster of SIFT

features that are close in the feature space. Therefore an image can be represented

by a bag of visual words. A list of informative visual words are selected by a vari-

ant of the tf-idf (term frequency-inverse document frequency) weighting scheme [20].

Canonical views are selected in a greedy manner. During each iteration, the image

that provides the best coverage in the list of informative visual words is added to

the canonical set. The covered visual words are removed from the list so that no

redundant views will be selected in future iterations.

The clustering-based methods have demonstrated promising results of canon-

ical views in various experimental settings. However, this class of algorithms suffers

a severe disadvantage: most clustering algorithms can only generate a fixed number

of clusters (canonical views) in one run. Therefore, if a different number of canonical

views is desired, the algorithm must be rerun with a different parametric setting (e.g.,

by adjusting k for k-means, α and β for greedy k-means, the preference values for

affinity propagation). The only exception to this is probably the hierarchical cluster-

ing algorithm, which is able to generate clusters on discrete granularities. Even so, it

does not guarantee all numbers of clusters to be readily available.

Ranking-based Methods

Given a collection of images, a ranking-based method computes an ordering

of the images, such that the top k images approximates a k-set of canonical views for

the image collection. Despite the amount of previous work on canonical view mining,
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most algorithms reduce it to a clustering problem. This dissertation is one of the first

to propose a ranking-based method. Besides our work, there is only one paper to our

knowledge that falls into this category.

In [50], Jaffe et al. propose an algorithm for ranking images of a tourist at-

traction based on image metadata. Upon output, the top k images approximate the

k-set of canonical views for the tourist attraction. The algorithm proceeds in three

steps:

1. Recursively cluster images into a hierarchical tree using geo-tags.

2. Compute an importance score for each sub-cluster in the hierarchy.

3. Recursively rank sub-clusters from the leaf level to the root, generating a flat

ordering of all images.

The input to the first step is the set of geo-tags associated with images:

L = {(xi, yi) ∈ R
2, 1 ≤ i ≤ n} (2.3)

Jaffe et al. adopt the Hungarian clustering algorithm [41] to cluster L into a hier-

archical tree. As input to the clustering algorithm, a weighted graph is formed by

L with vertices representing geo-tags and weighted edges indicating the geographic

distance between geo-tags. The Hungarian method [65] serves as the building block

for the clustering algorithm. Given a weighted graph, the Hungarian method finds

a set of disjoint cycles that forms a cover of the graph while minimizing the total

weight. Because the total weight of the cycles is minimized, each cycle is likely to
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connect only close-by points. Therefore, the cycles form the initial clusters of L. The

Hungarian clustering algorithm proceeds in a recursive manner. During each itera-

tion, the existing clusters are viewed as data points and subjected to the Hungarian

method to find higher-level cycles (clusters on a coarser granularity). The algorithm

terminates at the root where one single cluster exists, producing a hierarchical tree

of images.

In the second step, a score is computed for each sub-cluster in the hierarchy.

The scoring strategy aims to evaluate the importance of the image content conveyed

by a sub-cluster. Jaffe et al. consider a variety of image metadata, including: geo-

tag, timestamp, photographer, tags, quality, and relevance. The quality and relevance

metadata is derived externally, while the rest is associated with the images. Various

statistics are derived from the metadata, which loosely evaluate a sub-cluster from dif-

ferent perspectives: relevance, semantic closeness, photographer support, geographic

density, and image quality. Each statistic leads to a score from one perspective,

which is incorporated into the final scoring strategy. The mathematical equations for

computing these statistics are omitted in this review.

With a hierarchical clustering of images and an importance score assigned

to each sub-cluster, the final goal is to generate a flat ordering of all images. A

recursive interleaving algorithm is proposed. The algorithm starts from the leaf level

of the hierarchy. Assuming all the images are ordered within current-level clusters,

it interleaves the images in current-level clusters to produce a merged ordering in

the parent level. The recursion terminates at the root, producing an ordering of the

entire image collection. The interleaving of child clusters should ideally satisfy two
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Figure 2.3: A screenshot from TagMaps [15]. TagMaps visualizes popular tags in
a map view. At any time, only the canonical views corresponding to the selected
tag are displayed (Roma in this example). The set of canonical views is updated in
real-time as the user selects different tags or zooms in/out or translates to different
regions.

properties: (1) in any section of the merged ordering, the frequencies of images from

different child clusters are proportional to the scores of corresponding clusters (depth);

(2) every child cluster should have one image appearing early in the merged ordering

(breadth). The following procedure is proposed: the merged ordering is divided into

two sections – a header and a trailer. When interleaving multiple child clusters, the

first image from each child cluster is selected to compose the header section of the

merged ordering (satisfying breadth). The remaining images in the child clusters

are selected with probabilities proportional to the scores of corresponding clusters

(satisfying depths).

After the entire image collection is ranked off-line, any number of canonical

views for any subset of the image collection can be retrieved in real-time. Because



27

of the real-time execution, the work of Jaffe et al. leads to TagMaps [15], the first

industrial application to our knowledge for browsing canonical views for internet

image collections. TagMaps visualizes popular tags in a map view. At any time,

only the canonical views corresponding to the selected tag are displayed. The set

of canonical views is updated in real-time as the user selects different tags or zooms

in/out or translates to different regions. A screenshot from TagMaps is shown in

Figure 2.3.

However, the algorithm of Jaffe et al. has two shortcomings. First of all, only

image metadata is considered in inferring the importance of images or sub-clusters.

No visual features are involved. Therefore the similarity metric between images is

highly unreliable, and the resulting canonical views tend to include many noisy and

redundant views. Secondly, the algorithm is designed specifically for images of tourist

attractions, which is the only case in which it makes sense to cluster images using

geo-tags. It would be inappropriate to apply the algorithm on other types of images

whose semantics are not correlated to their geographic locations (such as images of

commercial products or artworks).

Structure From Motion

We conclude this chapter by acknowledging a recent thread of work that tack-

les large-scale image browsing with a different approach, by reconstructing the pho-

tographed scene from the images and enabling scene browsing in the 3D space.
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Figure 2.4: An illustration of the system of Photo Tourism. Offline, the system
takes as input an image collection of a tourist attraction (left) and automatically
reconstructs a sparse set of 3D points and the camera parameters (center). During
online exploration, Photo Tourism renders both the enhanced scene points as well as
the camera viewpoints in 3D, and allows the user to select different viewpoints and
browse the corresponding images (right). This figure is cited from [95].

In Photo Tourism [95], Snavely et al. present a novel 3D interface for exploring

tourist attractions. Given an image collection of a tourist attraction, a sparse set of

3D points and the camera parameters are automatically reconstructed using structure

from motion (SfM) [44]. Each image is then registered in the 3D space on top of the

scene structure. During online exploration, Photo Tourism renders both the enhanced

scene points as well as the camera viewpoints in 3D, and allows the user to select

different viewpoints and browse the corresponding images. An illustration of the

system can be found in Figure 2.4. In their recent work [94], Snavely et al. enhance

Photo Tourism by extracting paths in 3D along which images are densely captured.

Therefore Photo Tourism can automatically compute an optimal 3D fly-through for

exploring the tourist attraction.

In Photo Navigator [48], Hsieh et al. propose a similar system. Given an image

collection of a tourist attraction, they reconstruct the camera parameters in a similar

way to [94,95]. However, instead of reconstructing the scene and navigating users in
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the 3D space, they employ the camera parameters to compute an optimal ordering of

images such that the discontinuity between consecutive pairs of images is minimized.

The reordered images, displayed in a slide show, can simulate sightseeing along the

route of travel.

Scalability is a bottleneck for SfM techniques, because the reconstruction pro-

cess involves pairwise image matching and bundle adjustment [100]. In [18], Agarwal

et al. analyze the parallelization of the SfM pipeline. They explore a variety of alterna-

tive algorithms at each stage of the pipeline, and design a series of parallel distributed

algorithms for image matching and bundle adjustment. They demonstrate building

the 3D scene points and camera parameters for Rome from 150,000 images in less

than one day on a cluster of 500 CPUs.

By browsing images in the 3D space, users have a sense of the geometric con-

text, which can potentially help users to quickly navigate to the views of interest.

However, SfM techniques do not address the problems of noise and redundancy as

does canonical view mining. Although there are ways to detect and remove totally

irrelevant images during the reconstruction process, all the relevant images, represen-

tative or not, redundant or not, are presented to the user.
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CHAPTER 3

PRELIMINARIES IN IMAGE MATCHING

In this chapter we lay down the groundwork for canonical view mining. As

discussed in Chapter 2, all previous work on canonical view mining assumes the

existence of a similarity metric among images. This dissertation is no exception.

In this dissertation, we rely on local feature matching to measure the similarity

between two images. As the name implies, local features encode an image at selected

locations (or feature points) where the local image regions exhibit unique patterns.

Such unique patterns allow feature points of the same objects to be distinctively

encoded and robustly matched across different images. Since the matching between

two images is point-based, objects can be matched even under severe occlusion and

clutter, as long as the visible portions contain enough feature points. In recent years,

numerous algorithms have been proposed to improve local features by making them

invariant to various image transformations. The state-of-the-art local features have

achieved invariance to image rotation, scaling, and even affine transformation (caused

by a change in viewpoint) to some extent. Due to these reasons, local features have

been widely used for image matching tasks. Their applications can be found in the

areas of image retrieval [60], image mining [62], image mosaicking [26], and structure

from motion (SfM) [95].
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In general, there are three steps in any algorithm for local feature matching.

First of all, feature points are detected at image locations where the local image re-

gions exhibit unique patterns. Secondly, each feature point is encoded by a feature

descriptor that aggregates statistics in the local image region. Finally, a measure-

ment must be established for feature descriptors, based on which local features from

different images can be matched.

For all experiments in this dissertation, the Scale-Invariant Feature Transform

(SIFT) algorithm is used to detect and encode local features [73]. The matching of

SIFT features establishes the similarity metric among images, based on which canoni-

cal views are mined. Notice that, a class of algorithms have been proposed (including

SIFT) for local feature matching which offer different advantages such as high effi-

ciency (e.g., SURF [21]) and full affine-invariance (e.g., Harris-Affine detector [74]).

The performances of many state-of-the-art algorithms are systematically evaluated

in [75]. Depending on the specific application or dataset, SIFT can be replaced by

any other algorithm in this class for canonical view mining. In the sequel, we intro-

duce the SIFT algorithm in greater detail. Interested readers are referred to [102] for

an extensive survey on alternative algorithms.

Feature Extraction

The SIFT algorithm is proposed by Lowe [73]. Given an input image, SIFT

detects feature points at local extrema (maxima and minima) in the scale space [71].

A scale space consists of a collection of images generated by progressively smoothing
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(a) 1st octave

(b) 2nd octave (c) 3rd octave (d) 4th

· · ·

Figure 3.1: An illustration of octaves in the scale space. Within each octave, the
image is progressively smoothed by a Gaussian filter. At the end of the current
octave, the scale space image is down-sampled by a factor of 2, and the construction
of the next octave starts from the down-sampled image.

the input image by Gaussian filters. Therefore, a scale space image L is generated

by:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (3.1)

where ∗ is the convolution operator in the x, y directions between input image I and

a Gaussian filter G:

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2). (3.2)

Gaussian filtering allows high-frequency signals (fine details in the image) to be sup-

pressed. Therefore feature points are not only extracted on the scale of the input

image, but on coarser scales as well. Lowe proposes to speed up the construction

of the scale space by segmenting the scale space into octaves. Within each octave,

the image is progressively smoothed by a Gaussian filter. At the end of the current

octave, the image is down-sampled by a factor of 2, and the construction of the next



33

octave starts from the down-sampled image. Therefore image convolutions become

extremely efficient toward high levels in the scale space. An illustration of octaves

in the scale space can be found in Figure 3.1. After the scale space is constructed,

adjacent images in the same octave are subtracted to generate a series of Difference-

of-Gaussian (DoG) images. Local extrema both in the image space and across DoG

images are detected as feature points.

The principal novelty of SIFT lies in the construction of the scale space: in-

stead of detecting feature points on the scale of the input image, it detects them

through all levels in the scale space, and encodes each feature point at its “canonical”

level (where it becomes a local extrema). Therefore, SIFT features are scale-invariant.

For example, given two images of the same object captured at different distances or

zoom levels, SIFT can still match the object by their feature points, because both

sets of feature points are detected and encoded on the same canonical scales in the

scale space, not on the scales of corresponding input images. Such an example is

shown in Figure 3.2, where the same object captured at considerably different scales

is matched across two images. The second row visualizes the local image regions based

on which the matched SIFT features are encoded (see below for feature point encod-

ing). The size of a local image region is proportional to the scale on which the feature

point is detected. It can be observed that the local image regions of matched features

have almost identical coverages relative to the real-world objects, even though their

absolute sizes are drastically different in the images.

Once feature points are detected at integral pixel locations, their locations are

refined to achieve sub-pixel accuracy by fitting a 3D quadratic and interpolating the
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Figure 3.2: Matching objects on different scales using SIFT features. The first row
visualizes some SIFT matches between two images of the Trevi Fountain captured at
considerably different scales. Each blue line connects two matching SIFT features in
the two images. The second row visualizes the local image regions based on which
the matched SIFT features are encoded. Each local image region is enclosed by a
green circle. It can be observed that the local image regions of matching features
have almost identical coverages relative to the real-world objects, even though their
absolute sizes are drastically different in the images. For clarity, only a subset of the
SIFT features/matches are visualized. See Figure 3.6 for a full set of SIFT matches
between the two images.

maximum. Due to the property of DoG filters, feature points are mostly located at

the centers of blob-shaped regions, where a blob is characterized by a bright spot

surrounded by a dark background (local maximum), or a dark spot surrounded by a
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Figure 3.3: Feature descriptor computation for SIFT features. In order to encode the
feature point in the left image (at the center of the yellow circle), SIFT first assigns
the feature point a dominant orientation (illustrated by the line in the circle), and
then computes the feature descriptor in the rotated local image patch (shown by the
green square). The local image patch is divided into 4× 4 blocks. Within each block,
gradient magnitudes are aggregated in 8 directions (illustrated by the polar graphs
in each green block). The aggregation of gradient magnitudes forms a histogram of
4 × 4 × 8 = 128 bins. The histogram is normalized to unit L2-norm and serves as
the feature descriptor for the feature point. The feature descriptor is shown in the
right image. For clarity, the local image patch is enlarged to show details of the
aggregation. The actual coverage of the feature point is smaller.

bright background (local minimum) in the image. Occasionally, DoG picks up fea-

ture points along the edges. Feature points along the edges are unstable for image

matching, because their locations are sensitive to even small amounts of noise. There-

fore SIFT computes for each feature point an edge response measured by the ratio

between the principal local curvature and the one perpendicular, and feature points

with strong edge responses are removed.
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The remaining feature points are encoded by feature descriptors. A feature

descriptor is a histogram formed by aggregating statistics in the local image region of

the feature point. In order to achieve rotation-invariance, SIFT assigns each feature

point a dominant orientation by aggregating local image gradient orientations. The

local image patch is then rotated to align to the dominant orientation of the feature

point. Feature descriptors are computed in the rotated image patches. At each feature

point, SIFT divides the local image patch into 4× 4 blocks. Within each block, SIFT

aggregates gradient magnitudes in 8 directions. A Gaussian window is placed at the

center of the local image patch to suppress the contribution of distant pixels. The

aggregation of gradient magnitudes forms a histogram of 4 × 4 × 8 = 128 bins. The

histogram is normalized to unit L2-norm and serves as the feature descriptor for the

feature point. The use of pixel gradients instead of raw pixel intensities allows SIFT

feature descriptors to be invariant to brightness changes, since a constant addition

to pixel intensities has no effect on pixel gradients. The normalization step further

allows SIFT feature descriptors to be invariant to contrast changes, because contrast

changes often correspond to multiplying each pixel intensity by a constant factor,

and such changes are cancelled by the L2 normalization. A visualization of feature

descriptor computation can be found in Figure 3.3.

In this dissertation, we obtained the implementation of SIFT from Lowe’s

website [12]. On a regular-sized image (e.g., 640 × 480), SIFT can extract from

several hundred to thousands of features. Each SIFT feature is encoded by two pieces

of information: a location in the image coordinate, and a 128-dimensional feature

descriptor. As we shall see in following sections, feature locations play an important
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role in verifying the correctness of feature matches, while feature descriptors serve as

the mechanism for matching feature points across different images.

Feature Matching

Encoded by feature descriptors, the candidate match for a feature point is

identified as its nearest neighbor in the feature space measured by Euclidean distance.

Let two images I1 and I2 be represented by their sets of SIFT feature descriptors:

I1 = {p1, · · · ,pm}, I2 = {q1, · · · , qn}, where pi and qj are 128-dimensional data

points. Let NNI be the function for nearest neighbor search for image I. That is,

NNI accepts a query descriptor from another image, and returns its nearest neighbor

within all the descriptors of image I measured by Euclidean distance:

NNI(q) = argmin
p∈I

‖p− q‖. (3.3)

Then the set of candidate matches C between images I1 and I2 is defined by:

C(I1, I2) = {(pi, qj) | pi ∈ I1, qj ∈ I2 s.t. pi = NNI1(qj)}. (3.4)

Of course, merely being nearest neighbors cannot guarantee a true match: if the two

images capture different objects, there is no true match between them at all. Yet by

definition, every feature descriptor must have a nearest neighbor in the other image,

no matter how large the absolute distance is between them. Lowe proposes to verify

the robustness of a candidate match by a ratio test: for each feature descriptor, we
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also find its second nearest neighbor in the other image, and the candidate match is

deemed to be robust only if the ratio of the distances to the first and second nearest

neighbors is below certain threshold θ. Let NN
(2)
I be the function for second nearest

neighbor search for image I:

NN
(2)
I (q) = argmin

p∈I−NNI(q)

‖p− q‖. (3.5)

Then the set of robust matches M between images I1 and I2 can be defined by:

M(I1, I2) = {(pi, qj) | pi ∈ I1, qj ∈ I2 s.t. pi = NNI1(qj),
‖pi − qj‖

‖NN
(2)
I1

(qj)− qj‖
< θ},

(3.6)

where θ is set to 0.6 as suggested by Lowe. Notice that we are not constrained to

use one image as the source for nearest neighbor search and the other for querying.

By switching the roles of the two images in nearest neighbor search, we can obtain

another set of feature matches M′ between images I1 and I2:

M′(I1, I2) = {(pi, qj) | pi ∈ I1, qj ∈ I2 s.t. qj = NNI2(pi),
‖qj − pi‖

‖NN
(2)
I2

(pi)− pi‖
< θ}.

(3.7)

One can compute both M(I1, I2) and M′(I1, I2) and use the union of the two for a

larger set of feature matches. However, such a strategy is rarely adopted in practice.

