GRID-FLOW: A GRID-ENABLED SCIENTIFIC WORKFLOW SYSTEM
WITH A PETRI NET-BASED INTERFACE

by
ZHIJTE GUAN

A DISSERTATION
Submitted to the graduate faculty of The University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
BIRMINGHAM, ALABAMA

2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3227102

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3227102
Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT OF DISSERTATION
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Ph.D. Program Computer and Information Sciences
Name of Candidate Zhijie Guan
Committee Chair Anthony Skjellum

Title Grid-Flow: A Grid-Enabled Scientific Workflow System With a Petri Net-Based

Interface

Advances in computer power, network speed, and storage capacity have enabled
scientists to explore research issues in their respective domains at scales both finer and
greater than ever before. The availability of efficient data collection and analysis tools
presents researchers with vast opportunities to process heterogeneous data within a dis-
tributed environment. To support the opportunities enabled by available massive compu-
tation, a suitable scientific workflow system is needed to help users to manage both data
and programs, and to design reusable procedures of scientific experimental tasks. This
dissertation describes the design and prototyping of such a scientific workflow infrastruc-
ture, the Grid-Flow system, which assists researchers in specifying scientific experiments
using a Petri net-based interface. The Grid-Flow infrastructure is designed as a Service-
Oriented Architecture (SOA) with multi-layer component models.

The major contributions of Grid-Flow are as follows: 1) a new, light-weight, pro-
grammable Grid workflow language, called the Grid-Flow Description Language
(GFDL), is provided to describe the workflow process in a Grid environment; 2) a Petri
net-based user interface, based on the Generic Modeling Environment (GME), is demon-

strated to help users design the workflow process with a Petri net model; and 3) a data

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~ and program integration component of the Grid-Flow system is presented to integrate
various data and non-interactive programs into the system.

This work furthermore contributes to design methodologies (data/program regis-
tration, workflow description and execution, and data/program integration), underlying
models of modern scientific workflows (Petri net model and Data/Program Chart), the
integration and orchestration of online data and programs within workflow cases, as well
as the strategies of wrapping existing programs as web/Grid services in a Grid environ-
ment. Two workflow case studies, transmembrane region analysis and protein function
and expression, are modeled and implemented by the Grid-Flow system in order to dem-

onstrate the capability and usability of this workflow management system.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION
I dedicate this dissertation to my mother and my wife, without whom I would not

be where I am today.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to take this opportunity to thank the large number of people without
whom I could not have reached this point.

First of all, I must thank my advisor, Dr. Anthony Skjellum, who not only moti-
vates and guides me to take up this path, but also encouraged and supported me through-
out my pursuit of the Ph.D. degree. Without his encouragement and guidance, my Ph.D.
work would not have been done. Dr. Skjellum, as an expert in high performance comput-
ing and education, is always giving me illuminating advice and secure guidance at the
right times. I am also grateful for the financial support provided by Dr. Skjellum during
the second half of my Ph.D. study, as a Research Assistant in the High Performance
Computing Laboratory (HPCL) in the Department of Computer and Information Sciences
(CIS) at University of Alabama at Birmingham (UAB).

I also wish to thank my committee members: Dr. Purushotham Bangalore, Dr.
Jeffrey Gray, Dr. Elliot Lefkowitz, and Dr. Tracy Hamilton for serving on my committee
and providing me valuable suggestions and feedbacks. I thank Dr. Bangalore for leading
me into the Grid computing area, Dr. Gray for enlightening me on model integrated com-
puting and the Petri net modeling approach, as well as Dr. Lefkowitz and Dr. Hamilton
for offering me suggestions on the area of Bioinformatics workflow applications.

I have much enjoyed the cooperative and supportive research environment of

HPCL. I express my gratitude to the laboratory members Vijay Velusamy, Yin Liu,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vetria Byrd, and William Johns for all the collaboration and warm-hearted encourage-
ment. In particular, I thank Vijay and Yin for the cooperation on the WebRun project.

The graduate program at the Department of CIS at University of Alabama at Bir-
mingham (UAB) is unique and multidisciplinary. I am grateful to UAB for providing me
an opportunity to join this program. I thank this program for opening a door for me to co-
operate with all the professors, instructors, and graduate students in this department. Spe-
cially, I thank Enis Afgan in the Collaborative Computing Laboratory for his cooperation
on the G-BLAST project, Francisco Hernandez for his help on the workflow modeling in
the Generic Modeling Environment, and Jing Zhang and Yuehua Lin in the SOFTCOM
Laboratory for their comments on model-integrated computing. Thanks to the system
administration staff, especially Fran Fabrizio, and the office administration staff, Kathy
Baier and Janet Sims, for all their support.

This work was started while I was working as a Research Assistant in the
SmartDB group led by Dr. Hasan Jamil at the Department of Computer Science and En-
gineering at Mississippi State University. I am grateful to Dr. Jamil for introducing me to
the research field of scientific workflow and for enlightening me the fundamental knowl-
edge of workflow management. I appreciate the SmartDB group members Dr. Lirangyou
Chen, Jianming Shi, and Nan Wang for their contributions and assistance throughout
building the prototype BioFlow system. Without their encouragement and assistance, I
would not have undertaken my dissertation in the area of scientific workflow system.

Furthermore, this work would not be possible without the active collaboration and
interaction with Bioinformatics researchers at Mississippi State University. My special

thanks go to Dr. Mark Lawrence in the College of Veterinary Medicine, Dr. Mark

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fishbein in the Department of Biological Sciences, and Dr. John Boyle in the Department
of Biochemistry and Molecular Biology for providing workflow examples and for being
the users of the workflow management system. I am grateful for their input, suggestions,
and discussions during this work. Particularly I express my thankfulness to Dr. Fishbein
for bringing me into the fascinating areas of Bioinformatics and System Biology. I also
thank Dr. Xiufeng Wan, who would always like to share his knowledge and experience in
the Bioinformatics research and encourage me to work hard toward my goal.

I express my gratitude to the Kepler scientific workflow research group at the San
Diego Supercomputer Center (SDSC), especially the group leader Ms. Ilkay Altintas, for
the enlightening discussions on workflow modeling approaches. I also thank Dr. Mark
Miller for helping and supporting me during my internship in the Kepler group, as well as
offering me the superb opportunity to continue working on the research of scientific
workflow systems as a postdoctoral fellow at SDSC.

Thankfuiness also goes to the editors of this dissertation. Their comments spurred
me on to improve it and make it more readable and more consistent. So I want to ac-
knowledge my debt of gratitude to Dr. Jeffery Gray and Ms. June Vayo. Dr. Gray do-
nated large amounts of time to help me revise and polish the dissertation. He always pro-
vided profound comments relating to my dissertation. Ms. June Vayo helped me on fix-
ing semantic bugs and by suggesting appropriate words to clearly convey my ideas.

Finally, I would not have been made this achievement in my life without the lov-
ing support of my mother Yufen Zhang and my wife Yin Liu. Their support and under-

standing during my Ph.D. study is deeply appreciated.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

ABSTRACT OF DISSERTATION ...ttt eeereeee et st st s rsessitenetentessesssessesssesssseressssses il
DEDICATION ..ottt ettt e e e e et e eeesaaasreaneeaeaeseaaaaaseasmae et teeeeteraesasassemnaaeeenss iv
ACKNOWLED GMENTS .ottt ettt ettt re s ittt e e e e reseessessssameessssesssesssassanaasranntraessssas v
A B LE OF CON T N TS ettt ettt e e s e e e e eeeeeeseesaeaaesn et enereeeesansesraanneees viii
S T OF T A B LE S ..ottt e et e e e e et et eeeseeseaser e st s aatbseeetesasseesennarensaans xi
LIST OF FIGURES .o ettt e e e e e e e s et e e rse s e m e tan b b e etatssaseaeresr i eneanes xii
LIST OF ABB RE VI A TTON S ..ottt et e e et tee e st ten e etsaeet et resaesaeseemanesaees XV
1 IINTRODUGCTION ..ot tts et e ae e v e st s e e se st e eeeasssaesstsssseaamsassrassanseeess 1
1.1 Workflow Management System: HiStOIYccocueverriiereieirniinee et 1
1.2 Grid Workflow System: State 0f the ATtcccovviiiirieiiieiiiieee e 5
1.3 Research Issues for Grid Workflow System.........ccoocvveeeriiviienirivenccrieee e 9
1.3.1 Workflow Modeling Approach........cccceeveeereicenieenienecneeeseneeneseecsveseeenne 9

1.3.2 Workflow Languageccccevveeieriienieniineeneece ettt nie e e neens 12

1.3.3 ReSOUICE INtEGrationcoecviieierriiirirriieeiieescreeeeetresneeesereeseresseesrasesnsessues 14

1.4 Hypothesis and APProach.......cooceeveirmeiineeniieieeeenree et vecsre s 16
1.5 COMET DU IONS. s e ereeeereeereeeeerereeereeeeeseerereereeteteresesesass s aessaaasesessersteeseeraenessasereennn 21
1.6 OrZANIZAtION. ... ccccveeeiieivieesieeieeseeestresereeeteesseesasessetaaseeassaessasesessenesenseassneesseeenns 23

2 LITERATURE SURNVEY .ottt e s e e e e e et e e ee e e e s s aeaaasnnnns 24
2.1 Nomenclature of Workflow Managementccceevverreerrvesceenernsiesseeneeneeesneneee 24
2.2 Scientific Workflow SYStemcccvemiiriiniriiciieee ettt 26
2.3 Grid COMPULINGeovveeeresieeiieieeeeeteeteereetesteeaeeseesraesssessneesseessnesaesasesssessanersensen 28
2.3.1 (GIODUS TOOIKIL ..ottt ettt eeesereeeeeeeevenereeeaaraaseennsnanaans 29