First of all, due to the high distinctiveness of SIFT feature descriptors, M and M′ are

unlikely to differ by much. Therefore the union of the two sets only leads to marginal

improvement in the total number of matches. More importantly, feature matching
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(nearest neighbor search in particular) is very time-consuming. Conducting nearest

neighbor search in both directions between two images essentially doubles the time

complexity for image matching, and may render the workload prohibitively expensive

for large-scale applications. Actually, the issue of efficiency is a central topic for the

rest of this section, and will be revisited in Chapter 7 in the context of large-scale

applications.

Naively, one can implement the function for nearest neighbor search NNI1

in Equation 3.3 by a linear scan through all the feature descriptors of image I1,

resulting in m operations of distance computation. In order to compute M(I1, I2)

in Equation 3.6, nearest neighbor search needs to be initiated for each query feature

descriptor of image I2. Therefore the time complexity for computing M(I1, I2) is in

the order of O(mn), where m and n are the number of feature descriptors of images I1

and I2 respectively. Given the volume and dimensionality of feature descriptors, the

naive approach may take up to about ten seconds to match two regular-sized images.

In the literature of local feature matching, tree structures have been widely

used to improve the efficiency for nearest neighbor search. The fundamental idea

is to organize the feature descriptors from one image into a tree structure, thereby

repetitive nearest neighbor queries from the other image can each finish in sub-linear

time by querying the tree structure. Due to the large quantity of nearest neighbor

queries, the time saved by each query adds up to a significant reduction in the overall

processing time, compared to which the little overhead caused by the initial tree

construction is ignorable.
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Figure 3.4: A demonstration of kd-tree in the 2-dimensional space. The left image
shows 200 points randomly distributed in the 2-dimensional space. The right image
shows the constructed kd-tree over the space. Each line corresponds to a split during
the recursive construction of the kd-tree. The unsplit boxes correspond to the leaf
buckets of the kd-tree. In this demonstration, we set φ = 3. Therefore each leaf
bucket contains ≤ 2 points. The nearest neighbor for any query point can be found
in the leaf bucket which the query point falls or in adjacent leaf buckets.

In this dissertation, we rely on kd-tree for local feature matching. Kd-tree

was invented as a general data structure for nearest neighbor search by Bentley [23]

and adapted to local feature matching by Beis and Lowe [22]. The construction of a

kd-tree is a recursive process. Given a set of data points in the k-dimensional space,

a kd-tree recursively splits the space into two disjoint subspaces until the number

of data points in each subspace falls below a predefined threshold φ (termination

condition). At each recursion, let the set of data points in the current subspace be

denoted by P = {p1, · · · ,pm} where pi is a k-dimensional vector. A split for the

current subspace is specified by a partition axis j ∈ {1, · · · , k} and a cutoff value v
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along this axis. Thereby P can be split into two subsets PLE = {pi ∈ P s.t. pij ≤ v}

and PGT = {pi ∈ P s.t. pij > v}. Bentley proposes to select the coordinate axis

along which the data points exhibit the largest variance, and sets the cutoff values at

the median of the projections of all the data points. In this way, the data points can

be split into two equal subsets and the variance within each subset can be minimized.

After the split, the process repeats for each of the two subsets until the termination

condition is met. The recursion yields a balanced binary tree, where the root of the

tree corresponds to the entire k-dimensional space, and each leaf node of the tree

corresponds to a subspace with fewer than φ data points. Data points are stored

in their containing leaf nodes. Therefore a leaf node is also called a leaf bucket. At

the root and each internal node of the tree, the partition axis and the cutoff value

that form the split are recorded. Given m data points in the 128-dimensional space,

the time complexity for kd-tree construction is O(mlog(m)) [39]. The algorithm for

kd-tree construction is provided in Algorithm 2. A demonstration of kd-tree in the

2-dimensional space can be found in Figure 3.4.

Once a kd-tree is constructed, the leaf buckets of the kd-tree form a complete

partition of the k-dimensional space and the input data points P . Given any query

data point q, its nearest neighbor in P can be found in the leaf bucket which q

falls in (let it be denoted by Bq) or in leaf buckets adjacent to Bq. This effectively

rules out a majority of the data points in P . Since we have recorded the partition

axis j and cutoff value v at each internal node during kd-tree construction, we can

easily push q down the tree to its containing leaf bucket Bq by comparing qj to

v at each internal node. The data points in Bq serve as good candidates for the
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Algorithm 2 Build kd-tree on data points P and return the root.

procedure BuildKdTree(P )
if |P | < φ then

v ⇐ new LeafBucket
v.points ⇐ P
return v

else

axis ⇐ Select a partition axis along which P exhibits the largest variance
threshold ⇐ Compute the median projection of P on axis
PLE, PGT ⇐ Split P by threshold
v ⇐ new InternalNode
v.axis ⇐ axis
v.threshold ⇐ threshold
v.leftChild ⇐ BuildKdTree(PLE)
v.rightChild ⇐ BuildKdTree(PGT )
return v

end if

end procedure

nearest neighbor of q. However, adjacent leaf buckets of Bq also need to be visited

to ensure that the best candidate is the true nearest neighbor of q. Friedman et

al. suggest visiting adjacent leaf buckets by backtracking [39]. However, this strategy

is suboptimal because the order in which adjacent leaf buckets are visited is solely

dependent on the tree structure. The location of q is not taken into account. To

this end, Arya and Mount propose prioritized search, in which adjacent leaf buckets

are visited in ascending order of distance to q [19]. This is achieved with a little

overhead of maintaining a priority queue that holds all the untaken branches during

the tree traversal: when q is pushed down the tree, and a decision is made at an

internal node to branch in one direction, the untaken branch, along with its distance

to q, is pushed into the priority queue. When the current traversal reaches the leaf

bucket, the priority queue stores all the untaken branches along the way. The top

entry in the priority queue corresponds to the branch that contains the next closest
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leaf bucket, which provides the starting point for the next traversal. This process

repeats until all adjacent leaf buckets to Bq are exhausted, or the distance between q

and the next closest leaf bucket is already larger than that between q and the current

best candidate. Upon termination, the current best candidate is guaranteed to be

the true nearest neighbor of q within P .

The performance of kd-tree (with backtracking instead of prioritized search)

is examined by Friedman et al. on low-dimensional data (k ≤ 6) [39]. The expected

time for nearest neighbor search is reported to be proportional to log(m), where m is

the number of data points indexed by the kd-tree. This is a significant speedup over

linear search. Unfortunately, the performance of kd-tree becomes very unstable when

the dimensionality of data points grows. In a high-dimensional space, the leaf bucket

that contains the query point, Bq, has a large number of adjacent leaf buckets, and

many of them must be visited to ensure true nearest neighbor. In order to adapt

kd-tree to local feature matching (nearest neighbor search in the 128-dimensional

space), Beis and Lowe propose the Best Bin First (BBF) algorithm, in which the

prioritized search of the kd-tree is forced to terminate after a fixed number of leaf

buckets are visited, and the current best candidate is returned as the approximate

nearest neighbor for the query point. In their experiments, BBF achieves superior

performance for matching SIFT features. Compared to linear search, BBF achieves

a two orders of magnitude speedup while preserving more than 95% of true nearest

neighbors.

In this dissertation, we obtained the implementation of BBF from the ANN

library by Mount and Arya [16]. We limited the number of visited leaf buckets to 200
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per query point. The average matching time per image pair is reduced from about

10 seconds using linear search to about 0.1 second using BBF.

Geometric Verification

The previous section has generated a set of feature matches between two im-

ages, where each feature match has passed the nearest neighbor and the ratio tests.

However, mismatches still exist, where the matched feature points come from different

real-world objects. Such mismatches are caused by the lack of discriminative power

in corresponding SIFT feature descriptors. In this section, we introduce a geometric

constraint which is enforced on the locations of matched feature points. Under the

geometric constraint, many of the mismatches can be detected and removed as the

locations of the corresponding feature points are geometrically inconsistent.

In this section, we ignore the feature descriptor that is associated with a

feature point, and rely only on its location information. Let two images I1 and

I2 be represented by their sets of SIFT feature locations: I1 = {x1, · · · ,xm} and

I2 = {x′
1, · · · ,x

′
n}, where xi = (xi, yi), x

′
j = (x′

j, y
′
j) encode feature locations in the

image coordinate. Let their SIFT matches generated by the previous section be rep-

resented by {(x,x′) s.t. (d(x), d(x′)) ∈ M(I1, I2)}, where the function d returns the

feature descriptor for a feature point, and M is the set of descriptor matches defined

by Equation 3.6.

The geometric constraint between the two images is provided by the epipolar

geometry [44]. The epipolar geometry describes the intrinsic projective geometry
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Figure 3.5: An illustration of the epipolar geometry. The two cameras behind images
I1 and I2 are represented by their centers C and C ′. Given an image point x in I1,
the corresponding real-world object point X must lie on line Cx. No matter where
X is located along Cx, its projection in image I2, x

′ must lie on the epipolar line,
which is the projection of line Cx by camera C ′.

between two images of the same static object. It is derived directly from the internal

parameters and the relative pose of the two cameras that capture the images. The

epipolar geometry is illustrated by Figure 3.5. Under the constraint of the epipolar

geometry, given an image point x in I1, its matching point in I2, if it exists, must

lie on the epipolar line, which is the projection on I2 of the 3D line formed by the

first camera center and x. If the claimed matching point, x′, is off the epipolar line

by a large amount, then the point match (x,x′) must be false, since they cannot be

triangulated to the same object point in the 3D space.
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In the following discussion, we assume image points x and x′ are represented

in homogeneous coordinates. That is:

x =

















x

y

1

















, x′ =

















x′

y′

1

















. (3.8)

The homogeneous coordinates allow 2D points and lines to have the same represen-

tation. A 2D line l defined by ax+ by + c = 0 is represented by:

l =
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b

c

















. (3.9)

Under homogeneous representation, a point x = (x, y, 1)T lies on line l = (a, b, c)T

if and only if their dot product is 0: xT l = 0. If we expand the terms in the dot

product, we have exactly: ax+ by + c = 0.

The epipolar geometry is encoded by the fundamental matrix, F , which is a

3×3 matrix of rank 2. F encodes the epipolar geometry in the sense that, given any

point x in one image, multiplying x by F yields the epipolar line in the other image.

Since its true match x′ should lie on the epipolar line, a dot product between x′ and

the epipolar line should return 0. Therefore we have the following equation:

x′TFx = 0. (3.10)
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It turns out that, even though the epipolar geometry is derived from cam-

era parameters, the fundamental matrix F can be computed solely based on point

matches. Therefore, given a set of point matches returned by SIFT, we can use a

subset of the point matches to compute F , and then use the computed F to detect

false matches in the rest of the point matches. Of course, we may have included false

matches during the computation of F , in which case the computed F is not valid

itself. Therefore, we need to deal with an optimization problem: given a set of point

matches with a small amount of false matches in it, the goal is to find the funda-

mental matrix F that fits the largest subset of the point matches, and the remaining

point matches are deemed to be false. In the sequel, we first describe the algorithm

that solves for F based on a subset of 8 point matches, then we introduce a robust

estimator to iteratively finds the fundamental matrix that fits the largest subset of

point matches.

We follow the 8-point algorithm to solve for the fundamental matrix [44]. If

we represent F by:

F =

















f11 f12 f13

f21 f22 f23

f31 f32 f33

















, (3.11)

and expand Equation 3.10, we get the following dot product:

(x′x x′y x′ y′x y′y y′ x y 1)f = 0, (3.12)
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where f = (f11 f12 f13 f21 f22 f23 f31 f32 f33)
T is the vectorized fundamental matrix.

If we have n point matches, each of them can lead to a dot product in the same form.

Therefore we can accumulate the first term of each dot product into a matrix A:

A =

















x′
1x1 x′

1y1 x′
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n y′nxn y′nyn y′n xn yn 1

















, (3.13)

and we reach the equation:

Af = 0. (3.14)

From this equation we can solve for f by computing a singular value decomposition

(SVD) of A and retaining its right null-space. Notice that, in order for the solution

for f to be unique, A must be at least rank 8. Therefore, this method requires a

minimum of 8 point matches to compute the fundamental matrix F (theoretically, 7

point matches are the minimum requirement for computing F [44], but that method

requires an extra constraint on F , and is not discussed here). Having more than

8 point matches is fine, in which case an exact solution for F may not exist, but a

least-squares solution can be obtained using the same method based on SVD. Hartley

and Zisserman propose several improvements over the basic 8-point algorithm, which

include a preprocessing step to normalize the coordinates of image points, and an

enforcement of the rank-2 property of the computed fundamental matrix. Interested

readers are referred to [44] for a detailed description of the improvements.
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As mentioned before, the input set of point matches contains false matches. If

one or more false matches are included in the computation of F , then the computed

F is not valid itself. Therefore, instead of computing one least-squares solution for

F , we rely on a robust estimator to iteratively find the fundamental matrix that fits

the largest subset of point matches. The robust estimator, called RANdom SAmple

Consensus (RANSAC), is developed by Fischler and Bolles [35]. The idea is simple:

during each RANSAC iteration, we randomly sample a minimum subset of 8 point

matches, based on which we compute a candidate solution F ′ using the 8-point al-

gorithm. Then we find the set of inliers for F ′, where an inlier is defined as a point

match that roughly satisfies the epipolar constraint encoded by F ′. In particular,

given a point match (x,x′), we compute the distance d between x′ and the epipolar

line F ′x, and (x,x′) is considered to be an inlier if d is below a threshold (4 pixels in

this dissertation). This process is repeated N times, by the end of which we have N

candidate solutions {F ′} and N sets of inliers. Since the proportion of false matches is

not high in SIFT matches, it is very likely that at least one of the candidate solutions

is built on all true point matches. Out of all candidate solutions {F ′}, the one that

gains the largest set of inliers is retained. The corresponding set of inliers are deemed

to be true point matches, and the rest (outliers) are removed. As a final robustness

test, if the number of inliers is less than 16, the reconstructed fundamental matrix

is considered to be unreliable and all the point matches between the two images are

considered to be outliers and removed.

The number of RANSAC iterations, N , must be large enough to ensure a high

probability that at least one candidate solution is built on all true point matches.
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Figure 3.6: Outlier detection using RANSAC on the fundamental matrix. The false
matches (red lines) are automatically detected and removed. This figure is best viewed
in color.

In practice, the value of N can be derived systematically based on the precision of

SIFT matches [98]. Let Pt be the probability that a SIFT match is true, and Ps be

the desired probability of success after RANSAC (a success is achieved if at least one

iteration samples all true point matches). During one iteration, the probability of

all randomly sampled point matches being true is P 8
t . Therefore the probability of

failure after RANSAC can be defined by:

1− Ps = (1− P 8
t )

N , (3.15)

from which we can derive the minimum value of N to be:

N = ⌈
log(1− Ps)

log(1− P 8
t )

⌉. (3.16)
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We tested the precision of SIFT matches on the Oxford VGG dataset [1], where

ground-truth image transformation is provided among all pairs of images to verify

the correctness of their SIFT matches. On average, SIFT matches achieve about 60%

precision rate (Pt = 0.6). We would like to achieve a 99% success rate after RANSAC

(Ps = 0.99). According to Equation 3.16, we run N = 272 RANSAC iterations for

each pair of matching images to remove outliers. A demonstration of outlier detection

between two images is shown by Figure 3.6. The remaining inlier SIFT matches, as

we shall see in Chapter 4, are used to define the similarity metric for canonical view

mining.

Local versus Global Features

To put local features into context, we conclude this chapter by a brief review

on the alternative strategy – global features – for image matching. We conduct a

comparative study of SIFT and a widely used global feature for image matching on

a controlled dataset. We demonstrate the superior performance of SIFT in both

precision and recall of image matches, thereby justifying our choice of SIFT feature

matching for establishing the similarity metric among images.

In contrast to local features, which encode an image at selected locations, a

global feature encodes the content of an image as a whole. Given an image, the

simplest form of a global feature is the image itself: in [99], Torralba et al. leverage a

dataset of 80 million tiny (32×32) color images for object and scene recognition. Each

image is simply encoded by vectorizing its pixel matrix into a vector of 32× 32× 3 =
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3072 dimensions, and a basic similarity metric between two images is defined by

the sum of squared distances (SSD) between the two vectors. This simple form of

global feature can only encode tiny images. A large image must be downscaled before

vectorization to avoid a feature vector in extremely high dimensions. A different

strategy is to vectorize the image at its original resolution, and then apply dimension

reduction as post-processing to the high-dimensional feature vector. This strategy is

adopted by Turk and Pentland [101] for face recognition, and extended by Murase

and Nayar [77] for general object recognition. In both papers, images are vectorized

at their original resolutions and projected to a low-dimensional eigenspace, which is

trained offline on a large dataset of face/object images using principal component

analysis (PCA) [57].

Another class of global features involves quantizing pixel-level features and

aggregating a histogram over all the pixels in the image. The widely used color

histograms and variations are typical examples in this class [97]. Recently, Oliva and

Torralba propose the Gist representation of an image [80]. A Gist feature encodes

the structure of a photographed scene by computing the oriented edge energy at each

pixel and aggregating the energies at multiple scales into coarse spatial bins. The

representation of Gist is very similar to that of a SIFT descriptor. Therefore this

approach can be regarded as using a single SIFT feature to encode the entire image.

In practice, a Gist feature is often augmented with color information (a Gist-color

feature) to compensate for the fact that Gist operates on the illuminance channel

alone and ignores the color information in the image. In the literature, Gist/Gist-

color features have been adopted and evaluated in a number of tasks. In [80], Oliva
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Figure 3.7: A sample object and four views in the UK Recognition Benchmark.

and Torralba use the Gist feature to classify images into semantically similar scene

categories (typical scene categories include buildings, street, coast, open country).

In [45], Hays and Efros use the Gist-color feature to retrieve semantically similar

scenes to a query image from a database of over two million images. In [37], Frahm et

al. use the Gist-color feature for approximate image matching in a scalable structure

from motion pipeline: they use the Gist-color feature as a cheap means to segment

an image collection into clusters of similar scenes; the more accurate, but also more

expensive, matching using SIFT features is constrained within each cluster of images.

In order to better understand the performance of local and global features,

we conduct a comparative study of SIFT and Gist-color features for image matching

on a controlled dataset. We collected the dataset from the UK Recognition Bench-

mark [17], which consists of 10200 images of 2550 objects. Each object is captured

from four distinct viewpoints (see Figure 3.7). The ground truth of image matches

consists of all pairs of images of the same object. In this study, we randomly sam-

pled 120 objects (480 images) to conduct pairwise image matching using SIFT and

Gist-color features respectively.
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First of all, we follow the procedure described in the previous sections with

identical parameter settings to conduct pairwise image matching using SIFT features:

we extract SIFT features from each image, match SIFT features among all pairs of im-

ages using BBF, verify matched image pairs by RANSAC on the fundamental matrix,

and finally retain all the matched image pairs with at least 16 inlier SIFT matches.

Secondly, we follow the parameter settings suggested by [37] to conduct pairwise im-

age matching using Gist-color features: for each image, we compute the Gist feature

over three scales (from coarse to fine) with 8, 8 and 4 orientations aggregated into

4×4 spatial bins. We augment each Gist feature with a subsampled and vectorized

RGB image at 4×4 spatial resolution. Finally, we separately normalize the Gist part

and the color part of the feature vector to unit L1 norm. Two images are deemed to

be a match if the L1 distance between the corresponding Gist-color features is below

a predefined threshold.

For each procedure of pairwise image matching, we evaluate its performance

in terms of the precision and recall of image matches. Loosely speaking, precision

measures how many image matches detected by the procedure are correct according

to the ground truth, and recall measures how many image matches in the ground

truth are detected by the procedure. Mathematical definitions are provided below:

precision =
♯ correct matches by procedure

♯ matches by procedure
, (3.17)

recall =
♯ correct matches by procedure

♯ matches by ground truth
. (3.18)
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Figure 3.8: Precision and recall of image matching. The performance is compared
among SIFT, Gist-color, and the random baseline. SIFT features outperform Gist-
color features by a large margin.

The precision and recall achieved by SIFT and Gist-color features are shown in Fig-

ure 3.8. For Gist-color features, since we are not aware of a well-established distance

threshold in the literature, we vary the distance threshold from the minimum to the

maximum of the pairwise distances among all images, producing a complete precision-

recall curve. It is easy to observe that SIFT features outperform Gist-color features

by a large margin. SIFT features achieve a recall of image matches at 65.13%, while

maintaining a near-perfect precision at 96.67%. On the other hand, Gist-color fea-

tures only achieve a high precision when the distance threshold is set to be extremely

low. As the distance threshold is increased for a higher recall, the precision of im-

age matches drops sharply. At the same recall achieved by SIFT features (65.13%),

the precision of Gist-color features is almost equivalent to the baseline where image

matches are selected at random.
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A similar observation of Gist-color features is reported by Hays and Efros –

“scenes can only be trusted to be semantically similar if the distance between them

is very small” [45]. In an image retrieval application such as [45], the low recall of

image matches can be compensated by leveraging a huge database of images, so that

regardless of the relatively low recall of image matches, the absolute number of image

matches is still satisfactory. In a canonical view mining application, however, the low

recall of image matches renders the similarity graph too sparse to reveal the wisdom

of crowds on which views are canonical. Indeed, in the early experiments on canonical

view mining, we tried replacing SIFT features by Gist-color features for the similarity

metric among images, and the resulting canonical views are near-random.
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CHAPTER 4

CANONICAL VIEWS: ALGORITHM DESCRIPTION

In this chapter, we describe the algorithm for canonical view mining. The

problem is formalized as follows: given a collection of n images P = {P1, P2, · · · , Pn},

let Ck ⊂ P be the subset of images that best summarizes P out of all subsets of size

k. The goal is to compute a permutation of images P∗ = π(P), such that the k-prefix

P∗
1,··· ,k ≈ Ck for 1 ≤ k ≤ n. In other words, we would like to compute an ordering

of the images, such that the top k images approximate the k-set of canonical views

for the image collection. Once the permutation π(P) is computed, canonical views

of any size k can be retrieved for any subset Q ⊆ P in real-time by taking the first k

images in π(P) that also appear in Q.

For the purpose of illustration, this chapter shows step-by-step results and

analysis for the algorithm on one of the experimental image collections. Experiments

on other image collections can be found in Chapter 5. The image collection in question

consists of 11959 images of Rome from 2493 photographers collected from Flickr

(henceforth referred as the Rome collection).

Images are encoded and matched by SIFT features. The similarity between

two images is measured by the number of inlier SIFT matches normalized by the total
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number of SIFT features in both images:

similarity(Pi, Pj) =
2|matches(Pi, Pj)|

|features(Pi)|+ |features(Pj)|
, (4.1)

where Pi 6= Pj ∈ P . The similarity values range from 0 to 1, where 0 indicates two

images having no inlier SIFT matches, and 1 indicates two images having the same

set of SIFT features (and therefore fully matched). See Chapter 3 for a discussion

of SIFT feature matching. With the similarity metric defined, a similarity graph can

be formed over the image collection, with vertices representing images and weighted

edges indicating the similarity between images.

The ranking of canonical views is found in two phases. During the first phase,

images are ranked by the representativeness of their photographed scene, which is

measured by eigenvector centrality and solved using the power method [42]. During

the second phase, a reranking scheme is applied to images to demote redundant views.

The reranking scheme, which is based on adaptive non-maximal suppression [27],

forces top-ranked images to be not only representative, but also diverse, and therefore

serves as the ranking of canonical views.

Ranking Representative Views

Relying on the wisdom of crowds [96], we interpret a representative view as an

image whose photographed scene is shared by many other images. In the similarity

graph, such images are characterized by vertices that connect to many neighbors

with high-weight edges. In graph theory, a class of metrics exists that quantitatively
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measures the centrality of vertices [78], which coincides with our characterization

of representative views. For example, the simplest metric of centrality, the degree

centrality, measures the importance of a vertex by the number of incident edges. In

a weighted graph, degree centrality can be generalized to the sum of weights carried

by the incident edges to a vertex, which is very similar to our characterization of

representative views in a similarity graph. In practice, however, this simple metric

has a strong bias toward productive photographers. Imagine a photographer taking

hundreds of images of the same random view. These images are connected by high-

weight edges to each other and form a clique in the similarity graph. By the standard

of degree centrality, they are all representative, even though none of them are.

We adopt the eigenvector centrality to measure representativeness for images.

The principle of eigenvector centrality considers not only the number of neighbors

of a vertex, but also the importance of the neighbors. A vertex close to important

vertices may be valued higher than one close to unimportant vertices, even though

the latter has a higher neighbor count. This is in contrast to degree centrality where

all vertices are treated as equivalent. If we encode the similarity graph by adjacency

matrix A, where Aij stores the similarity between vertices vi and vj, and let xi denote

the eigenvector centrality for vertex vi, then xi is defined as follows:

xi =
1

λ

∑

j

Aijxj, (4.2)

which is a weighted sum of the eigenvector centralities of vi’s neighbors. The nor-

malization factor λ is to ensure
∑

i xi = 1. If we organize {xi} in vector format
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x = (x1, · · · , xn)
T , then we can rewrite Equation 4.2 in matrix representation:

x =
1

λ
Ax. (4.3)

Rearranging the terms, we have the standard eigenvector equation Ax = λx, where

x is an eigenvector for the adjacency matrix A, and the normalization factor λ is the

corresponding eigenvalue (hence the name eigenvector centrality).

Eigenvector centrality has found a wide range of applications in network analy-

sis. The most well-known of all is probably the PageRank algorithm, which is adopted

by Google for ranking authority for webpages [25]. In the PageRank algorithm, the

web is encoded by a directed graph where each edge is a hyperlink directed from

one webpage to another. Intuitively, webpage authors tend to direct links to other

webpages that are both relevant and authoritative. Therefore, a link can be treated

as a vote from one webpage to another for the latter’s authority. However, not all

links carry equal weight. For example, a link directed from the homepage of Microsoft

should be considered a much stronger evidence for authority than a link directed from

a personal blog. Hence the PageRank algorithm weights each vote by the authority of

the source and iteratively propagates weighted votes among the network and accord-

ingly updates the authorities of webpages, which essentially converge to eigenvector

centralities.

Inspired by the success of PageRank, Jing and Baluja propose to apply the

algorithm to large-scale image search [53]. Their algorithm, termed VisualRank,

provides the basis for our algorithm for ranking representative views. Unlike the web,
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images are not naturally connected to form a network. When applying PageRank

to the image domain (or VisualRank), hyperlinks between webpages are replaced

by analogous “visual connections” between images, which, in our experiments, are

specified by the similarity metric in Equation 4.1.

Once the similarity graph is formed, the ranking of representative views re-

duces to the solution for an eigenvector for the underlying adjacency matrix. In

general, up to n eigenvector/eigenvalue pairs exist for an n × n adjacency matrix.

However, by the Perron-Frobenius Theorem [85], if we constrain all eigenvector cen-

tralities to positive values, which is a desirable property for image representativeness,

then only the dominant eigenvector can satisfy the requirement. Therefore, the prob-

lem is simplified to the solution for one eigenvector/eigenvalue pair for the adjacency

matrix – the dominant one. In this case, we can avoid a full decomposition of the

adjacency matrix, which is extremely inefficient when n is large, by using the power

method [42].

The power method is an iterative algorithm. Following the same denotation

as Equation 4.3, the power method initializes the solution for x to a random vector

of unit L1-norm, and iteratively multiplies x by A and normalizes x back to unit

L1-norm. Specifically, in the tth iteration:

1. x(t+1) = Ax(t),

2. x(t+1) = x
(t+1)

‖x(t+1)‖1
.

x(0) is usually initialized to ( 1
n
, · · · , 1

n
)T , and x(∞) is the solution for x. In practice,

when the adjacency matrix A contains no negative entries, the second normalization
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step can be eliminated by preprocessing A to form a stochastic matrix A∗, in which

columns are normalized to unit L1-norm. By doing so, the L1-norm of x(t) is never

affected by multiplying by A. Now each iteration consists of a single matrix-vector

multiplication:

1. x(t+1) = A∗x(t).

In order for the power method to converge, the stochastic matrix A∗ must be irre-

ducible [66]. This is equivalent to the underlying similarity graph being connected.

In practice, connectivity is forced by introducing a damping factor to the power iter-

ation:

x(t+1) = dA∗x(t) + (1− d)(
1

n
)n×1, (4.4)

where d ∈ (0, 1) is the damping factor. Intuitively, the addition of the damping

factor is equivalent to adding a low-weight edge between all pairs of vertices in the

similarity graph, thereby enforcing connectivity. Previous applications of the power

method have suggested a damping factor of d = 0.85 [25,53], which is adopted in this

dissertation. In early experiments, we have tried varying d from 0.75 to 0.95 and we

have observed little difference in the solution for image representativeness.

Following the power method with damping factor, the algorithm for ranking

representative views is provided in Algorithm 3. The input to the algorithm is an

n× n stochastic matrix A∗ encoding the similarity graph over n images. The output

from the algorithm is a vector x of n representativeness scores for n images.

The convergence rate for the power method is fast. In all of our experiments,

the algorithm converges within 50 iterations. The high convergence rate, combined
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Algorithm 3 Compute the representativeness scores x for n images, given the
stochastic matrix A∗.
x ⇐ ( 1

n
)n×1

repeat

x′ ⇐ x

x ⇐ dA∗x′ + (1− d)( 1
n
)n×1

until |x− x′| < ǫ

(a) Top-ranked representative views (b) Bottom-ranked representative views

Figure 4.1: A comparison between the top-ranked and bottom-ranked representative
views of the Rome collection. Bottom-ranked images hardly capture any recognizable
views of Rome. In comparison, all of the top-ranked images indeed capture landmarks,
such as the Colosseum and the Trevi Fountain. However, despite being representative,
the top-ranked representative views are highly redundant. For example, in the top 16
representative views, 7 images capture St. Peter’s Basilica within the top 16 images.

with simple matrix-vector multiplications in each power iteration, allows the algo-

rithm to be highly efficient, processing more than ten thousand images in a matter

of seconds. The power method is scalable, too, given that matrix-vector multiplica-

tions are often well optimized and easily parallelizable on a cluster of CPUs. Upon

convergence of the power method, each image is assigned a representativeness score,

by which representative views can be ranked.

In Figure 4.1, top-ranked and bottom-ranked representative views are shown

for the Rome collection. As expected, bottom-ranked images hardly capture any rec-
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ognizable views for Rome. In comparison, all of the top-ranked images indeed capture

landmarks, such as the Colosseum and the Trevi Fountain.

However, despite being representative, the top-ranked representative views

are highly redundant. For example, in the top 16 representative views for the Rome

collection, 7 images capture St. Peter’s Basilica. The high volume of redundancy

is understandable: if the view of St. Peter’s Basilica gains more representativeness

during power iteration, then by definition of eigenvector centrality, all nearby vertices

in the similarity graph (images sharing overlapping views) are likely to be assigned

high representativeness scores. The redundancy issue is addressed in the next phase.

Ranking Canonical Views

In the similarity graph, redundant views can be characterized by vertices con-

nected by high-weight edges. Unfortunately, the metric of eigenvector centrality tends

to assign such vertices similar representativeness scores, resulting in a high volume

of redundancy in top-ranked representative views. During the second phase, images

are reranked by a scheme that demotes redundant views. The reranking scheme is

inspired by adaptive non-maximal suppression [27]. We let a representative image

suppress visually similar but less-representative images, and rerank images by the

number of images that they suppress. Out of all images of the same redundant view,

only the most representative image remains top-ranked and the rest are demoted.

Encoded by visual features, images can be considered as data points in a high-

dimensional feature space. Each data point is associated with a representativeness
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Figure 4.2: Demoting redundant views by adaptive non-maximal suppression (an
illustration). Images are represented by solid dots. Size of dots indicates represen-
tativeness of corresponding images. The ranking of images is therefore (1, 2, 3, ...).
Under the metric of visual dominance, each image has a suppression radius in the
feature space determined by the minimum distance to a more representative image.
Each image is scored by counting images that fall in its suppression radius. In this
example, image 2 captures a redundant view of image 1 (close-by in feature space).
Therefore image 2 has a small suppression radius and low count of images within its
suppression radius. After adaptive non-maximal suppression, the ranking of images
becomes (1, 3, 2, ...). Image 2 is demoted.

score computed during the previous phase. We define the suppression radius ri for

image Pi ∈ P as the minimum distance from Pi to a more representative image in P :

ri = min
j

distance(Pi, Pj), s.t. xi < xj, Pj ∈ P , (4.5)

where xi and xj are representativeness scores for images Pi and Pj respectively. Given

the similarity metric in Equation 4.1 and the range of similarity values between 0 and

1, the distance metric between images can be naturally defined as follows:

distance(Pi, Pj) = 1− similarity(Pi, Pj). (4.6)
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The suppression radius for an image specifies a spherical neighborhood in the fea-

ture space in which the image is the most representative. According to the defi-

nition, for any pair of images Pi 6= Pj ∈ P , the suppression radius for the less-

representative image is bounded by distance(Pi, Pj). If Pi and Pj capture redundant

views (distance(Pi, Pj) is small), then the less-representative image would be demoted

for having a small suppression radius. However, reranking images solely based on

suppression radius would be unwise, because images of random views, with which no

other images share, will also have large suppression radiuses according to the defini-

tion. Therefore, we propose to rerank images by the number of images that fall in the

suppression radius: |{Pj s.t. distance(Pi, Pj) < ri, Pj ∈ P}|. In this way, top-ranked

images are still representative, because they suppress many visually similar images in

the feature space, but redundant views are demoted. Top-ranked images are not only

representative, but also diverse, which fulfills our requirements for canonical views.

The process of demoting redundant views by adaptive non-maximal suppression is

illustrated by Figure 4.2. Sample images in the Rome collection that are suppressed

during adaptive non-maximal suppression are shown in Figure 4.3.

A comparison between representative views and canonical views is illustrated

in Figure 4.4. Representative views and canonical views are visualized in the similar-

ity graph, which covers part of the Rome collection consisting of 1558 vertices (images)

and 14198 edges (matching pairs). The lengths of edges are inversely proportional

to their weights. Therefores close-by vertices are likely to share redundant views. A

number of clusters can be clearly observed. Each cluster corresponds to images of a

frequently photographed scene. Vertices corresponding to the top 16 representative
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views and canonical views are visualized as red dots in the graph. It can be observed

that the representative views reside in only a few clusters, and many of them are very

close to each other (most of them are indeed redundant views as illustrated by Fig-

ure 4.1). On the other hand, the canonical views reside in all significant clusters with

little redundancy (close-by vertices), providing a much more complete summary for

all images. In Figure 4.5, top-ranked canonical views, in comparison with top-ranked

representative views, are shown for the Rome collection. With redundant views de-

moted, the canonical views are both representative and diverse, covering within 16

images a much larger number of landmarks of Rome (see the Trevi Fountain, Colos-

seum – exterior and interior, St. Peter’s Basilica – exterior and interior, Pantheon –

exterior and interior). Compared to the first page of search results of Rome on Flickr

(see Figure 1.1), the canonical views convey a much clearer impression of Rome within

a smaller number of images.

The algorithm for adaptive non-maximal suppression and canonical view rank-

ing is provided in Algorithm 4. In practice, having ranked images by descending order

of representativeness, an image only needs to be compared to higher-ranked images to

compute its suppression radius, and lower-ranked ones to count the number of images

that it suppresses. Therefore the time complexity for the algorithm is in the order

of O(n2), where n is the number of images. In our experiments, ranking canonical

views for more than ten thousand images finishes in a matter of seconds.

The ranking of canonical views has a number of applications. In the next sec-

tion, we demonstrate an application of canonical views for large-scale image browsing.
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Algorithm 4 Compute the ranking of canonical views C, given an image collection
P with representativeness scores x.

P∗ ⇐ sort P in descending order of x
c ⇐ (0)n×1

for i ⇐ 1 · · ·n do

r ⇐ ∞
for j ⇐ i− 1 · · · 1 do

if distance(P∗
i,P

∗
j) < r then

r ⇐ distance(P∗
i,P

∗
j)

end if

end for

for j ⇐ i+ 1 · · ·n do

if distance(P∗
i,P

∗
j) < r then

ci ⇐ ci + 1
end if

end for

end for

C ⇐ sort P∗ in descending order of c

In Chapter 6, we discuss another application of canonical views for efficient object

recognition.

Image Browsing with Canonical Views

The ranking of canonical views can assist in browsing large image collections.

In the simplest form, one can present the top-ranked k canonical views as a succinct

visual summary for a large image collection. Having removed noise and redundancy,

the canonical views can facilitate an understanding of the essence of the large num-

ber of images without the need for extensive browsing. More importantly, once the

ranking of canonical views has been computed for the entire image collection offline,

any number of canonical views for any subset of the image collection can be retrieved

in real-time. The method is straightforward: following the notation from previous

sections, let us denote the entire image collection by P , the ranking of canonical views
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by π(P), the subset of interest by Q ⊆ P , and the desired number of canonical views

by k. In order to retrieve the k canonical views for Q, we simply scan π(P) from top

to bottom and return the first k images that also appear in Q.

The ability to retrieve canonical views for any subset of images in real-time is

appealing to image search engines, because any query issued by the user specifies a

subset of the entire image collection as search results. Therefore the user can browse

the search results by their canonical views. We demonstrate this idea in Figures 4.6

and 4.7. In this demonstration, the Rome collection is considered as the superset of

images. Once the ranking of canonical views has been computed for the superset,

a user can specify constraints on image metadata to browse the canonical views for

any subset of images of interest. In both cases, the constraints are specified for the

subsets of images of the Trevi Fountain, the Colosseum, the Vatican and the Pantheon.