2.3.2 Open Grid Service ATChiteCtUIE.covevvireeeeeerierie et 30

2.4 Grid WOTKIIOW SYSIEM .cuvviieeiiiiiieiriiiitiertescreeiie et escareste s eereeesasnereeerseenessaessenes 31
2.5 Grid Workflow Language.......ccecceeoveeveieiierneneeiinite e et e e seee e e 33
2.6 Process MOAEING.......c.ooiieiieeiereiieieeeeeete et sree e e s steeeesree s sas e teesteereene s eesseennas 34
2.6.1 Directed ACYCHC GIaphccceeevieiiiiicieiecii ettt eve e e 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS (Continued)

Page

2.6.2 Pt NEtS ..o ciierececieeie sttt ettt sttt b e st snn e et be et b s eneere e 36

2.6.3 Generic Modeling ENVironmentccccoveeeeeienereeerecneennenennenerseereens 38

2.7 The Origin Of GIrid-FIOW.......c.ecciiiiieiiiieiee ettt ste s 41
2.8 SUMIMATY .couviiiierienriiienreeneenere el ettt e e e e e sttt e e e sane e s rneeeenan 43

3 ARCHITECTURE AND RATIONALE FOR GRID-FLOW ...c.ccccocccvviviiimnicinnene 44
3.1 System ATCHITECTUIE......iivieeireiiiieiieieerrte et rre e rte s e srt et ee et eesrneeessesemeassaeeesneens 44
3.2 GIid-FIOW ENGINEoviiiieieieriiniecte ettt ees e st s 45
3.3 Grid-FIOW ReEPOSIIOTY ..eovvieieieieieirireiiirceeesttrressieerieeeeestes et eeeeemneesneessmensannesseesas 47
3.4 Integrating Data and Computing RESOUICESccovvvrrierierresieriirerieneenienieesee e 49
3.4.1 Data INteGrationc.ccceervieieiieniictiniiereneeeeteeenresetre s eee e et seeseseeesesneens 49

3.42 Program INtegrationcccceceeveveeriniirieeninieeeneneinenesicecre et 50

3.5 An Illustrative EXample........coocverieriiniiniinienenreeceiececeee st 51
3.0 SUIMITIATY .eouviieiiereertereeesieresereeeseteeesrneseeraessuabee s mnes e baeeanetessnnnneecobeteeasaseaesnsnasens 54

4 GRID-FLOW DESCRIPTION LANGUAGEoooieieiereeicinreceeenetereeenre s 55
4.1 Data ReGISIIAtioncccveiciieiiieeiiieciiecieereee et rae st sar e ssee e e raesne s e besssneaneee 55
4.2 Program ReZISITAtIONcccvieriieeiiterieeeiteseeeeneesset e sresie e seeseeeeeenteeenessreeessasesseesane 58
4.3 Process DeSCTIPHON.evueiriiiiierieertericeerr ettt see st sen e e e ssen e nerene 61
B4 SUIMIMIATY ..eoviveeriiriieirerenieeeniteseereesessntesosnsesesssessarteresssessaseessonsesssesseessansessassnnsesonns 65

5 GRAPHICAL USER INTERFACE......ccccicoiitirtriterieneerceneeeieeereesee s s nesaee e 66
5.1 Petri Net MOEINE.eoieeeiriieieeieeieseeteie ettt et eesie s s st sreseseenaesssesenne e 68
5.2 Workflow Meta-model........cccooiiriiirieiiinienienecieete et 69
5.3 Workflow Domain Model..........ccoceriiiiiniiniiniieniee e 74
5.4 IEOTPTOIET ... cociieiieie ettt e ece st e e e e st e e saeteeseans 78
5.5 Graphical Design for Workflow ProCessccccvverniirieirieniiericnniinneeeesrcrecneens 83
5.5.1 Data/Program Chartccceevvieeviieciieeririreeesriseeesreesiseessaeessnessnsesesssessses 86

5.5.2 Mapping Process onto Data/Program Chartc.ccceeeveevenerniiniecesreneenne 88

5.5.3 Translating Data/Program Chart into GFDLcccocveeviinieinniceeceeenne 91

5.6 SUIMMATY ..eiiiiieiiiieeetee et e e e rtrr e s s e rae e e e seasn e e e sstaeeaeaesaessasasesseassnnsraneans 91

6 ONLINE RESOURCES REGISTRATION.......ccrviiitiriieiiereeriererenteeeesriereeneessnereesee e 93
6.1 Related WOTK ...ccoooiiiiieee ettt e 95
6.2 Registration of Data/PrOgrammccceeverrerieriirerieenierreenierieniresieeenrareeesenesaeeeseeesanes 96
6.2.1 Data RECOTA ...oovieiiiiiiiieiiitieiee ettt ettt e s e e ssvasras s e eareeeane 97

6.2.2 Program ReCOTdccciieuveriiieniiie et nrie et s st eeeesne s vesrae e 98

6.2.3 Data Description FIleccccveiiiriirnieininiiecsee et sere e e 100

6.3 Matching Output and INPUL........ccooveeiiiieeieie et ens 104
6.4 Data Transformationccecevriieeiieiiniericenirte e see et eesree s saaesaeesaeessseneene 110

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS (Continued)

Page

0.5 SUIMIMIATY c..evviiiireeeeiieeesieeesreeetreeestrescereeesseessaeesseesaseaaassasesssssaseesssesressssssesnssesans 111

7 GRID-SERVICE-BASED PROGRAM DEPLOYMENT......cccoeviirvieiirreeseecre e 112

7.1 Categories of OS Programs in Grid-FIOW..........cccccvvevviiiiieereniieeneeeseeeenreeeeveens 112

7.2 Grid Services in GIid-FIOW.....ccccociiiiiiiniiienieccececcert ettt 118

7.3 GBLAST ..ot ettt e sttt e r ettt e neanas 123

7.3.1 G-BLAST COIe SEIVICE....cccrteuireeriirieiirirtietentesec st ieeseessee e enees 126

7.3.2 USer INTeTfacesccoverieiieiieiisieee ettt e 129

T4 SUIMIMATIY ...ooiivieeiieriieeiieieeeseeereresraesstresseeessaesseesaessessreessasessssessassesssssarsseenseenses 133

8 EXPERIMENTAL WORKFLOW APPLICATIONScccceiririenieenieeree et 134

8.1 Transmembrane Region ANalYSiS.......ccceveriiereireeriesienieereesseesrrerssreseesnesseesseens 134

8.1.1 Data Analysis without Workflowcccceeceeveniniinincnnicicnnneveene. 135

8.1.2 Workflow Designers and Workflow USErs.........cccceeveenieinecrennerurenenns 136

8.1.3 Registering Data/Program..........cccocevieerereereerersreenieeneessurinseeseesiesseeennes 137

8.1.4 Design & Implementation........coeeirrreeerirecninieneneceeceeeeeereenes 140

8.1.5 EXECULION c.eeetiiiieiecteeere ettt ettt s e st nenea 142

8.2 Protein Function and EXPreSsioncuuverivirierienierrenineeneneesesneseesnesneseeeenne 146

8.2.1 Problem DeSCriPtionccceeiurriererrerieiiererte st e et st eeieseesreesenesaeanas 147

8.2.2 Design and Implementation.........c..ccceeevinrererecnrincecenceceecececnenne 149

8.2.3 EXECULION ..oeutiiiiiireiiie ittt ettt e et e e et ebeessn e emeens 153

8.3 DISCUSSION . uveeeuvreerirerieerueeeteseeressseesetesiseenteeseesbensetessseessnteenreeesaneaesseeansnensaneensns 157

9 SUMMARY AND CONCLUSIONScttiiiiienirieresereie et eireeiee e astaesseesnesenens 159

9.1 Workflow Modeling SUbSYStEMccevuiiviiirieiiieniee e eseeeesvee e eesanas 159

9.2 Workflow Execution SUDSYSIEMI......cccccvereerriierieiriiaieteesneenniesreneenessreesnesansees 161

9.3 Data/Program Integration SUDSYSLEMc.eeceeeurrieiierreeiiencieeieeeeere e 162

9.4 Evaluation Based 010 USE CaseS......ceceecrirreniirnieeiennienieenreenienieerireseensneseeseeeene 163

0.5 CONCIUSIONS...ccuuriiriieieirieersieeereessiressere e e seeesraesta s aeesaee s srbeessnaeesneessasassseessees 164

LTOFUTURE WORK ..ottt ettt ese et stesasse st naesanenssesseseesseasaansasssessnas 166

LIST OF REFERENCESooiiiriciie ettt sttt e sanesse s e e ae e 167
APPENDIX

A GRAMMAR OF GRID-FLOW DESCRIPTION LANGUAGE........cccccvvevvirrnnnns 177

B WEBRUN SYSTEM.....coiiiiiirerienieiirnietieeresneteeseestenaessessnessassanssassasssesssssssenes 180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

Table 1. Matching results for TMPTred.........occovieieiniieeinieneeneenrtcece e

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page
Figure 1. History of Workflow Management Systems.coocevirniiviviieniiniiiecicrieneenne 4
Figure 2. The Grid-Flow System Architecture.c.coccvvevniiiiiiniinniniinircec e 18
Figure 3. An Example of Directed Acyclic Graph.c..ccccooiivivinericrinciniiinicneeieenene 35
Figure 4. A Petri Net Domain in GME.cocooiiininiiiiiiecci e 40
Figure 5. Architecture of Grid-Flow Engine (¢f. (Guan & Jamil, 2003)).....ccccccceerennenne. 47
Figure 6. Process of Transmembrane Regions Analysis.cccocevvevervnrrncceeneeecnnecnnes 52
Figure 7. Syntax of Data Registration in GFDL.ccccooiiiiiniininnineiinneceene e 56
Figure 8. Interface of the Data Registration Wizard...........cccecvvevivercinncneninenneeniseneene 57
Figure 9. Registration Sentences for Data TMPredInput...........ccccceovveevieevencnnrncececnneens 57
Figure 10. Syntax of Program Registration.c...ccccceveevervnireenenen. s 59
Figure 11. Interface of the Program Registration Wizard.........cccoccevieevienviinennenninnceeeeene 60
Figure 12. Registration Sentences for Program TMPred........cccocvveivviccineccnienneneenne. 60
Figure 13. Example of Sequence Structuré e 62
Figure 14. Extended Expression of Sequence Structure.ccoeveeevveeierencninensrereenne. 63
Figure 15. Example of the Choice Structure..........coceverveereeiriniienneirienieeeeeeece e 64
Figure 16. Meta Model of Petri Net in GME.cocciviiiiiiiiiiiinicecceeee e 71
Figure 17. ConnectionLimitation CONStraint.cccceeveeveriennenriinrneeeseeeeeeeesneesveenaees 72
Figure 18. NoSourceTransitionLimitation COnstraint.cceccervrrvereervresresenesreeeecenees 73
Figure 19. GME Interface for Defining Domain Models.ccocoeveiiireriniininenines e 75
Figure 20. Java Interface for Domain Model Interpreter.ovcvveeiereveenvinineeneesereeenee 79
X1l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES (Continued)