In Figure 4.6, the constraints are specified by keywords. The subset of interest is

therefore formed by images whose tags match all of the keywords. In Figure 4.7,

the constraints are specified by geometric bounding boxes. Similar to TagMaps [15]

(see Figure 2.3), we leverage the GPS tags associated with the images and enable a

user to browse canonical views for a particular geographic region by zooming in/out

or translating over a map view of Rome. The subset of interest is therefore formed

by images whose GPS tags fall in the geographic bounding box. In both cases, the

canonical views are retrieved in real-time. Notice that the canonical views for subsets

of images are also representative and diverse, capturing the landmarks of interest from

different iconic viewpoints. The qualities of the canonical views are systematically

evaluated in Chapter 5.
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Figure 4.3: Demoting redundant views by adaptive non-maximal suppression (sample
images). Sample images that are suppressed during adaptive non-maximal suppres-
sion are shown in the top and bottom rows. The corresponding “suppressing” images
are shown in the central row. After adaptive non-maximal suppression, the suppress-
ing images remain top-ranked as canonical views, while the suppressed images are
demoted in the ranking. Therefore the canonical views are diversified.
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(a) Representative views (b) Canonical views

Figure 4.4: A comparison between the representative views and canonical views visu-
alized in the similarity graph. The similarity graph covers part of the Rome collection
consisting of 1558 vertices (images) and 14198 edges (matching pairs). The lengths of
edges are inversely proportional to their weights. Therefore close-by vertices are likely
to share redundant views. A number of clusters can be clearly observed. Each cluster
corresponds to images of a frequently photographed scene. Vertices corresponding
to the top 16 representative views and canonical views are visualized as red dots in
the graph. The representative views reside in only a few clusters, and many of them
are very close to each other (most of them are indeed redundant views as illustrated
by Figure 4.1). On the other hand, the canonical views reside in all significant clusters
with little redundancy (close-by vertices), providing a much more complete summary
for all images. The similarity graph is visualized by GraphViz [11]. This figure is
best viewed in color.
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(a) Representative views (b) Canonical views

Figure 4.5: A comparison between the top-ranked representative views and canonical
views of the Rome collection. With redundant views demoted, the canonical views are
both representative and diverse, covering within 16 images a much larger number of
landmarks of Rome (see the Trevi Fountain, Colosseum – exterior and interior, St.
Peter’s Basilica – exterior and interior, Pantheon – exterior and interior).
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Figure 4.6: Canonical views for different subsets of the Rome collection specified by
keywords. The left column shows the added keyword(s) to the original keyword Rome.
Each set of keywords leads to a subset of the Rome collection. The right column shows
the canonical views for the corresponding subsets. Canonical views for all subsets are
retrieved in real-time.
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Figure 4.7: Canonical views for different subsets of the Rome collection specified by
geographic bounding boxes. The top-left image shows a satellite image of Rome,
with regions of interest specified by geographic bounding boxes. Each region leads
to a subset of the Rome collection. The outer images show the canonical views for
the corresponding subsets (from top-right clock-wise, the geographic bounding boxes
cover the areas of the Trevi Fountain, the Colosseum, Rome, the Pantheon, the
Vatican). Canonical views for all subsets are retrieved in real-time.



75

CHAPTER 5

CANONICAL VIEWS: EVALUATIONS

In this chapter, we demonstrate the quality of canonical views on various image

collections. We develop quantitative measurements to evaluate the canonical views,

and compare the proposed algorithm for canonical view mining to other methods,

including image search engines, representative view ranking, and the previous work

of Simon et al. [92].

Data Collection and Qualitative Results

We collected all the image collections from two sources: the photo sharing site

Flickr [4], and the image search engine Google Images [9]. Both websites provide an

interface for keyword-based image retrieval. We specify the following set of keywords

for data collection:

• places : Dubrovnik, Paris, Rome, Washington DC and Yosemite,

• products : Canon, iPod, Starbucks and Wii,

• artworks : da Vinci and Michelangelo.

These keywords are selected based on several criteria. First of all, the volume of

search results corresponding to a keyword must be large; otherwise, the images may

be severely biased toward one or more productive photographers, rendering the basis
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Table 5.1: Statistics of Flickr images.

Search keyword(s) ♯ images ♯ Flickr users

Places
Dubrovnik 9350 1941
Paris 11997 3237
Rome 11959 2493
Washington DC 11991 2114
Yosemite 5756 1058

of canonical view mining – the wisdom of crowds – invalid. In practice, however, this

criterion is the easiest to fulfill, since image search on almost any non-obscure keyword

can retrieve a huge amount of search results from the above two sites. Secondly, the

photographed objects corresponding to a keyword must be matchable across different

images by SIFT features. This requirement is entailed by our definition of image

similarity, which is based on SIFT feature matching. In general, SIFT demonstrates

extremely high precision and recall for matching objects of rigid appearances. On

the other hand, SIFT cannot match object classes such as animals and plants, whose

appearances undergo nonrigid transformations (deformations) from one image to an-

other. Nonetheless, images of rigid objects (places in particular) compose a significant

portion of internet image collections [90], and have been the focus of much previous

work on canonical view mining. Finally, the set of keywords is selected with a large

overlap to previous work, so that the performance of canonical view mining can be

compared among different methods on a common ground. All three object classes –

places, products and artworks – have attracted great attention in the previous work

on canonical view mining [30,50,54,64,92].
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Table 5.2: Statistics of Google images.

Search keyword(s) ♯ images ♯ websites

Products
Canon 672 288
iPod 793 395
Starbucks 779 482
Wii 669 370

Artworks
da Vinci 245 162
Michelangelo 333 218

We collected images of places from Flickr, and images of products and artworks

from Google Images. Flickr provides an API for massive download of images based

on keywords [5]. We specified an upper limit of 12000 images per image collection

(keyword search). Besides image files, we also downloaded the metadata attached to

the images, including textual tags and GPS tags (geographic locations of capture).

In total, we downloaded 51053 images from 10843 Flickr users. Image statistics are

listed in Table 5.1. Different from photo sharing sites, Google Images indexes images

not from personal photo albums, but from all the websites on the internet. It does

not provide an API for massive download. We therefore parsed the search results

returned by the search engine and followed the image URLs to download the images

from their original websites. Google Images limits the number of search results to

several hundred per query. In total, we downloaded 3491 images from 1915 websites.

Image statistics are listed in Table 5.2. For stable performance of image matching,

all large images in the collections are downscaled to a maximum dimension of 640

pixels.
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The algorithm described in Chapter 4 was applied to each image collection to

mine canonical views. Qualitative results of canonical views are shown in Figures 5.1,

5.3 and 5.4. For image collections of places, many of the canonical views capture

popular landmarks of the places (listed in the caption of Figure 5.1). Moreover,

almost all the landmarks are captured in their most iconic viewpoints. Images of

near-identical viewpoints to these can be found on authoritative tourism websites

such as the Wiki pages of these landmarks (see Figure 5.2). Apart from landmarks,

some canonical views in the collections of Dubrovnik and Paris capture views of

the cityscapes, because such views tend to connect many images in the similarity

graph, and thereby gain large supports during canonical view ranking. The canonical

views for products and artworks are also promising: almost all the canonical views

for products capture either the popular products under the brand names or the brand

logos; the canonical views for artworks capture most of the masterpieces of the two

artists as listed on their Wiki pages (also listed in the caption of Figure 5.4). Some

images in the collection of da Vinci are collages of multiple paintings. Similar to the

cityscape views of Dubrovnik and Paris, collages also tend to connect many images in

the similarity graph, and thereby gain large supports during canonical view ranking.

Three of the four canonical views in the collection of da Vinci are collages of multiple

paintings. In this dissertation, we do not treat collages differently from regular images,

although it would not be very difficult to detect and remove collages based on the

structure of the visual similarity graph and geometric constraints (intuitively, collages

tend to connect many otherwise disconnected vertices in the visual similarity graph,

and the camera parameters of collages cannot be uniquely resolved).
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Table 5.3: Statistics of Dataset-II.

Original collection Additional keywords ♯ images ♯ Flickr users
Paris Notre Dame 637 337
Rome Colosseum 604 306
Rome Pantheon 422 237
Rome Trevi Fountain 354 208

Washington DC Capitol 795 362
Washington DC Lincoln 505 256

Besides the image collections listed in Tables 5.1 and 5.2 (which are henceforth

collectively referred to as Dataset-I), we also prepared a separate dataset, Dataset-

II, which consists of subsets of images obtained from several collections in Dataset-I

(Table 5.3). The subsets of images were obtained in the same manner as keyword-

based image retrieval: we specified additional keywords on an image collection in

Dataset-I, and retrieved all the images whose tags match the additional keywords. In

order to maintain high volumes of images in the subsets, we only obtained subsets from

collections of 10000+ images (Paris, Rome, Washington DC), and specified keywords

that correspond to popular landmarks (Notre Dame, Colosseum, Pantheon, Trevi

Fountain, U.S. Capitol and Lincoln Memorial). The additional keywords, along with

image statistics of the retrieved subsets, are listed in Table 5.3. One advantage of the

proposed algorithm for canonical view ranking is that, once the ranking of canonical

views π(P) has been computed for an image collection P , the ranking of canonical

views for any subset of image collection Q ⊆ P can be retrieved in real-time by

simply scanning π(P) and returning ranked images in π(P) ∩ Q (see Chapter 4).

Therefore the ranking of canonical views for each image collection in Dataset-II can

be obtained from its corresponding superset. The top two canonical views are shown
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for each image collection in Dataset-II in Figure 5.5. Notice that for Colosseum,

Pantheon, U.S. Capitol and Lincoln Memorial, the top two canonical views capture

each landmark from exterior and interior. For Notre Dame, the top two canonical

views capture the landmark from front and back. Trevi Fountain is the only landmark

for which the top two canonical views cover similar viewpoints, because there is only

one aspect of the landmark that attracts photographing. The purposes of Dataset-II

are two-fold. First of all, canonical view retrieval for subsets of images has important

applications in large-scale image browsing (see Chapter 4). Therefore it is important

to evaluate the quality of the canonical views retrieved for subsets of images. Secondly,

as we shall see in the next section, one of the quantitative measurements to evaluate

canonical views requires manual inspection of the canonical views to determine their

relevance to the topic (keywords) of the image collection. It would be difficult to

conduct this measurement on Dataset-I, since each set of keywords in Dataset-I (such

as Rome) covers a myriad of possibilities in relevant photographed objects. Thus the

relevance of images is ill-specified. On the other hand, the relevance of images in

Dataset-II can be specified by a simple criterion: an image is relevant if and only if

the corresponding landmark is recognizable in the image, which effectively reduces

subjectivity in the manual inspection.

Quantitative Measurements

As we develop quantitative measurements to evaluate canonical views, it is

worth noting that the evaluation of summaries in general is a well-studied topic in
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the research of text summarization. A number of metrics exist. The most successful

ones, such as BLEU (standing for Bilingual Evaluation Understudy) [82] and ROUGE

(standing for Recall-Oriented Understudy for Gisting Evaluation) [70], operate on two

pieces of text summaries, one generated by human, the other by machine, and eval-

uate the later by counting their co-occurrences of linguistic units (such as n-grams).

These automatic procedures achieve high correlation with human judgements, and are

routinely used in text summarization benchmarks. In [68], Li and Merialdo bring the

idea to the domain of video summarization. Their metric, termed VERT (standing

for Video Evaluation by Relevant Threshold), operates on a human-generated video

summary and a machine-generated one. The underlying statistical procedures are

identical to BLEU and ROUGE, while the co-occurrences of linguistic units are re-

placed by the visual similarities of video frames. Unfortunately, this class of metrics is

not applicable to canonical views (summaries of internet image collections). While it

is relatively easy to manually generate summaries for text documents or video clips,

it is almost impossible to do so for a noisy and unstructured collection of tens of

thousands of images. To merely browse all the images, which is unavoidable during

the manual process of summarization, would be prohibitively time-consuming.

We therefore resort to simple measurements that operate on the set of canon-

ical views alone without human-generated ground truth. We propose to evaluate

canonical views by three quantitative measurements: noise, redundancy, and cover-

age. In the following discussion, we follow the notation from previous chapters and

denote an internet image collection by P , and its k-set of canonical views by Ck.



82

Measurement of noise. As discussed in Chapter 1, the goal of canonical view

mining is to remove noise and redundancy from internet image collections. Therefore

quantitative measurements on noise and redundancy are well motivated. Similar met-

rics have been adopted in the previous work of Kennedy et al. [64] (termed precision

and uniqueness tests in their work, which are simply negations of the measurements

of noise and redundancy). Similar to [64], we define noise(Ck) to be the number of

images in Ck with irrelevant content to the topic (keywords) of P . The relevance of

image content is inspected manually. We consider an image to be relevant to the

topic of P if and only if the image contains recognizable views of the objects depicted

by the keywords of P . In order to reduce subjectivity in the manual inspection, we

only conduct this measurement on Dataset-II, where the topics of image collections

are well-specified by popular landmarks. By definition, noise(Ck) ranges from 0 to k,

with a lower value being more desirable.

Measurement of redundancy. We define redundancy(Ck) to be the number of

images of duplicate content in Ck. To be exact, we scan the list of images in Ck from

top to bottom, and count images whose content has been previously seen. In practice,

we automate this process by leveraging the existing inlier SIFT matches among all

pairs of images collected during canonical view mining. We define the ith image in Ck

to be a duplicate if and only if it matches to at least one of the first (i− 1) images in

Ck with at least 16 inlier SIFT matches. By definition, redundancy(Ck) ranges from

0 to k − 1, with a lower value being more desirable.

Measurement of coverage. Finally, we measure the summarization power of

Ck over P . We define coverage(Ck) to be the percentage of images in P whose content
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is captured by at least one of the images in Ck. Again, we automate this process by

leveraging the inlier SIFT matches among all pairs of images. We define an image

P ∈ P to be covered by Ck if and only if image P is matched to at least one of the

images in Ck with at least 16 inlier SIFT matches. By definition, coverage(Ck) ranges

from k
|P|

to 1, with a higher value being more desirable.

Notice that the measurements of redundancy and coverage are automated us-

ing SIFT feature matching. The automatic procedures allow canonical sets of various

sizes for various image collections to be evaluated with ease. Otherwise, the mea-

surement of coverage, at least, is impossible to conduct, for it would entail a manual

inspection of potentially tens of thousands of images in P . SIFT features have been

demonstrated on a controlled dataset to achieve both high precision and recall in

image matching (with the same threshold of 16 inlier SIFT matches; see Chapter 3).

Therefore it is reasonable to expect these automatic procedures to faithfully simulate

manual inspections. One concern in the measurements of redundancy and coverage

is that the SIFT features are known to have poor coverage over textureless objects,

thus resulting in a bias toward texture-rich objects in image matching. However, in

our experiments, the measurements of redundancy and coverage are always conducted

on the same image collection to compare different subsets of images obtained using

different methods. Since the photographed objects are constrained by the topic of

the image collection, we would expect little variance in the texture-richness across

different subsets of images. Therefore the bias is insignificant in the comparative

results.
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Experiments

With datasets and quantitative measurements in place, we evaluate the canon-

ical views and compare the proposed algorithm for canonical view ranking to three

other methods:

• Search engines. The ranking of images returned by the search engine Flickr or

Google Images is used as a baseline for comparison. The two search engines rely

on text matching between query keywords and image metadata to determine

the relevance of images and rank the images by descending relevance. In the

case of Flickr, image metadata is provided by the image owners via tagging.

In the case of Google Images, image metadata is automatically crawled from

the text fields of the webpages that host the images. In both cases, no visual

feature is considered in the ranking of images. Therefore a high volume of noise

is expected in the top-ranked images.

• Representative view ranking. Representative views are ranked by eigenvector

centralities in the visual similarity graph (see Chapter 4). Since the algorithm

for representative view ranking is based on the previous work of Jing and Baluja,

this is equivalent to a comparison to their work [53]. The ranking of represen-

tative views advances the baseline by taking into account the visual similarity

among images. Therefore much less noise is expected in the top-ranked images.

However, because images of similar views are assigned similar representativeness

scores, a high volume of redundancy is expected in the top-ranked images.
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• The previous work of Simon et al. [92]. Simon et al. present a clustering-based

method to select canonical views for an image collection. They apply greedy k-

means to the visual similarity graph and iteratively add images to the canonical

set while maximizing a k-means-like objective function. The objective function

is designed such that each image in the collection should be represented by one

of the canonical views, while the content among the canonical views should not

overlap. The algorithm is reviewed in Chapter 2. Little noise or redundancy

is expected in the selected canonical views. However, being a clustering-based

method, the algorithm can only generate a fixed number of canonical views in

one run. Worse, the number of canonical views cannot be controlled explicitly.

It can only be affected by adjusting the parameters α and β in the objective

function. We follow the same parameter setting: α = 5.75 and β = 100,

as adopted in the original paper. On most image collections, the algorithm

terminates with less than 10 canonical views selected.

In the subsequent experiments, the three methods are denoted as follows:

search engines – SE, representative view ranking – RV, greedy k-means – GK. The

proposed algorithm for canonical view ranking is denoted by CV.

Measurements of noise and redundancy. In this experiment, we conduct the

measurements of noise and redundancy on Dataset-II. We evaluate three of the four

methods – SE, RV and CV. Greedy k-means is omitted because it only manages to

select 2 or 3 canonical views per image collection. Therefore there is not enough data

to robustly evaluate its performance. We apply each of the three methods – SE, RV
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and CV – to each of the six image collections in Dataset-II to retrieve top-ranked

images. This yields a total of 18 sets of images. For each set of images, we compute

the scores of noise and redundancy as defined in the previous section for the top k

images in the set, where k varies from 1 to 20. Therefore we have computed a 3×6×20

matrix, where the (i, j, k)th cell stores the noise and redundancy scores for the top k

images retrieved from image collection j using method i. Finally, we average the noise

and redundancy scores along the second dimension – across all the image collections

in Dataset-II. In Figure 5.6, the average noise and redundancy scores are plotted

against the top-ranked images for each of the three methods. As expected, the search

engine results contain a high volume of noise (averaging 10.7 of the 20 images) while

the representative views contain a high volume of redundancy (averaging 13.0 of the

20 images). The ranking of canonical views easily achieves the best performance out

of the three, averaging only 2.3 noisy views and 2.0 redundant views in the top 20

images.

Measurement of coverage. In this experiment, we conduct the measurement

of coverage on Dataset-I. We apply each of the four methods – SE, RV, GK and CV

– to each of the eleven image collections in Dataset-I to retrieve top-ranked images.

This yields a total of 44 sets of images. For each set of images, we compute the cov-

erage score as defined in the previous section for the top k images in the set, where

k varies over {1, 5, 10, 20, 40}. We divide the image collections in Dataset-I by their

categories: places, products and artworks, and average the coverage scores across all

the image collections within the same category. The reason not to average across dif-

ferent image categories is because image collections in different categories (especially
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places vs. the other two) are drastically different in both volume and complexity of

image content. In Figure 5.7, the results for the three image categories are presented

separately. For each image category, the average coverage score is plotted against the

top-ranked images obtained using four methods. Several observations can be drawn

from the results. First of all, the ranking of canonical views consistently outperforms

the other three methods. The ranking of representative views and greedy k-means

achieve similar, slightly inferior performances. The search engines consistently yield

the poorest performance. Since the measurement of coverage indicates summariza-

tion power, the ranking of canonical views is demonstrated to be the best among

the four methods to compose a visual summary for the image collection. Another

interesting observation is that the search engine of Google Images seems to compare

favorably to that of Flickr, even though both rely on textual information to deter-

mine the relevance of images: in the Google categories (products and artworks), the

performance of the search engine, albeit the poorest, is very close to the other three

methods, while in the Flickr category (places), the performance of the search engine

falls behind the other three methods by a large margin. One probable explanation is

that the textual information leveraged by Google Images (webpage content) is much

richer than that by Flickr (user-added tags), therefore the former stands a better

chance in understanding the image content and determining its relevance to query

keywords. Nonetheless, the best performance achieved by the text-based methods is

still inferior than any of the content-based methods. Finally, notice that in the places

category, as much as about 10% of the original image collection (1000+ images) is

covered within the top 40 canonical views. The large compression ratio and excellent
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summarization power of top-ranked canonical views open up new possibilities for ef-

ficient manipulation of large image databases. In Chapter 6, we shall demonstrate

such an application of canonical views in the context of object recognition.
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Dubrovnik

Paris

Rome

Washington DC

Yosemite

Figure 5.1: Canonical views for image collections of places. The left column shows the
keywords and the right column shows the top four canonical views for corresponding
image collections. Many of the canonical views capture popular landmarks of the
places. For example, Dubrovnik – Stradun Street (first image); Paris – Notre Dame,
Eiffel Tower, Arc de Triomphe (first, second and fourth images); Rome – Trevi Foun-
tain, Colosseum, St. Peter’s Basilica and Pantheon; Washington DC – U.S. Capitol,
Lincoln Memorial, Capitol Dome, White House; Yosemite – Glacier Point, Yosemite
Valley, Yosemite Falls (lower and upper sections). Moreover, almost all the landmarks
are captured in their most iconic viewpoints. Images of near-identical viewpoints to
these can be found on authoritative tourism websites such as the Wiki pages of these
landmarks (see Figure 5.2). Apart from landmarks, some canonical views in the col-
lections Dubrovnik and Paris capture views of the cityscapes, because such views
tend to connect many images in the similarity graph, and thereby gain large supports
during canonical view ranking.
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(a) Stradun Street (b) Notre Dame (c) Eiffel Tower (d) Arc de Triomphe

(e) Trevi Fountain (f) U.S. Capitol (g) Glacier Point (h) Yosemite Valley

Figure 5.2: Comparisons of landmark viewpoints between the canonical views and
the images collected from Wiki pages. We select several landmarks from the top-
ranked canonical views in the Dubrovnik, Paris, Rome, Washington DC and Yosemite

collections (see Figure 5.1). For each landmark, the image on the left shows the
canonical view automatically selected by our algorithm, and the image on the right
shows the image collected from the Wiki page of the landmark. For almost all these
landmarks, the two images are captured from near-identical viewpoints.
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Canon

iPod

Starbucks

Wii

Figure 5.3: Canonical views for image collections of products. The left column shows
the keywords and the right column shows the canonical views for corresponding image
collections. Almost all the canonical views capture either the popular products under
the brand names or the brand logos.

da Vinci

Michelangelo

Figure 5.4: Canonical views for image collections of artworks. The left column shows
the keywords and the right column shows the canonical views for corresponding image
collections. The canonical views capture most of the masterpieces for the two artists
as listed on their Wiki pages: da Vinci – self portrait, Mona Lisa, The Vitruvian
Man, and several others in the first and fourth image collages; Michelangelo – the
ceiling of the Sistine Chapel, The Last Judgment, David, Pietà.
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(a) Paris + Notre Dame (b) Rome + Colosseum

(c) Rome + Pantheon (d) Rome + Trevi Fountain

(e) Washington DC + Capitol (f) Washington DC + Lincoln

Figure 5.5: Canonical views for Dataset-II. The image collections in Dataset-II are
labeled by their keywords. The top two canonical views are shown for each image
collection. Notice that for Colosseum, Pantheon, U.S. Capitol and Lincoln Memo-
rial, the top two canonical views capture each landmark from exterior and interior.
For Notre Dame, the top two canonical views capture the landmark from front and
back. Trevi Fountain is the only landmark whose top two canonical views cover
similar viewpoints, because there is only one aspect of the landmark that attracts
photographing.
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Figure 5.6: Measurements of noise and redundancy. The measurements of noise (red)
and redundancy (blue) are averaged across all the image collections in Dataset-II
and plotted against the number of top-ranked images obtained using three methods:
SE – search engine (Flickr), RV – representative view ranking, CV – canonical view
ranking. This figure is best viewed in color.
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Figure 5.7: Measurement of coverage. The measurement of coverage is averaged across
all the image collections of places (left), products (center) and artworks (right), and
plotted against the number of top-ranked images using four methods color-coded by:
red – search engine (Flickr or Google Images), green – representative view ranking,
purple – greedy k-means, blue – canonical view ranking. Notice that image collections
in different categories are drastically different in both volume and complexity of image
content. Therefore the measurement of coverage is not to be compared across different
categories (notice that the Y coordinates are in different scales in the three plots).
This figure is best viewed in color.
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CHAPTER 6

CANONICAL VIEWS: AN APPLICATION FOR OBJECT RECOGNITION

The applications of canonical views extend beyond image browsing. With

the proliferation of internet image collections, researchers have taken advantage of

the excellent resource to tackle some of the most fundamental problems in computer

vision, such as object recognition. A wave of work has been proposed that bypasses

parametric modeling for object classes to interpret unseen images directly by their

nearest neighbors in a large database of images of known interpretations [45,99]. This

class of work has achieved promising results for many currently unsolvable problems

such as general object recognition and scene understanding. However, the complexity

of nearest neighbor search becomes prohibitive as the database scales. In this chapter,

we argue that such methods can potentially benefit by the use of canonical views.

By removing noise and redundancy from the database, we expect the set of canonical

views to be compact while still preserving most of the representative power for the

purpose of object recognition. We validate this hypothesis on the place recognition

problem, in which we estimate the geographic location of an image by matching its

photographed scene to a large database of images of known locations.
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Introduction

In the study of cognitive psychology, where is considered to be one of the most

important memory cues for recalling past events [104]. Since images are records of

past events, it is not surprising that location information serves an important role

in indexing and searching internet images [107]. On most photo sharing sites, it is a

common practice to allow users to browse images on the map at locations of capture.

We have already seen one example, TagMaps [15], in Chapter 2.

Location-based image browsing is an effective way to view images in context.

However, in order to place an image on the map, the image must be associated with

a GPS-tag, which is specified by a latitude/longitude coordinate. In general, the

GPS-tags of images can be acquired in three ways. First of all, many cameras and

smart phones nowadays have GPS devices embedded, so a GPS-tag is automatically

saved to the EXIF fields of the image file upon capture. Secondly, many photographers

(especially tourists) use external GPS devices to record their route of travel. Therefore

the GPS-tags for the images captured along the route can be retained. Finally, most

photo sharing sites provide a map-based tool where users can manually specify the

locations of the images by drag-and-drop. Unfortunately, compared to the volume

of internet image collections, the portion with GPS tags is still relatively small: by

querying on Flickr using popular keywords and switching on the filter for GPS-tagged

images, we estimate that GPS-tagged images make up fewer than 10% of all images

on Flickr.
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Although small in relative number, the absolute number of GPS-tagged images

is gigantic, in the order of hundreds of millions. Moreover, the collection of GPS-

tagged images provides an excellent coverage of the globe. Given an image of unknown

location, it is very likely that there exist multiple GPS-tagged images of the same

scene. This motivates a data-driven scene matching approach to acquiring GPS tags

for images: having collected a database of images of known locations, a query image

is matched to the database to retrieve images of matching scenes; the locations of the

matched database images thereby provide an estimate of the location of the query

image. This approach has demonstrated promising results in the literature [46, 88]

(see next section for a review).

However, traditional strategies for image retrieval, which involve a linear scan

of the database (such as [46]), lead to suboptimal performance on internet images

collections. As discussed in Chapter 1, internet image collections contain massive

amounts of noise and redundancy. For the purpose of place recognition, noise includes

images focusing on people or objects and showing little background scene; redundancy

includes near-duplicate images of the same scene (such as a landmark view). During

a linear scan of the database, much of the computation is wasted either on matching

to noisy images that reveal little geographic information, or on matching to images

of redundant scenes over and over again. Little previous work on place recognition

has addressed the noise and redundancy issues.

Inspired by the study of canonical views, we propose to minimize the impact

of noise and redundancy on place recognition by compressing the original database

into a compact representation by a small number of canonical views. Ideally, the set
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of canonical views should eliminate noise and redundancy from the original database,

while preserving a diverse set of representative views. Therefore, by restricting the

scene matching of a query image to the canonical views, we expect to improve the

efficiency of query processing significantly with minimal loss in recall rate.

Previous Work

This work is most closely related to [46, 88]. In [88], Schindler et al. propose

a system for place recognition on the scale of a city. They collect a database of

30K GPS-tagged streetside images of a city. SIFT features are extracted from all

database images and organized by a vocabulary tree [79] for efficient matching. The

location of a query image is given by its top match in the database using SIFT

features. In IM2GPS [46], Hays and Efros leverage a database of over 6 million

GPS-tagged internet images for place recognition on the scale of the globe. A query

image is matched to all database images using a combination of visual features. Mean

shift [28] is applied to the locations of the top k matched images in the database to

find the modes (density centers) in their geographic distribution. The locations of the

density centers serve as the estimated locations for the query image. In [58], IM2GPS

is extended to predict the locations for a sequence of images with timestamps. A prior

distribution of travel patterns is trained on a large database of images. Therefore the

location of an image can be predicted not only based on its scene matching results, but

also based on the location predictions of temporally adjacent images in the sequence.

Our work adopts the data-driven scene matching approach of [46, 88], but improves
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the efficiency of query processing by compressing the original database into a compact

representation by canonical views.

With the maturity of large-scale image-based modeling [18], a wave of work

adopts structure from motion (SfM) techniques to reconstruct a 3D point cloud from

internet image collections, and uses the point cloud as a basis for place recognition [49,

67, 69]. By registering images in 3D and reconstructing the point cloud, various

statistics can be accumulated such as the view count for each 3D point. Therefore,

the scene structure can be exploited (e.g., which 3D points and associated 2D views

appear more frequently in the images) to improve the efficiency of query processing by

prioritizing 3D points for matching [69], compressing the 3D point cloud to a minimal

cover of the location [49], and building an iconic scene graph for matching [67]. Our

work is similar to this class of work in that we also exploit the scene distribution

of database images, but our work does not rely on SfM, which often entails more

requirements on the images (such as EXIF fields with the focal length information)

and a higher computational cost.

Algorithm

The algorithm consists of offline and online stages. During the offline stage, a

large database of GPS-tagged images is compressed into a small subset of canonical

views. During the online stage, the query image is matched to each canonical view

until a matching scene is found, upon which the location for the query image can be

predicted.
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Canonical View Selection

The algorithm for canonical view ranking is described in Chapter 4. Given

input images P = {P1, P2, · · · , Pn}, the output of the algorithm is a permutation π

of P such that the top k images in the π(P) approximate the k-set of canonical views

for P . In the sequel, we add two post-processing steps to finalize a subset of canonical

views from π(P).

Redundancy removal. Top-ranked images in π(P) are usually diverse. How-

ever, redundant views start appearing towards the middle of π(P). This is not sur-

prising – the original algorithm does not remove any redundant views; it only demotes

them in the canonical view ranking. For the purpose of place recognition, redundant

views bring little new information to a database. The first post-processing step aims

to remove redundant views by the following procedure: we scan the list of images in

π(P) in order, and remove all subsequent images that have at least 16 inlier SIFT

matches to the current one, until the list is exhausted. After this procedure, few

redundant views remain.

Noise removal. Top-ranked images in π(P) usually have large supports in

their suppression radiuses, but the support drops sharply towards the middle of π(P).

Towards the end of π(P), there is a long tail of images with tiny supports in their

suppression radiuses, which indicates only a handful of images sharing a same scene.

The popularity of the scenes are so low that these images are rarely matched by query

images in place recognition. In the second post-processing step, we treat the long tail

of images as noise and remove any image with a support less than a certain threshold
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t in its suppression radius. In our experiments, we empirically set t = 2, which

offers a good tradeoff between the compactness and coverage of canonical views. The

threshold indicates that any canonical view must represent a minimum of 3 images

(2 in the suppression radius plus 1 for the canonical view itself).

Noise and redundancy abound in internet image collections. The two post-

processing steps lead to about 96% compression of a database in our experiments.

The remaining 4% of database images are selected as canonical views and ordered by

the canonical view ordering π for place recognition.

Scene Matching

Having a database of images of known locations and an ordered list of canonical

views, estimating the location for a query image is straightforward: we scan the list

of canonical views from top to bottom, matching each canonical view to the query

image. If a matching scene is found, the scan is terminated, and the location of

the matching scene is reported as the estimated location for the query image. If we

exhaust the list of canonical views without a match, the query image is rejected as

not at any location covered by the database.

Since query processing is terminated as soon as a match is found, we aim for a

low false positive rate during the scene matching between canonical views and a query

image. As discussed in Chapter 3, we use SIFT features to match images, followed by

a geometric verification using RANSAC [35] on the fundamental matrix [44]. After

the geometric verification, if the number of remaining SIFT matches exceeds a certain
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(a) Random views (b) Canonical views

Figure 6.1: A comparison between random views and canonical views for place recog-
nition. Each row shows four random views and top-ranked canonical views for a site
(from top down: Dubrovnik, Paris, Rome, Washington DC and Yosemite). The ran-
dom views shed light on the amount of noise in internet image collections and justify
our approach of canonical views, in which little noise or redundancy is observed.

threshold (16 in our experiments), the pair of images is deemed to be a match. In

a robustness test where we match images from different sites, we observe zero false

positives using the described procedure and threshold.

Experiments

We evaluate place recognition on the same dataset as canonical view evaluation

in Chapter 5. The database contains 51053 images of five sites: Dubrovnik, Paris,

Rome, Washington DC and the Yosemite National Park. The top canonical views for

place recognition are shown in Figure 6.1. We keep track of the number of canonical

views after the first and second post-processing steps are applied to the original

output. As shown in Table 6.1, there is a significant reduction in the number of
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Figure 6.2: The experimental setup for place recognition. Each test image is matched
to the database images as well as the canonical views. In both sets of images, the first
scene match to the query image, if any, predicts the GPS tag for the query image.
This process is repeated for each test image. The performance of the canonical views
is compared to that of the database images in terms of efficiency and recall.

canonical views after each step is applied. Together, a 96% reduction is attained. By

restricting query processing to this set of canonical views, the maximum processing

time for a query image (proportional to the number of scene matching operations) is

also reduced by about 96%.

The significant reduction in processing time leads to some loss in recall rate:

some images that could have been matched to the database may fail to do so because

all the corresponding database images are missing from the canonical set. The loss in

recall rate is quantitatively measured by conducting place recognition on a test set of
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Table 6.1: Statistics of database images and canonical views. The last two columns
show the number of canonical views after the first and second post-processing steps
are applied to the original output. Notice that a consistent 94 − 98% reduction of
images is attained after both steps.

Dataset ♯ images P1 P2 % reduction
Dubrovnik 9350 6059 520 94.44%

Paris 11997 9854 407 96.61%
Rome 11959 8951 433 96.38%

Washington DC 11991 10528 295 97.54%
Yosemite 5756 3923 257 95.54%

images against both the original database and the canonical views. The experimental

setup is illustrated in Figure 6.2.

The test set consists of 400 GPS-tagged images for each of the five sites,

yielding 2000 query images in total. The GPS tags of query images are only used for

localization error analysis. Images in the test set are downloaded from Flickr in the

same manner as database images. However, a filtering is applied to ensure that the

database and the test set share no image/user in common.

Notice that the ground-truth recall rate will not be 100%. Since the query

images are just as noisy as database images, a majority of them cannot be matched

even by a full scan of the database. Since we are interested in the loss of recall caused

by canonical views, our ground-truth recall rate is the one where query images are

matched to the entire database.

For each query image, we match it against all database images in random order.

This provides ground truth data. Then we apply the scene matching algorithm to

match the query image against the canonical views for all sites – not only the canonical

views of the same site, but those of the other sites as well – to test the robustness
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Table 6.2: Comparison of efficiency, precision, and recall. GT refers to the ground-
truth method; CV refers to the method with canonical views. Efficiency is measured
by the average number of scene matching operations per query.

GT CV CV gain
efficiency (♯ ops) 2540.76 65.216 97.43%

GT CV CV gain
precision (% correct) 98.21% 100% 1.79%

GT CV CV loss
recall (♯ correct matches) 275 206 25.09%

of place recognition. In both the database images and the canonical views, the first

scene match to the query image, if any, predicts the GPS tag for the query image.

Out of 2000 query images, 280 have at least one match to the original database,

and 206 have at least one match to the canonical views. In the sequel, we analyze

efficiency, precision, recall, and localization error in more depth.

Efficiency. Efficiency is measured by the average number of scene matching

operations per query. A comparison of efficiency is shown in Table 6.2, where the

method with canonical views saves as much as 97% of scene matching operations,

reducing the average time for query processing from several minutes to a few seconds.

Notice that the canonical views are ordered by descending representativeness. This

means that a majority of query images are expected to match to the top fraction of

canonical views, which results in extremely efficient processing. Figure 6.3 plots the

growth of matched query images as more canonical views are scanned.

Precision. Precision of scene matching is measured by the percentage of cor-

rectly matched query images among all matched query images. For each matched

query image, we manually inspect its first match to both the entire database and



105

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

♯ scene matching operations

♯
m

a
tc

h
ed

q
u
er

y
im

a
g
es

Scene Matching Using Random and Canonical Views

 

 

random views
canonical views

Figure 6.3: A comparison between the random views and canonical views for scene
matching. The number of matched query images is plotted against the number of
scene matching operations required by using random views and canonical views. No-
tice that a majority of query images are matched by the top fraction of canonical
views, which results in extremely efficient query processing.

the canonical views (if any) and determine if the matched images indeed share the

same view of the same place with the query image. Of the 280 matches to the entire

database, 5 query images are matched on indoor objects or street signs of different

places, causing incorrect estimates of their geographic locations. Therefore the preci-

sion of scene matching to the entire database is 98.21%. In comparison, those 5 query

images are all absent in the canonical views. All 206 matches to the canonical views

share the same view of the same place as the query images, leading to a 100% preci-

sion. In particular, no query image is matched to any image of a different site, which

demonstrates the robustness of the strict procedure of SIFT matching and geometric

verification.
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Figure 6.4: Samples of difficult query images. 16 random samples are shown of query
images having ≤ 2 matches in the database, which indicate rarely photographed
scenes.