Figure Page
Figure 21. Pseudocode of the Method invokeEX.........ccoevivvcrniiiiiiiiiiiiiiincniicnineenn, 80
Figure 22. GFDL Script Generated by the Interpreter. ..., 80
Figure 23. Mapping between Petri Net Models and GFDL..........cccooviviiinieeirecinenene, 84
Figure 24. Example Data/Program Chart: Prediction of Transmembrane Regions........... 87
Figure 25. Data/Program Chart Patterns.cccceeveeerennieniiniciiiiiciciscisieneeee e 90
Figure 26. Translated Data/Program Chart Patterns in GFDL. ..., 92
Figure 27. DR DEfItION. .c..coeerieriiioriiiriiiiecicircciinrci et 97
Figure 28. DR for Data TMPredInput........ccccoccevirviiiiireiniiiiiiiecnecncccienie e 98
Figure 29. PR DEefINItiOn. ..coccveereiierinierienietcneie ettt 98
Figure 30. Input Web Interface for TMPred (TMpred - Prediction of Transmembrane
Regions and OFIENIALION).ccccoovveeeeneeiiieniieineiieireciiise sttt e se e 99
Figure 31. PR for Program TMPred.cccoeviiiiinviniiniiicicccnecc e 100
Figure 32. DIR Definition.......ccccvieciniriiniiiiniccireeeerctceiie e 100
Figure 33. Hierarchy of Format Categories for Bioinformatics Workflows. 101
Figure 34. Part of the DDF for TMPredInput.c.cocevivieemmeiicneiniienenirecsieneeeenenas 103
Figure 35. Interface of PickUp (Chen & Jamil, 2003)105
Figure 36. Matching Data for Predication of Transmembrane Regions.............cccceeuceve. 109
Figure 37. Categories of Programs in WEMS. ... e 114
Figure 38. System Call to Invoke Notepad in Grid-Flow Engine..........cccccoceevviievenaee. 114
Figure 39. Code for Process Management of Interactive Programs.ccccovcevvveineennen. 116
Figure 40. Overall Architecture of G-BLAST.......cocoiriiieieeeeee e 124
Figure 41. Interface of Method TransferFile in GWSDL......coccocoenieneiniiiennenicneeenees ..128
Figure 42. Factory Method for BLAST SEIVICE. ..cociviicirireriirieiceiieecece e 128
Xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES (Continued)

Figure Page
Figure 43. Client Program to Invoke G-BLAST Service.c.ccoevevvicrenenncniennerenennenes 132
Figure 44. The Content, DDF, and Registration Code 0of PSeq.......ccccceovvvviercvnvircnenennen. 138
Figure 45. The Content, DDF, and Registration Code of TMPredpar...........cccccevenuneee. 139
Figure 46. Registration Procedure of NCBISearch.........ccccevvvcvveeinconennienierieecieieenens 140
Figure 47. Registration Procedure of TMPIed......c.ccocviierieniiieniciineneree e 140
Figure 48. A Petri Net Model for Analysis of Transmembrane Regions. 141
Figure 49. GFDL for the Workflow of Transmembrance Regions Analysis. 141
Figure 50. Matching PSeq to NCBISEarch.ccovereveierieeniniiicnicnenceeceeesienie e 143
Figure 51. Protein Sequence Generated by NCBISearch.cccocevviveiiniicniinnccnnncns 144
Figure 52. Matching Sequence and TMPredpar to TMPred.ccccoceeevevnenvnininnennnn. 144
Figure 53. Transmembrane Regions for Protein Sequence.c.ccccccevrnivienvncncnnne. 145
Figure 54. Protein Function and EXPression.........cvuviveecieriennierinienerstenenieneesesnssveseenne 148
Figure 55. Matching Input Data to Neural Network Promoter Prediction. 148
Figure 56. Data/Program Chart for Protein Function and Expression...........cceveveeevenenne. 150
Figure 57. Petri Net Model for Protein Function and Expression Workflow.................. 151
Figure 58. GFDL Script for Protein Function and Expression Workflow....................... 152
Figure 59. The Loop Structure in Protein Function and Expression Workflow.............. 153
Figure 60. Literatures Information of a Protein Sequence...........ccocooevevveeieeenveveeenenen. 155
Figure 61. Promoter Prediction for Protein Sequence.coccecvevvnieciinnccnenicerceenne 156
Xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CGI
DAG
DDF
DIR
DR
GFDL
GGF
GME
GWSDL
HTQL
MIC
ODBC
OGSA
08
PDF
PR
SDE
SOA

SQL

LIST OF ABBREVIATIONS

Common Gateway Interface
Directed Acyclic Graph

Data Description File

Data Item Record

Data Record

Grid-Flow Description Language
Global Grid Forum

Generic Modeling Environment
Grid Web Service Description Language
Hyper Text Query Language
Model-Integrated Computing
Open DataBase Connectivity
Open Grid Service Architecture
Operating System

Program Description File
Program Record

Service Data Element

Service Oriented Architecture

Structured Query Language

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ABBREVIATIONS (Continued)

URL ~ Uniform Resource Locator

WFMS WorkFlow Management System

XML eXtensible Markup Language
XVi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 INTRODUCTION

Computer information systems in earlier times were designed to support the exe-
cution of individual tasks, such as simulating chemical reactions (Allen & Tildesley,
1987) and solving nonlinear equations (Zeleznik, 1968). Currently advances in network-
ing infrastructure, distributed processing, and collaborative computing enable the orches-
tration of these individual tasks as a whole computing process over heterogeneous data
and computing resources. It is no longer sufficient for current information systems to fo-
cus only on individual tasks. More applications require computer systems to control,
monitor, and support the logistical aspects of business and/or scientific processes. That is,
the information system needs not only to support computational operations, but it also has
to manage the flow of work through applications. Many researchers and organizations
have identified the need for theories, techniques, and tools to support the management of
flows of work, a.k.a. workflows. Therefore, the concept of workflow management was

introduced to satisfy these needs (Hayes & Lavery, 1991; Koulopoulos, 1995).

1.1 Workflow Management System: History

According to the definition from the Workflow Management Coalition (W{MC)
(Workflow Management Coalition), a workflow is “The automation of a business proc-
ess, in whole or parts, where documents, information or tasks are passed from one par-
ticipant to another to be processed, according to a set of procedural rules.” The business

process is the key factor in workflow management, whose major function is to support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the definition, execution, registration and control of these processes. The ultimate goal of
workflow management is to make sure the appropriate actors perform the proper activi-
ties at the right time, for the correct duration of time, assigned to the right resource or re-
sources, and with the required human interactions. Although it is possible to implement
workflow management without using any computers, most researchers in this area asso-
ciate workflow management with the workflow management system based on computers
and computing devices. The WIMC (Workflow Management Coalition) defines a work-
flow management system as “A system that completely defines, manages, and executes
workflows through the execution of software whose order of execution is driven by a
computer representation of the workflow logic.” A description of the most commonly
used concepts, techniques and methods for workflow management can be found in sec-
tion 2.1. |

Workflow management systems emerged in the 1990’s (Aalst & Hee, 2002). Be-
fore that time, most business processes were hard-coded within applications. People
working on the UNIX platform at that time wrote shell scripts to control the execution
procedure of multiple programs or tasks. For example, a user would define in a script that
Program B should get Program A’s output file as its input. In this case, Program B knows
information about and is closely tied to I)’rogram A. This approach could cause two prob-
lems. First, whenever a process changed, the application (script file) would need to be
modified manually. Second, the modules for reading and writing files needed to be im-
plemented in each application, and it was hard to accommodate future changes, such as
changes for the input/output file format. Therefore, a Workflow Management System

(WFMS) is useful and needed to define the tasks and interfaces between software parts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and applications, register such programs and tools, control the desired workflow, and
execute the whole process. Some prototype WFMSs appeared in research and industry
during the 1990’s, demonstrating the broad recognition of the potential utility of work-
flow management (Aalst, 1994; Hayes & Lavery, 1991; Stein, Rozen, & Goodman,
1995).

The history of workflow management systems shows the evolution of the archi-
tecture and design of the contemporaneous information systems (Aalst, 1998). Figure 1
illustrates the historical perspective of WFMS development, based on the architecture and
constructing components of the WFMS. In the 1960’s, applications (‘APPL’ for short in
the graph) were directly based on the operating system (OS) (Aalst & Hee, 2002). Each
of these applications handled the user interface, data storage, and flow control in an ad
hoc manner. Information systems with multiple applications would rarely be constructed
at that time because of the lack of unique interface between such standalone applications.
Database Management Systems (DBMSs) (Ramakrishnan & Gehrke, 2003) were intro-
duced in the 1970’s to store the application data and hence reduce the burden of data
management for applications. DBMSs also provided a uniform interface for data storage
and retrieval, which facilitated the communication between applications. User Interface
(UI) was subsequently brought into the architecture of information systems in the 1980’s.
The emergence of the Ul (Jacko & Sears, 2003) enabled the application developer to
separate the user interaction from the process logic of the application. Therefore, users
were shielded from the implementation details of the application by interacting only with

the interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A) 1960's (B) 1970's

(C) 1980’s

Network/Grid

OS

OS

OS

(D) 1990's (E) 2000's

Figure 1. History of Workflow Management Systems.