Recall. We are interested in the relative recall: among all query images that

can be matched by the entire database, the percentage that are matched by the

set of canonical views. The recalls are shown in Table 6.2, where the method with

canonical views suffers a 25% loss. The loss in recall is low considering that the size

of the canonical set is only 4% of the entire database. Moreover, by inspecting the

query images corresponding to the loss, we find that more than 95% of such images

have ≤ 2 matches in the entire database, which indicate rarely photographed scenes

(see Figure 6.4). Place recognition for rarely photographed scenes is inherently a

difficult problem. A small change in the database may result in different match/reject

decisions for such images. Therefore, we believe it is worth making a sacrifice on such

images in exchange for a significant improvement in efficiency.
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Localization error. Finally, we analyze the localization error of the scene

matching approach to place recognition. Each matched query image has two GPS

tags: one of its own (treated as ground truth) and the other predicted by a matched

database image. Localization error is measured by the great-circle distance between

the two GPS tags. Among all matched query images, the median localization error is

30.82m, which is promising given that the typical precision of civilian GPS devices is

about 20m [6]. The lower and upper quartiles of localization errors are 14.57m and

103.98m respectively. Only a few predicted GPS tags are far off their ground truth

(up to 6km), all of which are caused by incorrect GPS-tagging of either the query

image or the matched database image, not by scene matching.

Summary

An efficient method for place recognition is proposed. The principal novelty

of the method is in compressing a database of images into a compact representation

by canonical views. The use of canonical views eliminates noise and redundancy in

the database, and enables efficient place recognition with a reasonable recall rate.

The data also suggests that the precision of place recognition is slightly improved,

thanks to the removal of noise in the canonical views. This experiment validates

our hypothesis that the set of canonical views, albeit small, preserves most of the

representative power of the original database for the purpose of object recognition.

Therefore canonical views can potentially benefit a number of techniques that rely on

large-scale nearest neighbor search for object recognition.
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CHAPTER 7

CANONICAL VIEWS: SCALABILITY

We have proposed a pipeline for canonical view mining from internet image

collections. We have evaluated the quality of the canonical views, and demonstrated

their applications for large-scale image browsing and efficient object recognition. In

this chapter, we discuss the scalability of the pipeline. We single out pairwise image

matching as the scalability bottleneck, and propose an approximation algorithm to

remove the bottleneck. We evaluate the approximation algorithm by efficiency and

accuracy for pairwise image matching. We demonstrate that the approximation al-

gorithm speeds up pairwise image matching (and the entire pipeline) by two orders

of magnitude with low impact on the resulting canonical views.

Time Analysis

The pipeline for canonical view mining is recapitulated in Figure 7.1. As

we shall see, the pipeline demands significant amounts of computational resources,

yielding poor scalability to large image collections. In the sequel, we walk through

the main stages in the pipeline, inspect their time complexities, and recognize the

scalability bottleneck. For the purpose of comparison, we report the runtime of each

stage on the Rome collection of 11959 images (summarized in Table 7.1). The runtime

distributions for other image collections are similar.
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Figure 7.1: The pipeline of canonical view mining.

Table 7.1: Runtime of canonical view mining on the Rome collection.

Stage Time

SIFT feature extraction ≈ 5.5 CPU hours
Pairwise image matching ≈ 2212 CPU hours
Geometric verification ≈ 40 minutes
Representative view ranking 13.94 seconds
Canonical view ranking 4.43 seconds

SIFT feature extraction. On average, SIFT feature extraction takes about

1.6 seconds per image. The exact runtime is largely dependent on the resolution

and texture-richness of the image. In our experiments, we have downscaled all the

large images in the collections to a standard resolution (640 pixels on the maximum

dimension). Therefore we observe little deviation in the runtime among different

images. The total runtime of this stage grows linearly in the number of images. On the

Rome collection, SIFT feature extraction for 11959 images amounts to about 5.5 CPU

hours. Notice that SIFT feature extraction operates on each image independently.

Therefore, a large image collection can be easily partitioned and processed by a cluster

of CPUs. In our experiments, we parallelize SIFT feature extraction on 6 CPUs to

reduce the wall clock time of this stage to less than one hour.
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Pairwise image matching using SIFT features. In Chapter 3, we have ad-

dressed the efficiency of matching two images using SIFT features by approximate

nearest neighbor search, and successfully reduced the runtime of image matching to

about 0.1 second per pair. Yet, this stage proves to be the most time-consuming of

the entire pipeline, because the requirement for pairwise image matching causes the

total runtime to grow quadratically in the number of images. For the Rome collection

of 11959 images, pairwise image matching translates into matching (11959× (11959−

1))/2 = 71, 502, 861 pairs of images! Even with efficient image matching (about 0.1

second per pair), this amounts to about 2212 CPU hours. In our experiments, we

parallelize pairwise image matching on a cluster of 40 CPUs. Still, this stage takes

the longest wall clock time, about 3 days per large collection of 10000+ images.

Geometric verification using RANSAC. Like image matching, geometric ver-

ification using RANSAC also operates on pairs of images. Therefore, in the worst

case, the total runtime of this stage could be quadratic in the number of images. In

practice, however, geometric verification is only triggered on image pairs with at least

16 SIFT matches (see Chapter 3). Due to the massive amount of noise in internet

image collections and the low false positive rate of SIFT feature matching, only a tiny

portion of image pairs are qualified for geometric verification. Out of the 71,502,861

image pairs in the Rome collection, geometric verification is triggered on 239,990 pairs,

which takes about 40 minutes runtime on a single CPU (averaging about 0.01 second

per pair). After geometric verification, 22262 image pairs remain.

Representative view and canonical view ranking. Compared to the previous

stages, the runtime of representative view and canonical view ranking is negligible.
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On a collection of N images, representative view ranking entails a small number of

matrix-vector multiplications between an N × N stochastic matrix and an N × 1

vector of eigenvector centralities. Canonical view ranking entails scanning the list of

representative views N times. On the Rome collection (N = 11959), both stages finish

in a matter of seconds on a single CPU.

From the time analysis, we can easily single out pairwise image matching as

the scalability bottleneck of the pipeline. On a large collection of 10000+ images,

pairwise image matching takes thousands of CPU hours, accounting for more than

99% of the total runtime of the pipeline. Even worse, due to the massive amount

of noise in internet image collections, true image matches are extremely sparse: in

the Rome collection, only 22262 image pairs survive the SIFT feature matching and

geometric verification, which accounts for about 0.03% of the total 71,502,861 image

pairs. In other words, about 99.97% of the runtime in pairwise image matching is

spent on images that do not match.

Approach

We propose a large kd-tree for approximate image matching. A large kd-tree

indexes feature descriptors for a database of N images. By querying the large kd-tree,

a query image can be matched to all N images in one run. We enable approximate

nearest neighbor search on the large kd-tree to reduce the time complexity of 1-to-N

image matching from O(N) to O(log(N)). On a database of 10000+ images, 1-

to-N image matching achieves a significant speedup over the conventional N times
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1-to-1 image matching (henceforth referred to as exact image matching). Due to

the approximation in nearest neighbor search, the retrieved feature matches to the

database images may be sparse. However, we shall demonstrate that the feature

matches can predict with a high recall which of the N images are likely to match to

the query image.

Based on a large kd-tree, we present a prediction-verification scheme for pair-

wise image matching (Figure 7.2). Given a database of N images for pairwise match-

ing, we build a large kd-tree to index the feature descriptors from all N images. In

the prediction stage, we issue each database image as a query to the large kd-tree

and collect a set of predictions of image matches. In the verification stage, we verify

the correctness of each prediction by exact image matching. False image matches are

discarded, and true image matches are retained. Due to the high sparsity of image

matches in internet image collections, we expect the output from the prediction stage

(the input to the verification stage) to be much smaller than the full set of N(N − 1)

image pairs. Therefore the prediction-verification scheme can achieve a significant

speedup over pairwise image matching.

In the literature, a wave of work has focused on indexing feature descriptors

for a database of images, thereby enabling 1-to-N image matching (see next section

for a review). Our work is different from previous work in two aspects. First of

all, previous work requires all the feature descriptors that are to be indexed and

searched to reside in the main memory. This requirement imposes a high memory

consumption on the kd-tree and a poor scalability to large image databases. Thus

previous work can hardly scale beyond several thousand regular-sized images (about
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Figure 7.2: The prediction-verification scheme for pairwise image matching. The
left diagram shows the conventional scheme for pairwise image matching, where all
N(N−1) pairs of images are processed by exact image matching, and qualified image
pairs (with at least 16 feature matches) are subject to geometric verification using
RANSAC. The right diagram shows the prediction-verification scheme for pairwise
image matching. A large kd-tree is built to index the feature descriptors from all
N images. In the prediction stage, each database image is issued as a query to the
large kd-tree and a set of predictions of image matches is collected. In the verification
stage, the correctness of each prediction is verified by exact image matching. False
image matches are discarded, and true image matches are retained. Due to the high
sparsity of image matches in internet image collections, we expect the output from
the prediction stage (the input to the verification stage) to be much smaller than the
full set of N(N − 1) image pairs (i.e., X ≪ N(N − 1)). Therefore the prediction-
verification scheme can achieve a significant speedup over pairwise image matching.

several million SIFT features). On the other hand, we propose disk-based kd-tree

construction and nearest neighbor search, which allows a majority of the feature
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Figure 7.3: Projections of vocabulary trees with different branching factors. The three
vocabulary trees are constructed using the same set of 10 thousand SIFT features.
From left to right, the branching factors are 2, 10, and 100. Hierarchical k-means
forms a hierarchy of Voronoi diagrams in the 128-dimensional feature space. The
images show their projections onto two random dimensions. Pixel intensities indicate
the ratio of the distances to the first and second nearest nodes on each level of the
vocabulary tree. Therefore the darkest values (ratio ≈ 1) indicate the boundaries of
the Voronoi cells (k-means clusters). The visualization uses the technique of [88].

descriptors that are to be indexed and searched to reside on the disk. This effectively

reduces the memory consumption of the kd-tree and improves the scalability by an

order of magnitude. Hence we term our work as large kd-tree to distinguish with the

conventional kd-tree. Secondly, previous work treats the retrieved image matches as

finalized, whereas we treat them as predictions. Since the predicted image pairs are

subject to verification, they need not be highly precise. This allows us to conduct a

large degree of approximation in nearest neighbor search, and trade precision for a

significant improvement in efficiency.

Previous Work

Our work is closely related to [54, 73, 76], in which the authors propose to

index feature descriptors for a database of images, thereby enabling 1-to-N image
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matching. In [73], Lowe leverages a variant of kd-tree to index hundreds of thousands

of SIFT features for efficient object recognition. In [54], Jing et al. construct a

spill tree [72] to index the SIFT features for up to 1000 small-sized images (400

pixels in the maximum dimension) for scalable pairwise image matching. In [76],

Muja and Lowe experiment with several tree structures for SIFT feature indexing,

including randomized kd-tree [91] and hierarchical k-means tree [79]. They evaluate

the performance of different tree structures on various datasets of up to millions of

SIFT features. They also propose an automatic procedure to infer the optimal tree

structure and parameter setting given a specific dataset, by sampling the parameter

space in a coarse-to-fine manner while minimizing a cost function. The previous work

has achieved promising results in indexing and matching databases of up to several

thousand regular-sized images (about several million SIFT features). However, the

previous work can hardly scale to larger databases due to the requirement for memory-

based tree construction and nearest neighbor search.

Another class of algorithms approaches scalable image matching by quantizing

the space of feature descriptors into a finite set of states (visual words) and convert-

ing each image to a bag of visual words [79, 93]. The bag-of-words model has been

extensively studied in the domain of text retrieval [87]. In [93], Sivic and Zisserman

introduce the model to the image domain by clustering SIFT features from all the

images by k-means. The finite set of k-means centers serves as the set of visual words,

based on which SIFT features are quantized and images are matched. In [79], Nis-

ter and Stewenius improve the performance of visual words by recursively clustering

SIFT features to form a hierarchical k-means tree (vocabulary tree). Figure 7.3 illus-
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trates the projections of several vocabulary trees constructed using the same set of

10 thousand SIFT features with different k values for k-means clustering (also called

branching factors). With little overhead in tree construction and feature quantiza-

tion, the vocabulary tree offers a much larger set of visual words (up to millions).

The performance of vocabulary tree is evaluated on a dataset of 40000 images, and

superior efficiency and quality is demonstrated for image retrieval. In [18], Agarwal et

al. adopt the vocabulary tree as a building block in a scalable structure from motion

(SfM) pipeline. Given a large internet image collection, the pipeline relies on the

vocabulary tree to predict a small number of image pairs that are likely to match.

Only the predicted pairs are verified by exact image matching. However, Agarwal et

al. did not measure the prediction accuracy for vocabulary tree, probably because

the ground truth for image matches is too time-consuming to collect. In our exper-

iments, we compare the performance between large kd-tree and vocabulary tree on

a controlled dataset, and demonstrate the superior performance of large kd-tree in

terms of prediction accuracy.

A Review of Kd-Tree and Optimizations

In this section, we briefly review kd-tree and a few optimizations, which serve

as the basis for large kd-tree. A kd-tree is a general data structure for indexing data

points in k-dimensional space. The kd-tree is discussed in detail in Chapter 3; see

Figure 3.4 and surrounding discussion. The data structure is proposed by Bentley [23]

and refined by Friedman et al. for nearest neighbor search [39]. Given a set of data
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points in k-dimensional space, a kd-tree is built by recursively partitioning the space

into two disjoint axis-aligned subspaces until the number of data points in each sub-

space falls below a predefined threshold. The recursion yields a balanced binary tree,

where the leaf buckets form a complete partition of the k-dimensional space and the

data points. Given a query data point, the search for the nearest neighbor is reduced

to a tree traversal with pruning: the leaf bucket that contains the query data point

is visited first; adjacent leaf buckets are visited by backtracking; tree branches are

pruned if their distances to the query data point are larger than that of the current

nearest neighbor. The traversal terminates when all adjacent leaf buckets have been

either visited or pruned, at which point the current nearest neighbor is verified as the

true nearest neighbor for the query data point.

The performance of kd-tree is examined in low dimensions where k ≤ 6 [39].

The expected time for nearest neighbor search is reported to be logarithmic in the

number of data points indexed by the kd-tree. Unfortunately, the performance of

kd-tree degrades quickly as the dimensionality of the data points grows. In high

dimensions, the leaf bucket that contains a query data point has a huge number of

adjacent leaf buckets, most of which must be visited to ensure a true nearest neighbor.

In this case, kd-tree offers little speedup over a naive linear search.

Great effort has since been devoted to the optimization of kd-tree for nearest

neighbor search in high dimensions [19, 22, 51, 91]. In this work, we leverage three

optimizations to improve the performance of kd-tree: data alignment, prioritized

search and approximate search.
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Data Alignment. Silpa-Anan and Hartley propose to preprocess the data

points by principal component analysis (PCA) [57] and align the principal axes of

the data points to the coordinate axes [91]. In this way, partitioning tends to take

place along the direction that exhibits the largest variance in the data points, which

reduces the likelihood of distant data points falling into the same leaf bucket of the

kd-tree.

Prioritized Search. Arya and Mount propose prioritized search [19]. Instead

of visiting the leaf buckets by backtracking, prioritized search visits the leaf buckets

in ascending order of distance to the query data point. This is achieved with a little

overhead by maintaining a priority queue that holds all the untaken branches during

the tree traversal. Prioritized search proves to be particularly useful for approximate

search (see below), for it increases the likelihood of visiting true nearest neighbors in

an early stage of the tree traversal.

Approximate Search. No known algorithm achieves sub-linear time complex-

ity for exact nearest neighbor search in high dimensions. Therefore approximate

nearest neighbor search is a promising alternative. Beis and Lowe propose Best Bin

First (BBF) for approximate nearest neighbor search [22]. The algorithm follows the

prioritized search scheme as in [19] but stops early after a predefined number of leaf

buckets have been visited, enforcing a logarithmic time complexity. In [73], Lowe

leverages BBF to index hundreds of thousands of SIFT features for efficient object

recognition.

Other optimizations to kd-tree, such as augmenting the set of partition axes for

optimal space partition [51] and building multiple kd-trees for simultaneous nearest
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neighbor search [91], are also well-received in the literature. However, these optimiza-

tions alter the kd-tree structure and introduce a non-constant overhead of memory

consumption. Therefore they are not adopted for large kd-tree, where memory con-

sumption is a major constraint.

Large Kd-Tree for Approximate Image Matching

A large kd-tree is structurally identical to a conventional kd-tree. It follows the

same set of rules for partitioning the k-dimensional space and processing a query data

point for nearest neighbors. The performance of large kd-tree therefore benefits from

the same set of optimizations: data alignment, prioritized and approximate search

(see previous section).

However, the fact that a large kd-tree indexes feature descriptors from mul-

tiple images raises new challenges in its implementation. Specifically, as the volume

of feature descriptors outgrows the capacity of the main memory, the construction

and search procedures for large kd-tree must proceed with a majority of the feature

descriptors residing on disk.

In the sequel, we discuss the implementation of large kd-tree in greater detail.

First of all, we introduce a preprocessing of the image database, in which we re-

encode the feature points by a different type of feature descriptors to optimize data

alignment. Secondly, we describe the procedures for disk-based kd-tree construction

and nearest neighbor search. We conclude the discussion with implementation details

of large kd-tree.
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Re-Encoding Feature Points

As a preprocessing to the image database, we re-encode the SIFT feature

points from all images by PCA-SIFT feature descriptors [59]. A PCA-SIFT feature

descriptor operates on the same input as a SIFT feature descriptor: the location,

scale-space parameter and dominant orientation of a feature point (see Chapter 3).

PCA-SIFT computes a feature descriptor by cropping the local image patch at the

feature point (scaled according to its scale-space parameter and rotated according

to its dominant orientation). It computes a gradient map over the image patch and

projects the vectorized gradient map to a 36-dimensional eigenspace to form the

feature descriptor. The eigenspace is trained offline on a large collection of image

patches using PCA. The overhead incurred by PCA-SIFT is insignificant since its

input (SIFT feature points) is readily available from the previous stage of canonical

view mining.

The eigenspace projection of PCA-SIFT effectively aligns the principal axes

of the resulting feature descriptors with the coordinate axes, thereby optimizing data

alignment. Notice that one could also follow the procedure described by Silpa-Anan

and Hartley, and apply PCA directly to SIFT feature descriptors with dimension

reduction to achieve a similar effect to PCA-SIFT [91]. However, the choice of the

eigenspace dimensionality would be untested. We prefer PCA-SIFT because its choice

of eigenspace dimensionality (36) is supported by a systematic evaluation on a con-

trolled dataset [59].
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Finally, we group the PCA-SIFT feature descriptors from all images and store

them in an external file F . Later procedures rely on F for disk-based kd-tree con-

struction and nearest neighbor search. For optimal read/write speeds, we store the

feature descriptors in binary format where each feature descriptor spans 144 bytes on

disk (36 floating point numbers). Meanwhile, we keep track of the image ID for each

feature descriptor in F . During nearest neighbor search, the image IDs are used to

aggregate feature matches and predict image matches.

Disk-Based Kd-Tree Construction

The construction of a large kd-tree is formalized as follows: given n data points

in k dimensions stored in an external file F , construct a kd-tree to index these data

points under a memory constraint – at anytime during the kd-tree construction, at

most ω data points can be loaded into the main memory. In practice, the value of ω

can be easily calculated according to the desirable memory consumption and the size

of each data point. Notice that the conventional procedure for kd-tree construction

(Algorithm 2 of Chapter 3, Page 42) dose not work under the memory constraint

(unless ω ≥ n), because it requires all the data points to be loaded into the main

memory.

We propose a hybrid approach to large kd-tree construction (Figure 7.4): nodes

on the low levels (toward the root) of the kd-tree are constructed by a disk-based

procedure (Algorithm 5 below); nodes on the high levels (toward the leaves) of the

kd-tree are constructed by a memory-based procedure (Algorithm 6 below). In the
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Figure 7.4: A hybrid approach to large kd-tree construction. In this illustration, we
assume that ω = 1

4
n. That is, at anytime during the kd-tree construction, at most

1
4
n data points can be loaded into the main memory. On the first two levels of the

kd-tree (red nodes), the number of data points to be indexed at each node exceeds
ω. Therefore the construction of these nodes is handled by a disk-based procedure
(Algorithm 5 below). As soon as the recursion of kd-tree construction reaches the
third level (green nodes), the number of data points to be indexed at each node drops
below ω. Therefore the construction of all the nodes on the third and subsequent
levels is handled by a memory-based procedure (Algorithm 6 below).

following discussion, let us assume that the levels of a kd-tree are numbered from

root to leaves and the numbering is zero-based.

First of all, let us focus on nodes at the high levels of the kd-tree. Notice

that a kd-tree is a balanced binary tree. Along any path, the number of data points

assigned to the nodes is progressively halved. On the lth level of the kd-tree, the

number of data points assigned to each node is about 1
2l
n. Therefore, even when ω

is tiny compared to n, we shall soon reach a level (⌈log2(
n
ω
)⌉, to be exact), where all

the nodes on the current and subsequent levels are each assigned ≤ ω data points.

From this level onward, we can safely load all the required data points into the main

memory and construct the subtrees by a memory-based procedure (Algorithm 6).
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Algorithm 5 Build kd-tree on the data points stored in file F and return the root.

procedure BuildKdTreeOnDisk(F, IDX )
if |IDX | ≤ ω then

P ⇐ Load the indexed data points from F
v ⇐ BuildKdTreeInMemory(P , IDX ) ⊲ Algorithm 6.
free P
return v

else

P ⇐ Sample and load ω of the data points from F
axis ⇐ Select the partition axis along which P exhibits the largest variance
threshold ⇐ Compute the median projection of the indexed data points in

F on axis
IDX LE, IDXGT ⇐ Split the indexed data points by threshold
v ⇐ new InternalNode
v.axis ⇐ axis
v.threshold ⇐ threshold
v.leftChild ⇐ BuildKdTreeOnDisk(F, IDX LE)
v.rightChild ⇐ BuildKdTreeOnDisk(F, IDXGT )
return v

end if

end procedure

Algorithm 6 Build kd-tree on data points P and return the root.

procedure BuildKdTreeInMemory(P , IDX )
if |IDX | < φ then

v ⇐ new LeafBucket
v.indices ⇐ IDX
return v

else

axis ⇐ Select a partition axis along which P exhibits the largest variance
threshold ⇐ Compute the median projection of P on axis
PLE, PGT ⇐ Split P by threshold
IDX LE, IDXGT ⇐ Split IDX according to PLE, PGT

v ⇐ new InternalNode
v.axis ⇐ axis
v.threshold ⇐ threshold
v.leftChild ⇐ BuildKdTreeInMemory(PLE, IDX LE)
v.rightChild ⇐ BuildKdTreeInMemory(PGT , IDXGT )
return v

end if

end procedure
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Algorithm 6 assumes a similar form to the conventional procedure for kd-tree con-

struction (Algorithm 2), except that at the leaf level, the leaf buckets contain the

indices of the data points on disk, instead of the data points themselves. This change

is necessary for a large kd-tree, since upon construction, the leaf buckets will form a

complete partition of all n data points, which may not fit into the main memory.

Now let us focus on nodes at the low levels (0 through ⌈log2(
n
ω
)⌉ − 1) of the

kd-tree. Upon close examination of Algorithm 2, we can see that the construction

of each node requires the data points to be in memory for two reasons: (1) it relies

on the data points to select the partition axis – the coordinate axis along which the

data points exhibit the largest variance; (2) it relies on the data points to compute

the cutoff value – the median projection of the data points on the partition axis. The

partition axis and the cutoff value together define the split for all the data points

at the current node. Under the memory constraint, we approximate the selection of

partition axis by randomly sampling a subset of ω data points and loading the sampled

data points into main memory. We select the partition axis as the coordinate axis

along which the sampled data points exhibit the largest variance. After the partition

axis is selected, we scan the external file F to compute the projections of the data

points on the partition axis, and compute the median projection as the cutoff value.

Notice that the projections are computed for all the assigned data points at the

current node, not just for the sampled ones in memory. This is to ensure an equal

split of all the assigned data points at the current node; otherwise the kd-tree would

not be balanced. During the computation of the cutoff value, only the projections of
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the data points are stored in memory. The data points themselves are not loaded.

Therefore the memory constraint is not violated.

The disk-based procedure (Algorithm 5) is the entry point of large kd-tree

construction. Since the data points are never fully loaded into main memory, we keep

track of the assigned data points at each node by a list of indices to the data points

on disk. At the root node, the list of indices is initialized to (1, · · · , n). During the

recursive kd-tree construction, the list of indices is recursively split in half and passed

to child nodes. As soon as the recursion reaches level ⌈log2(
n
ω
)⌉, kd-tree construction

enters the memory-based procedure (Algorithm 6), in which all the assigned data

points are loaded into the main memory to construct the entire subtree at the current

node. The recursion proceeds in a depth-first manner. After the entire subtree is

constructed at the current node, the memory allocated for the assigned data points

is immediately freed, leaving no effect on the construction of other branches (see

Algorithm 5).

Notice that the hybrid approach introduces certain approximations to large kd-

tree construction: during the disk-based procedure, the partition axis is determined by

a subset of the assigned data points, and therefore may not be optimal. In practice,

however, the degree of approximation is minimal. We study the approximation of

large kd-tree construction on the Rome collection (11959 images, n = 16, 393, 211

feature descriptors). In this study, we define the memory constraint ω as a function of

n: ω = ǫn, where ǫ varies over { 1
10
, 2
10
, · · · , 1}. At the high extreme of ǫ = 1, the hybrid

approach is equivalent to the memory-based procedure with zero approximation. As

ǫ decreases, we would expect a higher degree of approximation in the resulting large
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kd-tree. However, it turned out that all 10 large kd-trees were structurally identical.

That is, the ever-tighter memory constraint had no effect on the selection of partition

axis at any node in the large kd-tree. Not until we reduced ω to 1
100

n did we observe

a difference in the resulting large kd-tree. There are two reasons behind the minimal

degree of approximation. First of all, the disk-based procedure is only applied to

construct the first several levels of the kd-tree (levels 0 through ⌈log2(
n
ω
)⌉ − 1). Even

when ω is as tiny as 1
16
n, approximation can only take place on the first 4 levels of

the kd-tree (15 nodes). Secondly, we have already projected all the data points to a

low-dimensional eigenspace. Therefore, the data points exhibit drastically different

variances along different coordinate axes. Even though this property is diminished

by the recursive split of the data points, it generally holds true for the first several

levels of the kd-tree (where approximation takes place). Therefore a subset of the

data points usually suffices to detect the true partition axis at these nodes.

The runtime of the hybrid approach is satisfactory. Compared to the conven-

tional kd-tree construction, the only additional cost of the hybrid approach comes

from the disk-based procedure, where the external file F needs to be read at each

node on levels 0 through ⌈log2(
n
ω
)⌉. In practice, this additional cost is insignificant,

because (1) disk reads only happen at a small number of nodes (2⌈log2(n/ω)⌉+1 − 1, to

be exact), and (2) each disk read involves scanning and parsing a binary file, which

is efficient. In the above study on the Rome collection, each disk scan of the external

file F (about 2.4GB) takes about 50 seconds. Even when ω is as low as 1
10
n, all the

31 disk reads on the first 5 levels of the large kd-tree cost only about 25 minutes of
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additional runtime. Considering that the large kd-tree is constructed only once but

is queried by tens of millions of feature descriptors, the additional cost is negligible.

Disk-Based Nearest Neighbor Search

Before we dive into the details of disk-based nearest neighbor search on large

kd-tree, let us briefly overview the procedure for 1-to-N image matching. Given a

query image, we obtain all the PCA-SIFT features from the image, and issue each

feature as a query to the large kd-tree to retrieve nearest neighbors, which correspond

to candidate feature matches to database images. We follow the suggestion of Ke

and Sukthankar [59], and verify the robustness of each candidate feature match by

a distance test : a candidate feature match is robust if and only if the Euclidean

distance between the two features is below a predefined threshold θ = 3000. After all

the features from the query image have been processed for nearest neighbor search

and the distance test, we have collected a set of feature matches between the query

image and the database images. Finally, we group the feature matches by distinct

database image. For each database image, the more feature matches it contains, the

more likely it is that it matches to the query image.

The core operation of 1-to-N image matching is the nearest neighbor search

on large kd-tree. The conventional procedure for nearest neighbor search on kd-tree

(optimized by prioritized and approximate search) can be summarized as follows:

given a query feature q, we visit the leaf buckets of the kd-tree in ascending order of

distance to q. As we visit a leaf bucket, we examine all the database features in the
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leaf bucket and compute their distances to q. We maintain a list of database features

M whose distances to q fall below the predefined threshold θ = 3000. The search

of nearest neighbors terminates after γ database features have been visited. Upon

termination, we report M as the list of matching features to q. Obviously, a higher

value of γ leads to a higher recall of feature matches. At the high extreme of γ = n,

all the database features would be processed for the distance test, achieving a 100%

recall of feature matches. However, the time complexity would also grow to O(n),

offering no advantage over a naive linear search. Fortunately, due to the effective

space partition of kd-tree and prioritized search scheme, the true nearest neighbors

of q are likely to be visited during the early stages of tree traversal. Therefore a

low value of γ often suffices to achieve a reasonable recall of feature matches. In

this dissertation, we empirically set γ = 200 for all the image collections. Below

this threshold, we observe a fast improvement of recall as we increase γ; above this

threshold, the improvement slows down, and further increase of γ is less cost-effective.

By visiting γ database features per query, the time complexity of nearest neighbor

search is reduced to O(log(n)), with a constant factor proportional to γ.

The conventional procedure for nearest neighbor search requires all the database

features to reside in main memory, so that random access to any database feature

for distance computation is fast (in the order of 10−4ms). In the context of large kd-

tree, the volume of database features may outgrow the capacity of the main memory.

Therefore we need to conduct nearest neighbor search with the database features

residing on disk. If we naively follow the conventional procedure, but replace the

memory access to database features by disk access, the runtime of nearest neighbor
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search would suffer tremendously. A random disk access is very expensive, in the

order of 10ms. When γ = 200, processing a query feature would incur about 2 sec-

onds just on disk I/O; processing a query image with about 1500 features would take

about 50 minutes, which is even slower than matching the query image to the entire

database of images by exact image matching.

In [60], Ke et al. have faced a similar situation of massive random access to

disk data. They present a simple but effective strategy to remove the bottleneck

of disk I/O. The key operation is to postpone individual random disk accesses, and

group them into one sequential disk access. In this dissertation, we employ the same

strategy. We process not a single query image, but a batch of M query images at a

time. For each query image, we process each query feature following the conventional

procedure to traverse the large kd-tree and retrieve a list of γ = 200 database features

as candidate feature matches. However, during this process, we do not perform the

distance test on any of the candidate feature matches. Since no distance computation

is required, no random disk access is triggered. We postpone the distance test until

all the features from all M query images have been processed. By this time we have

accumulated a large number of candidate feature matches:

QF1 ⇒ (DF11, · · · , DF1γ)
QF2 ⇒ (DF21, · · · , DF2γ)

· · ·
QFi ⇒ (DFi1, · · · , DFiγ)

· · ·

For each query feature QFi, the retrieved database features (DFi1, · · · , DFiγ) are

stored in a linked list. In the next step, we reorganize the data structure into an
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inverted index, where the retrieved database features serve as the index, each followed

by the corresponding query features stored in a linked list:

DF ′
1 ⇒ (QF ′

11, · · · , QF ′
1m1

)
DF ′

2 ⇒ (QF ′
21, · · · , QF ′

2m2
)

· · ·
DF ′

i ⇒ (QF ′
i1, · · · , QF ′

imi
)

· · ·

After the reorganization, {DF ′} contains the indices of all the database features that

we need to access on disk. Finally, we sort {DF ′} in ascending order and thereby

access the database features on disk sequentially. When we access DF ′
i , we load

the referenced database feature pi into main memory and perform the distance test

betweenDF ′
i and all the corresponding query features in (QF ′

i1, · · · , QF ′
imi

) and retain

robust feature matches among them. We free the memory allocated for pi immediately

after the distance test has been performed for all the corresponding feature matches,

before we access DF ′
i+1. Therefore the sequential access of database features imposes

practically zero overhead in memory consumption.

By grouping a large number of random disk accesses into one sequential disk

access, we effectively minimize the amount of seek time between consecutive reads,

which is the bottleneck in disk access. In practice, the amount of speedup is tremen-

dous. In this dissertation, we empirically set M = 100. In the Rome collection, an

average image consists of about 1500 features. After a batch of M = 100 query im-

ages have been processed, we have accumulated about 100× 1500× 200 = 30 million

candidate feature matches (where 200 = γ). A sequential scan of the external file

F (about 2.4GB) takes about 50 seconds. Therefore the average access time for a

database feature on disk drops from about 10ms by individual random disk access
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to (50 seconds)/(30 million) ≈ 2 × 10−3ms by grouped sequential disk access. As a

result, the average processing time for a query image drops from about 50 minutes

to about 1.6 seconds to match to the entire database of 11959 images!

Another way to understand this strategy is that, since disk access is expensive,

we would like to perform the distance test on as many candidate feature matches

as possible on one disk access. In the conventional procedure for nearest neighbor

search, we could only verify one candidate feature match on one disk access. Thus

the efficiency is extremely poor. In the new strategy, when M = 100, we can verify

about 30 million candidate feature matches on one disk access. Thus the efficiency is

greatly improved. Notice that a larger value of M would further reduce the average

access time for a database feature, and thereby further reduce the average processing

time for a query image. However, it would also increase the memory consumption

of query processing, because we need to store a larger set of query features and

a larger inverted index in the main memory. When M = 100, the bottleneck of

query processing has already shifted from disk I/O (about 0.5 seconds per image)

to in-memory operations of kd-tree traversal and numerical computation (about 1.1

seconds per image). Therefore we do not increase M any further.

After we have performed the distance test for all the candidate feature matches,

we have collected a set of robust feature matches among the M query images and

the database images. We then look up the image IDs corresponding to the matching

features, and group the feature matches by distinct (query, database) image pair. In

the context of pairwise image matching, we issue each database image as a query

image to the large kd-tree. Therefore after we have processed each query image, we



132

have two sets of matching features M and M′ for each image pair (I, J), one with

I as the query image, and the other with J as the query image. We merge M and

M′ to achieve a further (marginal) improvement in the number of feature matches

between the two images. Finally, we determine the likelihood of the two images I

and J being a match based on the number of merged feature matches |M ∪M′|.

Notice that we do not perform geometric verification on the feature matches

using RANSAC on the fundamental matrix as we have done during exact image

matching (Chapter 3). This is because the feature matches extracted during 1-to-N

image matching are sparse. Some true image matches have too few feature matches

even to be qualified for geometric verification (the 8-point algorithm requires at least

8 feature matches to start with). Instead, we use the number of raw feature matches

to predict if two images are likely to match. The lack of geometric verification is

reasonable, since the purpose of this stage is to generate predictions of image matches,

which are still subject to verification by exact image matching. For this purpose, we

shall see that the feature matches, albeit sparse, can indeed predict with a high recall

which images are likely to match.

Implementation of Large Kd-Tree

Finally, we present the implementation details of large kd-tree. Leveraging

the fact that a kd-tree is a balanced binary tree, we implement the kd-tree in an

array representation: the nodes in the kd-tree are mapped in a depth-first manner

and stored in an array bounded by 2n elements, where n is the number of data points
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Figure 7.5: An array representation of kd-tree. The nodes in the kd-tree are mapped
in a depth-first manner and stored in an array; the two child nodes of node i are
therefore located at 2i and 2i+ 1 in the array.

indexed by the kd-tree; the two child nodes of node i are therefore located at 2i and

2i+1 in the array (Figure 7.5). By not storing the pointers among the nodes, we save

a significant amount of memory (about 2n pointers × 4 bytes per pointer = 8n bytes).

At each internal node, we store the partition axis (1 byte for an integer ranging from

1 to 36) and the cutoff value (4 bytes for a floating point number). At each leaf

node, we store the indices to the data points (4 bytes per index). Both the number of

internal nodes and the number of leaf nodes are bounded by n. In total, the kd-tree

structure takes about (1+4)n bytes to store the internal nodes and about 4n bytes to

store the leaf nodes, totaling about 9n bytes of memory. On the other hand, the size

of the data points indexed by the kd-tree is 144n bytes (36 floating point numbers per

PCA-SIFT feature descriptor)! By allowing the data points to reside on disk, large

kd-tree achieves a significant reduction in memory consumption (from (144 + 9)n to

9n). For example, within 1GB of memory, a large kd-tree can index over 100 million

data points (about 80 thousand regular-sized images), while a conventional kd-tree,

which requires all the data points to reside in the main memory, can only index
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Table 7.2: Statistics of the experimental dataset. For each image collection, we show
the number of images in the collection, the number of SIFT features extracted from
the images, and the size of the re-encoded PCA-SIFT feature descriptors stored on
disk.

Collection ♯ images ♯ features size of F
Dubrovnik 9350 12,236,285 1.8GB

Paris 11997 16,257,199 2.3GB
Rome 11959 16,393,211 2.4GB

Washington DC 11991 14,242,285 2.1GB
Yosemite 5756 8,978,015 1.3GB

about 7 million data points (less than 5 thousand regular-sized images). Hence the

scalability is greatly improved.