(adapted from (Aalst, 1996) and redrawn)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With more applications involved into the information system in the 1990’s, a
layer of WFMS was added in order to manage the invocation of applications, as well as
the data and control flow among them. This WFEMS layer provided the user, through the
UL, with a conceptual overview of the cooperation of applications in the system. It also
freed the applications from the burden of control flow management and interaction.

As the distributed and Grid computing technologies matured gradually in the last
decade, developers could make applications independent from the underling operating
systems by using web or Grid services. WFMSs can take advantage of this opportunity to
enable the execution of workflow process in a larger scope (that is, crossing the boundary
of a single OS). WFMSs will eventually be able to control the process logic of an infor-
mation system over Grid environments, which can span security, ownership, and geo-

graphic domains.

1.2 Grid Workflow System: State of the Art

Significant advances of computing technologies in recent years have enabled sci-
entists to explore research issues in their areas at scales greater and also finer than ever
before. Researchers in many scientific fields, such as system biology (Kitano, 2002),
cheminformatics (Leach & Gillet, 2003), climatology (Thompson & Perry, 1997), and
astronomy (Brumfiel, 2002), have seen the implications of the emerging powerful and
effective data analysis tools enabled by computer technologies. They have urgently de-
manded the development of a problem-solving environment capable of utilizing distrib-
uted data and computing resources, orchestrate the data analysis tools crossing various
platforms, and integrate efforts from collaborating participants of data/computation inten-

sive applications. To satisfy this demand, two computer technologies, workflow man-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

agement (Workflow Management Coalition) and Grid computing (Berman, Fox, & Hey),

are used together to provide a promising solution of a distributed, collaborative workflow

systém, which is a Grid workflow system.
Compared with business processes, scientific workflows have the following spe-
cial characteristics:

» Scientific workflows are used as part of accomplishing scientific research. Most of
the workflows in research are based on academic activities, such as data analysis,
methods testing, and hypothesis validation. In most cases, the scientist who executes
the workflow is both the designer and the end-user of the workflow. This means that
such workflows are often designed in an informal and spontaneous way. As compared
to scientific workflows, business processes usually involve multiple computing and
human resources from various organizations. Efficiently organizing and utilizing
those resources commonly require business workflows to be carefully specified via a
strict protocol, and also to be suitable for persistent execution. Informally, the nature
of scientific workflows requires the supporting WFMS to provide relatively more
flexible and comprehensible modeling approaches as compared to the methods used
in current industrial WFMSs, in order to accommodate the ever-changing academic
workflow designs.

* While scientific workflows are mostly concerned with throughput of data between
and among various programs, tools, and services, business workflows focus on
scheduling task execution, and such scheduling involves dependencies that may not
be driven by data and that may well include human interaction. Most programs and

services used in scientific workflows are provided by computer systems. These com-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

puter systems may be distributed at physical locations and heterogeneous in system
architecture and software. The applications used in business workflows are usually
based on systems in a commercial organization. Since the systems in an organization
are generally regulated by management rules, business workflows are nﬁore likely for
now to be performed in a centralized and homogeneous environment (businesses vary
in their conservativeness in this regard). Thus, scientific WFMSs generally need to
have more adaptability and adjustability to various systems.

» Certain scientific workflows are used to analyze huge amounts of scientific data, such
as that which could be generated by the human genome project (Genomics and Its
Impact on Science and Society: A 2003 Primer, 2003), by black hole exploration ex-
periment (Jacob et al., 2004), or by simulation of chemical reactions (Camarda, He, &
Bishop, 2001), among others. Scientific WFMSs need to provide the ability to trans-
fer that data over the network and analyze it with sufficient computing power. More-
over, the analysis of large amounts of data may take a long time, which of course pro-
longs the execution time of workflows to periods of time ranging from several days to
several months. Some features for long-running workflows, particularly state infor-
mation (Lomet & Weikum, 1998), bookkeeping (Aalst & Hee, 2002), check point
(Aalst & Hee, 2002), and fault tolerance (Lomet & Weikum, 1998) should be sup-
ported by a scientific WFMS.

* The definition of scientific workflows needs to be interchangeable among various
workflow systems. Unlike business workflows, scientific workflows usually act as
communication tools conveying new academic ideas and design decisions. Since cur-

rently some scientific workflow management platforms exist with different modeling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methods and execution mechanisms, the workflow research community evinces great
enthusiasm for the workflow language that can standardize the description of work-
flow process and therefore translate or transform workflow definitions among differ-
ent WFMSs.

Although the definition of workflow in the ;cientiﬁc area may differ from busi-
ness workflow through dual emphases on scientific data and analytical process require-
ments, they share common, essential characteristics of a procedure that applies specific
activities on the data according to rules. Since the data and computing may be partitioned
in a physically distributed environment, the workflow management system needs a
mechanism to handle the data transfer issue and invoke the computational tools over a
distributed and heterogeneous platform. This mechanism is precisely the capability that
Grid computing technology strives to achieve in scientific environments (Foster, 2002).
Grid computing technology satisfies the requirement by providing a new computing in-
frastructure for large-scale sharing of resources and distributed system integration. A
Grid, according to the definition provided by Ian Foster in (Foster), is a system that “co-
ordinates resources that are not subject to centralized control using standard, open, gen-
eral-purpose protocols and interfaces to deliver nontrivial qualities of services.” Based
on the services provided by Grid computing, a Grid workflow system could support
workflow definition (including process, resource, program defining), workflow execu-
tion, workflow monitoring and administration over a set of dispersed data/computing re-

sources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Research Issues for Grid Workflow System

Although a set of candidate features may be able to distinguish a Grid workflow
system from others, there are only three major issues of a Grid workflow system needed
to identify the system and even decide the system performance. Thege three issues are the
model used to describe a workflow process, the language conveying the process defini-
tion, and the mechanism to integrate data/computing resources in a distributed environ-

ment.

1.3.1 Workflow Modeling Approach

Most current Grid workflow systems use directed acyclic graphs (DAG) as a
modeling language to describe the workflow process in a graphical model. A DAG is a
directed graph with no cycles. In a DAG, workflow tasks are represented as nodes. The
edges between nodes are the channels that flow data from one task to another. Since there
is no directed path starting and ending on the same node in a DAG, the data processed by
one task can never return to the same task in the workflow process. A more detailed de-
scription for DAGs, including the formal definition, their properties, and features appli-
cable to workflow modeling, is presented in section 2.6.1. Although using a DAG is in-
tuitive for constructing process descriptions and is relatively easy to comprehend by us-
ers, a DAG has certain drawbacks. First, a DAG has limits in its modeling power. Since
there is no cycle/circuit in a DAG, it is hard to explicitly express loop patterns in a DAG
model. Second, a DAG model itself cannot associate with any status information about a
process. Grid workflow users cannot monitor the execution of a process with a DAG
model. Third and most important, the data of the workflow is implicitly expressed in a

DAG. A DAG only models the path of the data transfer but not data itself. No features of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

the data can be represented and used to control the workflow process. This limitation re-
duces the usefulness of a DAG to model advanced, data-controlled workflow processes.

In order to overcome these drawbacks, the Petri net model (Peterson, 1977) has
gradually been applied in several recent Grid workflow systems. The Petri net is a well-
established process modeling technique. Section 2.6.2 defines the Petri net in detail, and
offers examples of high-level Petri nets for workflow modeling. Compared with a DAG,
a Petri net model has more powerful modeling capabilities. For instance, a Petri net
model employs “places” to represent the status of a workflow process, which facilitate
users’ monitoring éf the process execution. Furthermore, some extended Petri net models
have the equivalent computational power of a Turing Machine (Peterson). According to
(Aalst, 1998), Petri nets are more suitably applied than DAGs for workflow modeling for
the following reasons.

1. Formal semantics

Classical Petri net and high-level Petri nets (like color (Jensen, 1997), time (Aalst,
1994) and hierarchy (Aalst, 1994) extensions) have been formally semantically defined.
Workflow processes defined with a Petri net must have a clear and precise specification,
which should facilitate the execution and verification step performed by the WFMS.
2. Graphical nature

Petri nets can act as a graphical modeling language. Workflow members can be
easily mapped to Petri net components (Aalst, 1998). For example, tasks are modeled as
transitions; data are modeled as tokens; and input/output data sets are modeled as places.
Users can use the Petri net not only as a design model, but also as a communication tool

of the design ideas to and/or with other users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

3. Expressiveness

By virtue of being formally semantically defined, Petri nets can easily model all
routing constructs existing in current workflow management systems (Aalst, 1998). Each
primitive used to model a workflow process can find its corresponding mapping in Petri
net components. Moreover, the state information explicitly represented in Petri nets en-
ables a WFMS to model checkpoints and implicit choice structure, which are crucial fea-
tures needed by long-running parallel workflows.

4. Properties

Petri nets have been investigated in both theory and practical application during
the last four decades. Many books, articles, and reports have been published that explore
each aspect of Petri nets. The firm theoretical foundation in this literature equips people
for reasoning about all the basic properties of Petri nets. These properties, consequently,
strongly suggest the Petri net as an ideal modeling tool for advanced, complex workflow
processes.

5. Analysis

The formal theoretical foundation also enables Petri nets with a number of analy-
sis techniques (Aalst, 1998). These techniques can be used to verify model properties. For
example, the verification procedure for a Petri net model (Peterson, 1977) should be able
to answer the following questions:

» Is the model safe?
* Is the model sound?

* And, are there any deadlocks existing in the model?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

These analysis techniques could also be used to measure the performance of the
workflow, such as the response time and the usage rate of the resources (Aalst, 1998).
Workflow processes can accrue benefits from those techniques since the properties of
workflow processes are modeled as Petri net properties.