Experiment-I: Approximate Image Matching

In this section, we evaluate the performance of large kd-tree for approximate

image matching. We compare the performance of large kd-tree and vocabulary tree

in terms of precision and recall of image matches, and demonstrate the superior

performance of large kd-tree.

Experimental Setup

Experimental dataset. We conduct Experiment-I on the same dataset as canon-

ical view evaluation in Chapter 5. The dataset consists of five image collections of

different sites: Dubrovnik, Paris, Rome, Washington DC and Yosemite National Park.

Each image collection contains between 5000 and 12000 images. On average, each

image generates about 1500 SIFT features; each image collection generates about



135

15 million features. On average, the re-encoded PCA-SIFT feature descriptors for

each image collection spans about 2GB on disk. Detailed statistics can be found in

Table 7.2.

Approximate image matching with large kd-tree. For each image collection, we

follow the procedure described in the previous section to conduct approximate image

matching. During large kd-tree construction, we set the memory constraint ω = 0.1n,

where n is the number of feature descriptors in the image collection. During nearest

neighbor search, we set γ = 200 (number of database features to visit per query) and

M = 100 (number of query images to process in a batch). Upon output, each pair of

images is assigned a likelihood of being a match, which is determined by the number

of feature matches between the two images.

Approximate image matching with vocabulary tree. In order to put large kd-

tree into context, we also conduct approximate image matching using the widely

adopted vocabulary tree (unfamiliar readers are referred to [79] for a detailed de-

scription of vocabulary tree). For each image collection, we group the SIFT feature

descriptors from all images and build a hierarchical k-means tree (vocabulary tree)

with a branching factor of 10 and a depth of 6, and thereby obtain a codebook of

106 = 1 million visual words. Each feature descriptor is quantized into a visual word

by traversing down the vocabulary tree. Each image is converted to a bag of visual

words, represented by a (sparse) vector in 1 million dimensions. Finally, images are

pairwise matched, and the distance between two images is defined by the L1 distance

between their bag-of-words vectors, with each dimension weighted by the entropy
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of the corresponding visual word. Upon output, each pair of images is assigned a

distance score (negation of similarity).

Ground truth and measurements. For each image collection, we obtained the

ground-truth image matches by exact image matching followed by geometric ver-

ification (Chapter 3). With ground truth in place, we evaluate the performance

of approximate image matching in terms of precision and recall of image matches.

Loosely speaking, precision measures how many image matches predicted by approx-

imate image matching are correct according to the ground truth, and recall measures

how many image matches in the ground truth are predicted by approximate image

matching. Mathematical definitions are provided below:

precision =
♯ correct matches by approx.

♯ matches by approx.
, (7.1)

recall =
♯ correct matches by approx.

♯ matches by ground truth
. (7.2)

Results

First, we compare the performance of large kd-tree and vocabulary tree in

terms of precision and recall of image matches. The performance of both algorithms

is shown in Figure 7.6. Notice that the output from both algorithms is a set of

scalar values, each measuring the likelihood of two images being a match. In order

to convert a likelihood score to a concrete match/no-match prediction, we need to
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Figure 7.6: Precision and recall of approximate image matching across a spectrum of
matching thresholds. The performance is compared among large kd-tree, vocabulary
tree and the random baseline. Large kd-tree outperforms vocabulary tree by a large
margin. Both algorithms achieve significant improvements over the random baseline.

impose a threshold ϑ on the likelihood scores:

match(I, J) =



















true likelihood(I, J) ≥ ϑ,

false otherwise.

(7.3)

At a fixed threshold ϑ, we can obtain a set of predictions from both algorithms and

thereby compute their precision and recall of image matches. We vary ϑ over all

possible values of likelihood scores and generate a complete precision-recall curve to

compare the performance between the two algorithms (Figure 7.6).

It can be observed that, while both algorithms achieve significant improve-

ments over the random baseline (where image matches are predicted at random),

large kd-tree outperforms vocabulary tree by a large margin. At almost all recall lev-
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Table 7.3: Efficiency of pairwise image matching and recall of feature matches. Statis-
tics are compared between exact image matching and approximate image matching
(using large kd-tree) on the Rome collection. For each method, the corresponding
column shows the runtime, the total number of feature pairs checked for distance
test, and the total number of feature pairs passing the distance test (output feature
matches). See text for analysis.

Exact matching Approximate matching

runtime 2212 hours 5.62 hours
pairs of features checked 21451 billion 4 billion
pairs of features matched 75 million 8 million

els, the precision achieved by large kd-tree consistently advances that by vocabulary

tree by about 30%.

The most significant observation from the precision-recall curve is that, even at

a high recall of image matches (such as 90%), large kd-tree is still able to maintain a

reasonable precision (32.65%). At first sight, this precision may seem low. However,

given the extreme sparsity of image matches in internet image collections (about

0.03%), this precision is already impressive, up to 1000 times better than chance.

Next, we present more statistics on feature-level matches. Table 7.3 shows the

statistics of pairwise image matching on the Rome collection using approximate image

matching (large kd-tree) and exact image matching. It can be observed that approx-

imate image matching misses a large fraction (about 90%) of the feature matches

that are extracted by exact image matching. On the other hand, approximate image

matching is also about 400 times faster, because it only checks a tiny fraction (about

0.02%) of the feature pairs that are checked by exact image matching. Fortunately,

the sparsity of feature matches of approximate image matching does not pose much

problem in predicting image matches, because true image matches often have hun-
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dreds of feature matches, while false ones barely have more than a few. Therefore

we can afford to lose a majority of the feature matches while still being able to dif-

ferentiate true image matches from false ones. As long as the correct image matches

are predicted, the verification stage can extract dense feature matches among them.

Therefore the final output of the prediction-verification scheme can achieve a high

recall on both the image and the feature levels.

Experiment-II: Canonical View Mining with Approximate Image Matching

In this section, we incorporate the prediction-verification scheme for pairwise

image matching into the pipeline of canonical view mining. We demonstrate that

the prediction-verification scheme speeds up the pipeline by two orders of magnitude

with low impact on the resulting canonical views.

Experimental setup

Canonical view mining with approximate image matching. We conduct canon-

ical view mining on all five image collections in Experiment-I. This time, we replace

the conventional exact image matching by the prediction-verification scheme. Since

canonical view mining relies on the density of the image similarity graph, a high recall

of image matches is desirable. We empirically set ϑ = 6, which yields an average of

33% precision and 90% recall of image matches (see Experiment-I).

Ground truth and measurements. We have collected ground-truth canonical

view ranking for each image collection in Chapter 5. In order to study the impact of
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A

B’

B

Figure 7.7: An illustration of the maximum bipartite matching between two sets of
images of the Rome collection. Let the two sets of images be labeled by A (top row)
and B (bottom row). Maximum bipartite matching computes a one-to-one mapping
between the images of A and B that maximizes the total number of inlier SIFT
matches. For a better illustration, images of B are reordered to B’ (central row) such
that the paired images between A and B are in the same columns. The reordered
images in B’ are shown with a green border if they are the same images as A, with a
yellow border if they are different images but share at least 16 inlier SIFT matches
to A (near-duplicate views), or with a red border if they are different images with
less than 16 inlier SIFT matches to A. In the measurement of recall, we count both
identical views and near-duplicate views. In this example, recallA(B) = 8

10
.

approximate image matching on the resulting canonical views, we need a measure-

ment to quantify the difference between two sets of canonical views, one generated

with exact image matching (ground truth), and the other generated with approx-

imate image matching. Inspired by the work of Jing et al. [55], we compare two

sets of canonical views using maximum bipartite matching [105]. Given two sets of

canonical views of equal size C and C ′, we form a bipartite graph G(C ∪ C ′, E) where

edges E ∈ C × C ′ are weighted by the number of inlier SIFT matches between the

corresponding images. The maximum bipartite matching computes a 1-to-1 mapping

between the images in C and C ′ that maximizes the total number of inliers SIFT

matches. Afterwards, we measure C ′ by its recall of images in C. We count both

identical views and near-duplicate views (defined as different images sharing at least
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Figure 7.8: Impacts of approximate image matching on canonical view mining. The
left figure shows the recall of the top canonical views computed with approximate
image matching. The average recall of the top 10/20/40/80 canonical views across
all image collections is 98%/87%/91%/90% respectively. The right figure compares
the runtime between exact image matching and the prediction-verification scheme for
canonical view mining. The latter speeds up the pipeline by two orders of magnitude.
On average, the runtime of canonical view mining is reduced by about 99%, from
about 2000 CPU hours to about 20 CPU hours per large collection of 10000+ images.

16 inlier SIFT matches) that are mapped by maximum bipartite matching toward

the recall of C ′. This measurement is illustrated in Figure 7.7.

Results

The impact of approximate image matching on the resulting canonical views

is shown in Figure 7.8. For each image collection, we compute the recall of ground

truth in the top k ∈ {10, 20, 40, 80} canonical views. The average recall across all

image collections varies over {90%, 87%, 91%, 90%} respectively. That is, within the

top k ∈ {10, 20, 40, 80} canonical views computed with approximate image matching,

about 0.9k of the images are either identical or near-duplicate views to the ground

truth. In Figure 7.9, we present qualitative results of the top 10 canonical views
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Table 7.4: Comparison of runtime (in hours) on the Rome collection. The runtime of
canonical view mining is divided into individual steps and shown for the conventional
pipeline (with exact pairwise image matching) and the scalable pipeline (with the
prediction-verification scheme for pairwise image matching). See text for analysis.

Approximate matching Exact matching
Rest Total

encode tree query match ransac

conventional 2212 0.68 5.50 2218.18
predict-verify 4.98 0.55 5.62 1.97 0.61 5.50 19.23

computed under approximate image matching for each image collection, along with

the results of maximum bipartite matching to the ground truth. Only one image in

the Rome collection is not found in the top 10 ground-truth canonical views (it ranks

12th in the ground truth). All the other canonical views computed with approximate

image matching are either identical or near-duplicate views to the ground-truth ones.

On the other hand, the speedup brought about by approximate image match-

ing is significant. On average, the runtime of canonical view mining (mostly pairwise

image matching) is reduced by about 99%, from about 2000 CPU hours to about 20

CPU hours per large collection of 10000+ images. In Table 7.4, we show the detailed

runtime of canonical view mining on the Rome collection. The runtime distributions

for other image collections are similar. In the scalable pipeline (with the prediction-

verification scheme for pairwise image matching), the prediction stage takes 4.98 CPU

hours to re-encode all the SIFT features by PCA-SIFT feature descriptors, 0.55 CPU

hours to build the large kd-tree on about 16 million features from all images, and 5.62

CPU hours to query each of the 11959 images against the large kd-tree and predict

image matches. In total, the runtime of the prediction stage is about 11.15 CPU
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hours. This stage generates 60715 predictions of image matches (with 20036 true

positives and 40679 false positives). The 60715 predictions are subject to verification

by exact image matching. Notice that the set of predictions is much smaller than the

full set of N(N − 1) = 71, 502, 861 image pairs. As a result, the verification stage

proceeds much faster, incurring only 1.97 CPU hours for SIFT feature matching and

0.61 CPU hours for geometric verification. The rest of the pipeline (SIFT feature ex-

traction, representative view and canonical view ranking) takes about 5.5 CPU hours.

In total, the runtime for canonical view mining drops from over 2200 CPU hours using

the conventional pipeline to 19.23 CPU hours using the scalable pipeline. Meanwhile,

the scalable pipeline still maintains 90% recall of image matches (20036 vs. 22262).

Thus the impact on the resulting canonical views is insignificant.

Summary

A prediction-verification scheme has been presented for scalable image match-

ing. During the prediction stage, image matches are predicted by approximate image

matching. During the verification stage, the correctness of each prediction is ver-

ified by exact image matching. The principal novelty is the use of large kd-tree

for approximate image matching. We proposed disk-based kd-tree construction and

nearest neighbor search, which enable large kd-tree to scale to databases of tens of

thousands of images. We evaluated approximate image matching both separately and

integrated with canonical view mining, and demonstrated its superior performance in

comparison to previous work.
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Figure 7.9: Maximum bipartite matching between the top 10 canonical views com-
puted with exact image matching (labeled by X) and the prediction-verification
scheme (labeled by X ′). The labels are D for Dubrovnik, P for Paris, R for Rome,
W for Washington DC and Y for Yosemite. The two sets of canonical views in each
image collection are paired by maximum bipartite matching. Paired canonical views
in X ′ are reordered to be in the same columns as X. The reordered canonical views
in X ′ are shown with a green border if they are the same images as X, with a yellow
border if they are different images but share at least 16 inlier SIFT matches to X, or
with a red border if they are different images with less than 16 inlier SIFT matches
to X. This figure is best viewed in color.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, we develop a fully automatic pipeline for canonical view

mining from internet image collections. We evaluate the quality of the canonical

views and demonstrate their application to large-scale image browsing and efficient

object recognition. Finally, we analyze the scalability of the pipeline, and propose

an approximate algorithm that effectively removes the scalability bottleneck with

low impact on the resulting canonical views. In this chapter, we summarize the

contributions of this dissertation, and explore possibilities for future work.

Summary of Contributions

In Chapter 4, we developed the pipeline for canonical view mining. The

pipeline relies on the wisdom of crowds to automatically infer representative views and

canonical views. It is completely data-driven and requires no user input. Specifically,

it does not require parameter tuning across different input datasets, which would

be a painstaking process given the enormous amount of input datasets that can be

obtained from internet image collections. Moreover, the pipeline does not require the

number of canonical views to be known a priori. Instead, it computes a ranking of

canonical views such that the top-ranked images are both representative and diverse,

thereby approximating canonical views at a range of granularities. Once the ranking
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is computed offline, any number of canonical views for any subset (including the full

set) of the image collection can be retrieved in real-time. We also discussed the incor-

poration of the pipeline for canonical view mining with current image search engines,

so that canonical views can be retrieved from image search results in real-time and

presented to the user for enhanced image browsing.

In Chapter 5, we evaluated the quality of canonical views. Besides showing

qualitative results of canonical views, we introduce three quantitative measurements

to evaluate the canonical views by quantifying the amount of noise, redundancy, and

summarization power for the top-ranked canonical views. Based on the quantitative

measurements, we evaluated the pipeline for canonical view mining on a variety of

datasets, and demonstrate that the proposed pipeline compares favorably to several

other methods, including the search engines of Flickr [4], Google Images [9] and the

previous work of [53, 92].

In Chapter 6, we extended the applications of canonical views beyond image

browsing, to non-parametric object recognition (object recognition based on nearest

neighbor search instead of parametric modeling for object classes). By removing

noise and redundancy from the database, we expect the set of canonical views to

compress the database into a compact representation while still preserving most of

the representative power for the purpose of object recognition. We validated this

hypothesis on the place recognition problem, in which we estimate the geographic

location of a query image by scene matching to a large database of images of known

locations. By leveraging canonical views, we observe a significant improvement in the

efficiency of query processing with minimal loss in the success rate of place recognition.
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In Chapter 7, we analyzed the scalability of the pipeline for canonical view

mining. We singled out the stage of pairwise image matching as the scalability bot-

tleneck. To this end, we presented a prediction-verification scheme for pairwise image

matching. During the prediction stage, image matches are predicted by approximate

image matching. During the verification stage, the correctness of each prediction is

verified by exact image matching. The principal novelty is the use of large kd-tree

for approximate image matching. We proposed disk-based kd-tree construction and

nearest neighbor search, which enable large kd-tree to scale to databases of tens of

thousands of images. We evaluated approximate image matching both separately and

integrated with canonical view mining, and demonstrated its superior performance in

comparison to previous work.

Future Work

The work presented in this dissertation is just a first step toward the effective

organization and presentation of internet image collections. In this section, we explore

several possibilities for future work.

Web-scale image matching. Scalability is still a significant problem in canon-

ical view mining. In Chapter 7, we presented a prediction-verification scheme to

improve the scalability of image matching by an order of magnitude, from thousands

to tens of thousands of images. However, for a popular keyword, we can easily re-

trieve a collection of images that is two or three orders of magnitudes larger than the

current scale. For example, by searching for the keyword Rome on Flickr, one gains
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nearly three million images in the search results. How do we scale image matching

(and thus canonical view mining) to the scale of the web? Of course, parallelization

would play a significant role in this system. Nonetheless, progress must be made in

the core algorithm of image matching; otherwise the quadratic complexity of pairwise

image matching simply cannot scale to huge numbers of images.

Image matching for non-rigid objects. Another major constraint of the cur-

rent pipeline for canonical view mining is that, we rely on SIFT feature matching to

establish the similarity among images, which can only handle objects of rigid appear-

ances. A promising extension to the current pipeline would be an enhanced similarity

metric that is able to match non-rigid objects (such as animals and plants) across

different views. One possible direction along this thread would be to relax the global

geometric constraint and instead detect subsets of features that are consistent with

local geometric constraints (such as [24]).

Visual quality assessment. Visual quality provides an orthogonal dimension

for the selection of canonical views. Ideally, if multiple images exist for one canonical

view (which is almost always true considering the volume of internet images), we

would like to present the one with the highest visual quality (or at least bias the

ranking of canonical views by visual quality). In the literature of computer vision,

there have been several attempts to assess the visual quality of images based on visual

features and statistical models [31, 61]. Nonetheless, there is still sufficient room for

improvement. On the other hand, the timing for this research is ideal: photo contest

websites such as DPChallenge [2] and Photo.net [13] not only host huge amounts of

photos of various visual qualities, but also have a large community of photographers
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to rate the visual quality of these photos, thereby providing excellent training data

for the development of automatic algorithms for visual quality assessment.

Leveraging interesting negatives in the canonical views. In our experiments,

we also observed interesting negatives in the canonical views. As a typical example,

in the Paris collection, the 9th canonical view turns out to be a replica of the Eiffel

tower at hotel Paris Las Vegas. Because we collected the images tagged by keyword

Paris, many images are actually of hotel Paris Las Vegas. These images form a

nontrivial cluster in the visual space, and one of them (the replica of the Eiffel tower)

becomes top-ranked in the canonical views. Such negatives in the canonical views

often reveal major ambiguations in the dataset. In this case, the keyword Paris

has ambiguous interpretations and leads to poor image search results. It would be

interesting to leverage such negatives, are use them as feedback to refine the query

for image search.

The wisdom of crowds in other domains. The success of canonical view min-

ing is a powerful demonstration of the wisdom of crowds: the aggregation of opinions

within a crowd results in information that is otherwise difficult to obtain. Intuitively,

the internet and its billions of users provide an excellent resource for the extraction

of crowd intelligence. Beside images, the web hosts a huge amount of data across

multiple domains: textual documents, audios, videos, etc.. Inevitably, huge amounts

of noise and redundancy are prevalent in these domains as well. It would be interest-

ing to adapt the proposed algorithms to these domains for the removal of noise and

redundancy, and the extraction of crowd intelligence.
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