6. Vendor independence

The Petri net is a tool-independent modeling technique (Peterson, 1977). It mod-
els the workflow process without specifying any specific implementation interfaces
(Aalst, 1998). Petri nets are not based on any software package or system architecture.
Thus implementers can provide their own design and realization of a Petri net-based
WFMS. The Petri net model is also a competitive candidate for the standard method of
exchanging workflow processes between and among various workflow systems.

With more systems adopting Petri nets as the modeling approach of workflow
process, many research issues have received attention from workflow researchers. These
research issues include, but are not limited to:

1. Translating the workflow procedure into Petri net models (Aalst, 1998);

2. Building a platform to design workflow process with Petri net models (Hoheisel,
2004; Zhang, Gu, & Li, 2004),

3. Mapping the data and computing resources onto the Petri net models in order to exe-

cute the workflow tasks (Aalst & Hee, 2002).

1.3.2 Workflow Language

Although a graphical model greatly eases the description of a complex workflow
process for users, it remains insufficient as a complete process definition by the Grid

workflow engine, which is the executor of the workflow process. The reasons for this in-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

sufficiency can be summarized in two points. First, compared with its ability to describe
control flows, a graphical model lacks the capability to elaborate the “meta-information”
about data and computing resources. Such meta-information is crucial for the workflow
engine to construct the references to the resources. Second, typical workflow engines are
designed to process text-based languages instead of graphical models, since the designers
of workflow engines may have limited exposure to date to the knowledge of emerging
Model-Integrated Computing (MIC) technology (Akos Ledeczi et al., 2001). Thus, most
workflow engines, including Triana (Shields & Taylor, 2004), Taverna (Oinn et al.,
2004), and Kepler (Altintas et al., 2004), have architectures similar to a traditional com-
piler, which are not suitable to directly processing graphical models.

Consequently, a workflow language is designed to bridge the gap between the
graphical model and the Grid workflow engine. The major functions of a workflow lan-
guage are as follows: 1) recording the meta-information about the data and computing
resources; and 2) conveying the workflow process definition. An interpreter is usually
provided in the Grid workflow system to transform the graphical model into a specific
workflow language. Compared with a graphical model, a workflow language is more ef-
ficient for workflow domain experts.

Two workflow languages, GSFL (Sriram Krishnan, Wagstrom, & Laszewski,
2002) and BPEL4WS (Tony Andrews et al., 2003), are popular choices in current Grid
workflow systems. Both of these languages are capable of describing complex data enti-
ties and workflow processes. Each language also adopts the Extensible Markup Language
(XML) (Extensible Markup Language (XML)) as a persistent storage notation. Their so-

phisticated description capabilities, however, also imply disadvantages for both lan-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

guages. They are apparently too complicated to be mastered by casual users of a work-
flow system. Furthermore, it is difficult, if not really impossible, for an experienced user
to describe even a trivial workflow process and its data and computing resources directly
with any of these two languages without the help of assistant tools. Although these two
languages are widely accepted as a reference model and interface for workflow languages
space (Oinn et al., 2004; The Ptolemy II Project, 1996; Shields & Taylor, 2004), they are
seldom fully implemented for independent third-party reuse.

Compared with these two languages, a light-weight Grid workflow language that
suitably addresses major workflow functions would be preferable for expert users. Such a
language would have to be powerful enough to support general workflow patterns, as
well as sufficiently flexible in order to let the expert users directly write workflow defini-
tions (Guan & Jamil, 2003). This language should also be compatible or translatable to
popular workflow languages. Furthermore, this language should be able to fully exploit

support from both the graphical user interface and the workflow engine.

1.3.3 Resource Integration

After application design by an end-user, a Grid workflow process is usually sub-
mitted to a Grid workflow engine, where the process will be executed. The workflow en-
gine is responsible for parsing the process description and performing the corresponding
computations on the data according to the schedule embedded in the description. Thus,
the workflow engine needs to have the power to invoke computational programs and
tools, and feed them with corresponding data. Since data and programs are often geo-
graphically distributed and heterogeneous, a mechanism to handle the distribution and

heterogeneity features should be integrated into the workflow engine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Most current workflow systems use ad hoc approaches to handle the distributed
data and programs in heterogeneous system architectures and operating systems (Altintas
et al., 2004; Oinn et al., 2004). For example, in order to feed the data to a program on a
remote server, the workflow engine would authenticate to the remote site (log into the
remote site with a user name and password), specify the target directory for storing the
data, and finally transfer the data with FTP. In even a more complex scenario, in order to
invoke a program in the remote server, a workflow engine would need to know more de-
tails about the remote site, such as the network connection protocol, the server’s operat-
ing system, the file system, and the job submission mechanism on the server. There is
evidently too much coupling between the remote server and the client-side software.

These ad hoc methods have at least two key deficiencies. First, this kind of
method reveals too many remote site details to the workflow engine and end-user. This
not only makes the workflow engipe more complicated in architecture and functionality
to implement, but also weakens the security strength of the whole architecture. Second,
most of these ad hoc methods are hard-coded within the workflow engine, making it dif-
ficult for the workflow system to accommodate future changes.

Whenever a new resource is added into a WFMS for workflow execution, the
workflow engine needs to configure itself for connecting the new resource and submitting
jobs. With new techniques emerging and more resources becoming available for execut-
ing workflow tasks, a workflow engine needs to make changes frequently. An interface
bétween the workflow engine and the data/computing resources is urgently needed by a

WEFMS to provide a uniform approach for accessing data and invoking programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Grid computing techniques (as described in section 2.3) can satisfy the require-
ments for building that kind of interface by providing the following: 1) a security infra-
structure for user authentication and authorization with remote systems; 2) a data transfer
protocol to transfer data between systems with the support of the security infrastructure;
and 3) a service-oriented architecture (SOA) for wrapping programs and applications as
web or Grid services. There has been a tendency to combine WFMS and Grid computing
techniques in the recent development of WFMS.

Several current Grid workflow systems, such as McRunjob (Graham, Evans, &
Bertram, 2003) and ScyFlow (McCann, Yarrow, DeVivo, & Mehrotra, 2004), base their
computations on Grid services provided by the Grid infrastructure, which means that only
predefined Grid services can be used in the workflow process. This design may limit us-
ers who may want to integrate their own tools into the workflow system. Yet, current
workflow systems seldom provide users a workable mechanism to integrate their data
analysis tools. A Grid workflow system that can integrate various tools in an impromptu
manner is consequently preferable, no matter where the tools are physically located (for

example, local computer, network environment, Intranet, or even the Internet).

1.4 Hypothesis and Approach

The hypothesis of this dissertation is that it is possible, via a Petri net modeling
approach, workflow management technology, Internet computing, and Grid computing,
to create a Grid service-based workflow management system that can model workflow
processes with Petri nets, and execute workflows over distributed and heterogeneous en-
vironments. Such a WFMS would not sacrifice any functionality, feasibility, or gener-

alizability of the workflow system. Furthermore, this system would be an open platform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

that could integrate new emerging disparate and distributed data and computing resources
to provide new capabilities for workflow applications.

To evaluate this hypothesis, a prototype of a Grid workflow system, namely Grid-
Flow, has been created to manage the modeling and execution of workflow processes
over Grid environments. The Grid-Flow system based on a service-oriented architecture
(SOA) shown in Fi guré 2 illustrates the architecture of Grid-Flow and the interaction be-
tween services provided by each component of the system. Grid-Flow is an assembly of
functional components that can be roughly classified into three layers: the Petri net-based
user interface, the Grid-Flow engine, and the Grid-enabled data and program integration
framework. The Petri net-based user interface, implemented within a graphical modeling
environment, is designed to facilitate the modeling of workflow processes via a graphical
editor, convert the graphical workflow specification into the Grid-Flow Description Lan-
guage (GFDL), and orchestrate the execution of the workflow cases. The GFDL, whose
ultimate goal is to describe and store all kinds of workflow processes, acts as an interme-
diary connecting the user interface with‘the Grid-Flow engine to convey workflow speci-
fications. The Grid-Flow engine layer is responsible for interpreting and executing work-
flow cases by orchestrating the data and program services supported by the data and pro-
gram integration framework, as well as answering users’ monitoring requests. The data
and program integration layer of the system infrastructure plays a critical role in inter-
connecting distributed storage and computing resources together and standardizing ac-
cesses to data and programs in the whole system. Each component in this architecture
communicates with others through its well-defined interface, which covers implementa-

tion details and reveals only necessary functionalities as services. Each component in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

architecture is an individual functional unit that consumes services from other compo-

nents, performs clearly defined functions, and provides services to other components.

i Petri net-based User Interface !

Grid-Flow Description Language

Grid-Flow Engine

JC

] Data Integration
Grid-Flow Repository
T Data Engine -
A Program Integration
, Parser ODBC
’| ‘WebRun Platform
Data Info Program Info ﬁ I
~ ~— CoG & Globus
Status Info System Info TXT
HTML

— = XML

Figure 2. The Grid-Flow System Architecture.

In this dissertation, the Grid-Flow system has been prototyped in order to show
‘the feasibility of realizing a Grid scientific workflow system based on an SOA. The focus
here is not to design and run several workflows on Grid-Flow, but to provide a feasible,
common framework that facilitates users to model workflow processes and incorporate
various data and programs required to execute their workflows. Such a framework should
enable the development of a workflow management system suitable for scientific work-
flows by reducing the complexities involved in accessing and using distributed and het-
erogeneous resources, by supporting modeling of advanced workflow patterns, and by
improving productivity of users by providing the ability of directly defining workflow

processes with the workflow language as well as reusing predefined routines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Grid-Flow exploits established technologies such as Petri net modeling to provide
services for modeling workflow controlling structures accurately and formally, and repre-
senting data, features, and states of workflow processes expliéitly. These services enable
Grid-Flow to model complex workflow processes involving advanced patterns, and to
monitor the execution of workflow processes by displaying the workflow status to the
user. The Petri net modeling approach is realized in the Grid-Flow user interface, which
is based on the Generic Modeling Environment (GME) (Akos Ledeczi et al., 2001). A
meta-model for the Petri net is designed and stored in GME. Thereby, users can define
domain models (that is, workflow process models) with the same environment. The meta-
model and domain models for Petri net are demonstrated in detail in section 2.6.3. In ad-
dition, Grid-Flow introduces an intuitive approach, called the Data/Program Chart, to
help users communicate with workflow designers by drawing workflow processes under
minimal restrictions.

GFDL is used in Grid-Flow to record any information related to defining and exe-
cuting workflows. This information can be classified into two categories. Information
about data and programs, such as the format of the data or the location of the program, is
recorded by data and program registration scripts. This type of information is stored in
the Grid-Flow repository and would be used to integrate data and programs while work-
flow is running. The other type of information is used to describe the flow control of
workflow processes. This information is recorded by process description sentences and
stored in GFDL scripts. When a user defines a workflow using the user interface, Grid-
Flow asks the user to register all the data and programs used in the workflow into the sys-

tem with system-provided registration wizards. Grid-Flow then translates the flow control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

information into GFDL scripts with the Petri net model interpreter. After receiving a
user’s command to run the workflow, the Grid-Flow engine retrieves the flow control de-
scription from GFDL scripts, integrates data and programs by reading their associated
information, and then schedules and performs the execution of programs on appropriate
data.

The data/program integration framework can actually be divided into two compo-
nents: the data integration component and the program integration component. Data used
in scientific workflows come from different resources in different formats. The major
function of the data integration component is to retrieve data from different data sources,
and transform data among various formats if necessary. Parsers corresponding to relevant
data formats are developed to retrieve information for the data integration component.
For example, the XML parser is responsible for extracting information from an XML file.
A Structured Query Language (SQL) parser is used to query a relational database to re-
trieve records. Data transformers that transform data between two different formats are
designed and implemented in a more ad hoc way, compared to parsers. For instance, the
transformer that converts integers into character strings is implemented as an internal
program directly supported by the Grid-Flow engine.

As with data, programs can also be located in various environments and have spe-
cial execution requirements and mechanisms. The program integration component ad-
dresses all of these heterogeneities by providing a uniform program invocation service to
the Grid-Flow engine. The program integration component handles different type of pro-
grams in different ways. For programs on a local machine, the program integration com-

ponent invokes them by calling system functions. For Common Gateway Interface (CGI)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

programs, the program integration component provides a mechanism to register and in-
voke them. For programs that are not accessible on a remote server, the program integra-
tion component employs WebRun (Guan, Liu, Velusamy, & Bangalore, 2004) to wrap
them as web/Grid services. A data matching mechanism is also discussed in section 6.3 to
pipeline programs that works by mapping outputs of one program to inputs of another.
To constructively prove the hypothesis, Grid-Flow is first prototyped based on a
multi-tier architecture that integrates several functional subsystems; then two bioinfor-
matics workflow cases, protein transmembrane region analysis and protein functionality
and expression, are modeled using this enabling workflow management system. The two
workflow processes depicted using Petri net-based user interface illustrate that Petri nets
can be used to model advanced workflow structures. In addition, the fact that one work-
flow model can be reused in another workflow illustrates the ability to build hierarchical
workflow models in Grid-Flow. The GFDL scripts used to convey workflow definitions
demonstrate the usability and efficiency of the light-weighted workflow language to de-
scribe control flow structures and the data flow. Several programs located in distributed
and heterogeneous envirohments are integrated into Grid-Flow as workflow tasks. The
effectiveness and utility of the data and program integration component are demonstrated

by integrating those data and programs used in these two workflow cases.

1.5 Contributions

In addition to prototyping Grid-Flow for developing advanced scientific workflow
applications over Grid environments, this dissertation also makes the following contribu-

tions to the research of scientific workflow management systems:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

1. Grid-Flow provides a systematic methodology, as well as a flexible test bed, for de-
signing distributed scientific workflows over heterogeneous data and computing re-
sources, based on model-driven computation.

2. A Petri net-based user interface is demonstrated to help users design workflow proc-
esses with Petri net models. An interpreter is implemented in GME (Akos Ledeczi et
al.) to translate Petri net workflow models into GFDL.

3. A process modeling approach, the Data/Program Chart, is introduced to help users to
express workflow process specifications and communicate with other users or work-
flow designers.

4. A light-weight, programmable Grid workflow language is provided to convey work-
flow processes in Grid-Flow. This language is powerful enough to describe all types
of workflow patterns, and is easily mastered by advanced users.

5. A data integration component is implemented to retrieve data from various data re-
sources, and transform data among various formats if necessary.

6. A program integration component is presented to integrate applications into workflow
processes as tasks. This component can ‘wrap’ programs on remote servers as atomic
executable services.

7. A methodology for registering online data and CGI programs is defined for porting
them to serve the execution of workflows.

8. An intuitive method for matching data between output and input sets of connected
programs is provided to streamline the execution of workflow tasks.

9. Two real-world workflows have been built to evaluate the feasibility, usability, capa-

bility, and generalizability of the workflow platform.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

1.6 Organization

This dissertation describes the design and prototyping of a Grid workflow system
using Petri‘ net modeling and Grid enabled service-oriented architecture. The remaining
chapters are organized as follows. Chapter 2 briefly reviews concepts of workflow man-
agement, the history, and current status of scientific workflow systems, as well as tech-
nologies used in prototyping Grid-Flow, including Grid computing technologies, model-
ing approaches, and tools. Chapter 3 illustrates the overéll architecture of Grid-Flow and
the decisions made during its design and implementation. Research issues of the Grid
workflow management system, such as the workflow description language, the modeling
approaches, and the integration of online data and programs, are discussed in Chapter 4,
5, 6, respectively, with the practical implementation in Grid-Flow. Chapter 7 presents the
Grid service used in Grid-Flow for integrating analysis tools, and one of its applications -
- G-BLAST services. Two illustrative examples of running workflows with Grid-Flow
are reported in Chapter 8 in terms of their user requirements, workflow designs, execu-
tion details, and the results. Chapter 9 evaluates the whole Grid-Flow system and tech-
niques used in each of its subsystems, as well as provides the summary and conclusion of
Grid-Flow. Chapter 10 discusses the future research and development work of Grid-
Flow. The syntax of the Grid-Flow Description Language (GFDL) is presented in Ap-
pendix A, while the strategies of wrapping existing applications as web/Grid services in

WebRun system are fully explored in Appendix B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

2 LITERATURE SURVEY
Chapter 1 described the motivations and requirements for building a Grid work-
flow system to serve scientific computing applications. In this chapter, workflow man-
agement systems, Grid computing, and Petri net modeling are discussed in further detail.
Other efforts in the literature that build Grid or scientific workflow systems are surveyed.
The origin of Grid-Flow is presented at the end of this chapter for the purpose of re-

cording its design and development history.

2.1 Nomenclature of Workflow Management

A workflow is a combination of cases, resources, tasks, and states that relate to a
specific application. According to the definition provided by Wil van der Aalst in (Aalst
& Hee, 2002), workflow management refers to “the ideas, methods, techniques, and
software used to support structured business process.” The workflow management sys-
tem, therefore, is a software package that supports the design, configuration, and imple-
mentation of generic workflow applications. The workflow management system includes
the following principal concepts.

* The case. The “case” is a workflow instance that is controlled by the workflow man-
agement system. Examples of a case could include an analysis of a protein structure,
an auto insurance claim, or a transaction completed on the Internet.

= The task. A “task” is an atomic logical unit of work. A task is either carried out in

full or not at all in a workflow instance. Tasks are important components for a work-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

flow process. When a special case is performed in the workflow system, a task is re-
ferred to as an activity once it is carried out.

» The process. The “process” indicates the way in which a particular kind of case
should be carried out. It involves not only which tasks need to be carried out, but also
the order in which those tasks should be done. A process consists of tasks, conditions,
and subprocesses that are scheduled with a predefined execution plan. Subprocesses
enable the potential for hierarchical structuring of complex processes.

* Routing. “Routing” is the definition of a process that determines which tasks need to
be performed and in which order along particular branches of a process. Four kinds of
routings are often used in workflow process: sequencing, selection, parallelization,
and iteration.

* Enactment. Workflow enactment services is a component that “creates new cases,
generates work items based upon the process description, matches resources and work
items, supports the performance of activities, and enables the recording of particular
aspects of the workflow” (Aalst & Hee, 2002).

Accompanying the development of WFMS, workflow system architecture has
evolved from supporting simple workgroup type environments to providing enterprise-
wide, and even multi-owner levels of functionality (Mohan, 1998). A single workflow
process is now capable of being authorized to integrate servers and clients across wide
area networks with the enhancement in WFMS. Such workflows with additional scalabil-
ity, availability, and manageability are called distributed workflows, which are the prede-

cessors of current Grid workflows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

2.2 Scientific Workflow System

Scientific workflow systems have been developed for at least twenty years. The
technology is maturing with more development of workflow products providing support
to various kinds of applications (Aalst & Hee, 2002; Dogac, Leonid, Ozsu, & Sheth,
1998). However, many additional limitations still remain in the field of modeling proc-
esses. Many researchers work still on developing more efficient workflow languages.
They try to simplify the workflow language while keeping its power for describing di-
verse workflow models. Vortex workflows are provided to solve this problem by using
enabling conditions, attribute rules, and declarative semantics (Davulcu, Kifer, Rama-
krishnan, & Ramakrishnan, 1998; Hull et al., 1999). On the other hand, object-oriented
workflow languages are also provided to support flexible and distributed workflows in
heterogeneous environments (Vossen & Weske, 1999; Weske, 1999). Another trend in
workflow research is the cooperation and interaction between workflow processes from
different sources. Studies have been reported on workflow models and systems that en-
able cooperation between workflows executed in the same or in different organizations
(for example, (Ames, Burleigh, & Mitchell, 1997, Casati & Discenza, 2000; Kang, Park,
& Froscher, 2001)). These systems extend the scope of workflow models from local to
broader applications.

Refined definition language and cross-organization cooperation comprise the es-
sential requirements of workflow applications in the bioinformatics field, one of the most
important application areas of current scientific workflow systems. Because of the large
scale of workload, many genomic projects require the cooperation among crossing
groups, organizations, or even nations. The application of a workflow system for bioin-

formatics is flourishing with the dramatic development of genomic technologies. A batch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

of small commercial workflow systems, such as the Functional Bioinformatics System
(Functional Bioinformatics System), TurboBench Workflow (TurboBench Workflow Sys-
tem), and the liberTOOL (uberTOOL), are coming forth to integrate certain biological
tools that are used ov;ar multiple network platforms. The TurboBench workflow system
can even let the user design parallel, distributed, and computational grid utilities on par-
ticular tasks. However, none of these commercial workflow systems constitute general-
purpose workflow systems. They work well only on particular, predefined biological
fields of study. For example, the Functional Bioinformatics System only focuses on GSE
sequencing and access to sequencing-related information.

Many academic workflow systems are general-purpose and can be applied to a
wide range of areas in bioinformatics. For example, the workflow system used at the
Whitehead Institute/ MIT Center for Genome Research (Stein et al., 1995) focuses on
managing workflow in large semi-automated laboratory projects. The METEOR project
(Kochut et al., 2002), which has been developed at the LSDIS lab of the computer sci-
ence department at the University of Georgia, is also a general-purpose system that fo-
cuses on R&D of innovative Multiparadigm Transactional Workflow Management tech-
nology. These systems have each a powerful workflow definition language that can de-
scribe almost all kinds of complex models. But for any projects in those systems, the de-
sign of workflow must be handled by professionals with expertise in that workflow area.
It is difficult for biologists to master such a complex workflow language and design their

own workflow processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

2.3 Grid Computing

Researchers in distributed computing have proposed many schemes for connect-
ing distributed resources shared by multiple organizations. Among these schemes, the
proposal of a “computational grid” (Foster & Kesselman, 1999) gradually proved itself to
be an infrastructure that can enable ubiquitous computing over heterogeneous high per-
formance computing resources distributed geographically. In the last decade, more scien-
tific research projects have started to support the computational grid and thus developed
several tools and services, which are known as Grid technologies(Berman et al., 2003).
With the development of these Grid technologies, a new computing model, known as
Grid computing (Berman et al., 2003), emerged. The goal of Grid computing is to gain
more computing power over shared heterogeneous resources that locate in diverse and
possibly distant places, belong to multiple administrative domains over a network,
through the interoperability abled by open standards (Foster, Kesselman, Nick, &
Tuecke, 2002). Grid computing aims to achieve the following goals:

» Virtualizing computing resources by sharing distributed and heterogeneous comput-
ing resources belonging to different organizations accessible from anywhere (Berman
et al., 2003);

» Providing secure access to these resources while protecting securities for both users
and remote sites (Foster, 2002);

» Providing single login service to all users over all distributed resources while keeping
the individual site autonomy system impregnable (Foster, 2002);

= Covering the heterogeneity and the complexity of interoperation among distributed

sites from end-users (Berman et al., 2003);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

* Providing resource management, information services, transparent job submission,
monitoring, and secure data transportation (Foster & Kesselman, 1999); and

» Designing to solve problems too big for any single supercomputer (Berman et al.,
2003).

The Global Grid Forum (GGF) (Global Grid Forum), a collaboration between in-
dustry and academia, has the purpose of defining specifications for Grid computing. The
specifications cover a variety of issues from security and authorization to resource de-
scription, discovery, and reservation, to monitoring and event notification, and many
more. Many vendors (for example, IBM, Oracle Corp., Sun Microsystems, and Cluster
Resources, Inc.,) have started to support Grid computing with their hardware and soft-
ware products. Some academic computing Grid prototypes have already been deployed.
The Grid Physics Network (GriPhyN) (GriPhyN - Grid Physics Network), Earth System

Grid (ESG) (Earth System Grid), and TeraGrid (TeraGrid) are several examples.

2.3.1 Globus Toolkit

The Globus toolkit (Foster & Kesselman, 1999) is the de facto standard for Grid
middleware. It is and was implemented by the Globus Alliance (The Globus Alliance)
following the standards developed at the GGF. As a middleware ensemble, it provides a
standard platform upon which to build services. This platform also provides software
tools and services that enable the development of computational grids in many areas de-
fined by the GGF as protocols (Foster & Kesselman, 1999). These software tools realize
the following functional modules:

e Grid Security Infrastructure (Foster, Kesselman, Tsudik, & Tuecke, 1998), used by

the Globus Toolkit for authentication, authorization, and secure communication;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

e Monitoring and Discovery Services (Foster & Kesselman, 1999), used to store and
access various system specific information, as well as to discover, publish and access
static and dynamic information about the status of resources in the computational
grid; |

¢ Globus Resource Allocation Manager (Berman et al., 2003), used to allocate, manage,
and request resources on the computational grid using a resource specification lan-
guage;

e Data Movement and Management Services (Foster & Kesselman, 1999), used to ac-
cess, manage, transfer (using GridFTP (Allcock et al.)), and replicate data over the
computational grid,

e Commodity Grid Kits (Laszewski, Foster, Gawor, & Lane, 2001), which provide cli-
ent-side APIs for Grid services through language bindings and implementations in
multiple popular programming languages; and

e MyProxy (Novotny, Tuecke, & Welch, 2001), which provides an online credential
repository that can store and retrieve proxy credentials for users without accéssing

their permanent certificates.

2.3.2 Open Grid Service Architecture

The Open Grid Service Architecture (OGSA) (Foster et al., 2002) is a specifica-
tion of the SOA for the Grid computing environment for business and scientific use, as
developed by GGF. It provides an interface based on web services for managing Grid
service instances. The interfaces and behaviors of a Grid service are defined as OGSA

specification, and are implemented by Open Grid Service Infrastructure (OGSI) (Tuecke

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

et al.), which is as of now superseded by the Web Service Resource Framework (WSRF)

and WS-Management.

2.4 Grid Workflow System

Although Grid workflow systems lack a long history when compared to other
technologies in the Grid computing community (Zhang et al., 2004), there is quite a bit of
related work on orchestrating tools in a Grid environment that has been proposed and
used by researchers. The basic idea of orchestrating programs in a distributed environ-
ment can be found in two early projects, WebFlow (Bhatia et al., 1997) and the Common
Component Architecture (CCA) (Common Component Architecture). The purpose of the
WebFlow system 1s to provide a web-based visual programming environment for distrib-
uted computing software. It was developed as a coordination model and programming
paradigm for Web/Java applications. Compared with WebFlow’s emphasis on integrating
applications, CCA focuses more on composing disparate and coarse-grain high perform-
ance components into a running application (Common Component Architecture). This
strategy of component composition has been inhérited by many current Grid workflow
systems, such as GridAnt (Laszewski et al., 2004), Triana (Shields & Taylor, 2004),
Symphony (Lorch & Kafura, 2002), XCAT (S. Krishnan, Bramley, Gannon, Govinda-
raju, Alameda et al., 2001), GridFlow (Cao, Jarvis, Saini, & Nudd, 2003), and Ptolemy II
(The Ptolemy II Project, 1996). The strategy has been extended to applications of compo-
sition of software modules and web/Grid services (Cao et al., 2003; S. Krishnan, Bram-
ley, Gannon, Govindaraju, Alameda et al., 2001; Laszewski et al., 2004; Lorch & Kafura,

2002; The Ptolemy II Project, 1996; Shields & Taylor, 2004).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Almost all Grid workflow systems mentioned above have the common character-
istic that they are derived from some existing flow control tools or systems, and are ap-
plied to orchestrate Grid-enabled programs or services. For example, GridAnt (Laszewski
et al., 2004) was developed from Ant (4nt - A Java-based Build Tool), while XCAT was
based on the Common Component Architecture (Laszewski et al., 2004). Another com-
mon feature for these Grid workflow systems is that they all provide a graphical user in-
terface and a script-like language for users to organize and describe the workflow proc-
ess. Some other Grid workflow systems focus on integration of programs/applications
instead of components/services. These workflow systems include P-GRADE (Dozsa,
Kacsuk, Lovas, Podhorszki, & Drotos, 2004), ScyFlow (McCann et al., 2004), McRunjob
(Graham et al., 2003), Taverna (Oinn et al., 2004), GriPhyN (Deelman, Blythe, Gil, &
Kesselman, 2003), and Kepler (Altintas et al., 2004). From these descriptions (Altintas et
al., 2004; Deelman et al., 2003; Dozsa et al., 2004; Graham et al., 2003; McCann et al.,
2004; Oinn et al., 2004), it is evident that these Grid workflow systems intend to provide
interoperability among various applications across heterogeneous computational plat-
forms. Since applications have more diverse interfaces than components/services, these
program-based workflow systems are designed to be more domain-specific than compo-
nent-based workflow systems in order to limit the diversity of integrating objects in a
manageable scope. Some other resource management systems and process plan-
ning/scheduling systems could also provide workflow control functionality in a Grid en-
vironment. UNICORE (Erwin & Snelling, 2001) and the Directed Acyclic Graph Man-
ager (DAGMan) (DAGMan (Directed Acyclic Graph Manager), 2002) are two good ex-

amples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

2.5 Grid Workflow Language

Besides the above modeling approaches, the Grid workflow description can usu-
ally be achieved by taking advantage of scripting Grid workflow languages. Web service
software industrial providers were first to present several flow control languages for web
services. These languages include the Web Services Flow Language (WSFL) (Leymann,
2001), XLANG (Thatte, 2001), the Web Services Conversation Language (WSCL) (Web
Services Conversation Language (WSCL 1.0), 2002), and the Web Services Choreogra-
phy Interface (WSCI) (Arkin et al., 2002). With the development of web services, WSFL
and XLANG converged and this led to a new generation of specification language for
business interaction, the Business Process Execution Language for Web Services
(BPEL4WS) (Tony Andrews et al., 2003). BPEL4WS (Tony Andrews et al., 2003) ex-
pands the Web Service interaction model and makes it applicable to depict business
transactions. With the emergence of Grid services, the Grid Services Flow Language
(GSFL) (Sriram Krishnan et al., 2002) was proposed to address the issue of integrating
Grid services across distributed and hetero geneous platforms within the OGSA (Foster et
al., 2002). Both BPEL4WS and GSFL have adopted XML (Extensible Markup Language
(XML)) as their basic language format (Tony Andrews et al., 2003; Sriram Krishnan et
al., 2002). Most Grid workflow systems also choose an XML-based language as their
workflow process language. For instance, Triana (Shields & Taylor, 2004) uses an XML-
based language similar to the Web Services Description Language (WSDL) (Christensen,
Curbera, Meredith, & Weerawarana, 2001). At the same time, Triana can use any lan-
guage that is compatible with BPEL4WS (Shields & Taylor, 2004). Since no standards
have been agreed upon for Grid services, the research area of Grid workflow languages is

still undergoing rapid change and further development. For example, a relatively new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Grid Workflow Execution Language (GWEL) (Cybok, 2004) has been proposed to reuse

ideas from BPEL4WS on describing interactions between services defined with WSDL.

2.6 Process Modeling

The majority of Grid workflow systems use the Directed Acyclic Graphs (DAG)

and its variants as their approach for workflow process modeling (Altintas et al., 2004;
Erwin & Snelling, 2001; Lorch & Kafura, 2002; Shields & Taylor, 2004). For example,
UNICORE (Erwin & Snelling, 2001) and Symphony (Lorch & Kafura, 2002) use DAGs
to describe the workflow process, while Kepler (Altintas et al., 2004) and Triana (Shields
& Taylor, 2004) use Directed Cyclic Graphs (DCG) as their modeling methods. DAGs,
as well as DCGs, have limited modeling abilities. Since a DAG has no cycles in its
model, it cannot be applied to express loops explicitly. Because of this drawback, the Tri-
ana system (Shields & Taylor, 2004) does not explicitly support iterative control con-
structs. All of the loop controls are handled by a specific loop component in Triana. A
more powerful modeling approach, Petri nets (Peterson, 1977), is gradually being intro-
duced into Grid workflow systems to model workflow process (Hoheisel, 2004; Zhang et
al., 2004). A Petri net modeling method is applied in (Hoheisel, 2004) to déscribe user
tools and workflow schemes developed in the Fraunhofer Resource Grid (FhRG)

- (Fraunhofer Resource Grid). An extension of the Petri net (Peterson, 1977), D-Petri net,
is also employed in (Zhang et al., 2004) to capture the characteristics of dynamism of
Grid job scheduling. As mentioned in Chapter 1, Petri nets are central to the work of this

dissertation as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

2.6.1 Directed Acyclic Graph
A DAG is a directed graph with no difected cycles (Harary, 1995). That means for

any node v in the graph, there is no directed path starting and ending on v. A source node
in a DAG is a node with no incoming edges, while a sink node in a DAG is a node with
no outgoing edges (Wikipedia). Figure 3 shows an example of a DAG. The rectangles
with names represent the nodes. Arrows in the graph represent the directed edges of
DAG. In this example, node A does not have any incoming edges, it is a source. Simi-

larly, node E is a sink since there is no outgoing edges associate with it.

B
|7 \LD

Figure 3. An Example of Directed Acyclic Graph.

A DAG has two features that make it popular for modeling simple workflows
(Hoheisel, 2004). First, a finite DAG has at least one source and at least one sink
(Wikipedia). Corresponding to workflow models, each workflow model usually has at
least one starting task, which does not have any precedent tasks, and at least one ending
task, which has no following tasks. So a source node can be used to model a starting task,
and a sink as an ending task. Second, each DAG has a topological sort, which is an order-
ing of the nodes such that each node comes before all nodes it has edges to (Wikipedia).
In general, this ordering is not unique. For example, one possible topological sort for

Figure 3 is A-C-B-D-E. However, if a workflow process is modeled with DAG, this or-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

dering can help workflow systems determine the execution order of each task before they
are executed in the real world. So the whole workflow process would be executed follow-
ing a static order once the topological sort is selected. This simplifies the design and im-

plementation of a workflow management system, especially for a workflow engine.

2.6.2 Petri Nets

This section introduces the definition of classical Petri nets (Peterson, 1977) and
the special features of high-level Petri nets.

A classical Petri net is a directed bipartite graph with two node types: places and
transitions (Peterson, 1977). Arcs are used to connect nodes, but arcs between two same
type nodes are prohibited. The formal definition of Petri net is as follows (Wikipedia):

A Petri net is a triple (P, T, F), where
1. P is a finite set of places,

2. T'is a finite set of transitions (PN T = &)
3. Fc (PxT)u(T x P) is a set of arcs (flow relations)

Usually places are represented by circles, and trahsitions as bars (Peterson, 1977).
At anytime a place contains zero or more tokens, drawn as black dots. States, often re-
ferred to as markings, are the distribution of tokens over places. The number of tokens
may change during the execution of the net. Transitions change the state of the net ac-
cording to firing rules (assuming the weight of each input place is 1) (Peterson, 1977):
A) A transition is said to be enabled if and only if each input pléce of this transition con-

tains at least one token,;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

B) An enabled transition could fire. As the result of firing a transition, one token from
each input place of this transition will be consumed and each output place of this transi-
tion will be filled with one token.

Petri nets can be used to model workflow processes (Aalst, 1998). Each concept
in a Petri net has a corresponding mapping in a workflow process. The transition in a
Petri net is mapped to the task in a workflow process. The token represents the data,
while the place corresponds to the container of data. Each arc shows the data transfer path
in the workflow process. The state or marking can be naturally explained as the status of
the workflow process. Thus, the corresponding firing rules in workflow process should be
(Aalst & Hee, 2002):
A) A task is said to be enabled if and only if each data it requires is loaded into the data
container for each input port;
B) An enabled task can be executed. As the result of execution, the data provided by the
input port will be consumed and the task will generate the data for each output port.

Although the classical Petri net is powerful in modeling tasks, data, status, events,
and all of the control flow structures, it has its own drawbacks (Aalst & Hee, 2002). First,
the Petri nets used to model complex workflow processes tend to be extremely large.
Second, the classical Petri net cannot model data attributes and time, which may be cru-
cial to some workflow processes. To solve these problems, many extensions have been
proposed to enhance the classical Petri net model (Peterson, 1977). A well-known exten-
sion called “extension with color” (Jensen, 1997) focuses on recording the attributes of
data as colors associated with each token. The transition generates tokens with various

colors, just like the task generates data with different attribute values. The transition can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

select tokens with appropriate colors by specifying a precondition to filter unsatisfied to-
kens. This mimics the strategy that tasks only take data with appropriate attributes as in-
puts. To model time duration and delays of workflow processes, classical Petri net needs
to bring in a timing concept, which could associate with tokens, places, and/or transitions.
To avoid large Petri net models when describing complex processes, an extension with
hierarchy could be added into the classical Petri net to allow it to construct subnets

(Peterson, 1977). Thus, the Petri net model can be organized within a subnet hierarchy.

2.6.3 Generic Modeling Environment

From a modeling perspective, the expressive power in software specification is
often gained from using notations and abstractions aligned to a specific problem domain.
This can be further enhanced when graphical representations are provided to model the
domain abstractions. In domain-specific modeling, a design engineer describes a system
by constructing a visual model using the terminology and concepts from a specific do-
main. Analysis can then be performed on the model, or the model can be synthesized into
an implementation (Neema, Bapty, Gray, & Gokhale, 2002). Model Integrated Comput-
ing (MIC) has been refined over the past decade at Vanderbilt University to assist in the
creation and synthesis of complex computer-based systems (Akos Ledeczi et al., 2001).
A key application area for MIC is in those systems that have a tight integration between
the computational structure of a system and its physical configuration (for example, em-
bedded systems) (Sztipanovits, 2002). In such systems, MIC has been shown to be a
powerful tool for providing adaptability in evolving environments (Karsai, Maroti, Le-
deczi, Gray, & Sztipanovits, 2004). The GME (Akos Ledeczi et al., 2001) is a domain-

specific modeling tool that realizes the principles of MIC. GME provides meta-modeling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

capabilities that can be configured and adapted from meta-level specifications (represent-
ing the modeling paradigm) that describe the domain.

Meta-models in the GME can be instantiated to provide a domain-specific model-
ing language (DSML) (Neema et al., 2002) that is customized to the visual representation
and semantics appropriate for that domain. A DSML may have multiple interpreters as-
sociated with it that permit synthesis of different types of artifacts. For example, one in-
terpretation may synthesize to C++, whereas a different interpretation may synthesize to a
simulation engine or analysis tool (Neema et al., 2002). A DSML raises the level of ab-
straction to highlight the key concerns of the domain in a manner that is intuitive to a
subject matter expert or systems engineer, who may not be familiar with lower-level
technologies in the solution space (such as conventional general-purpose programming
languages, operating systems, and middleware platforms) (Neema et al., 2002).

As an example of domain-specific modeling, Figure 4 illustrates a simplified Petri
net domain as implemented in GME. The top part of the figure defines a basic meta-
model to represent Petri nets. This meta-model is described in UML (Booch, Rumbaugh,
& Jacobson, 1998) and OCL (Warmer & Kleppe, 2003) (not shown) and defines places
and transitions of a Petri net, as well as various semantic and visualization attributes.
From this meta—fnodel, a new Petri net modeling environment is generated (bootstrai:)ped
from within GME). The middle of the figure defines an instance of the meta-model that
represents a solution to the Transmembrane Region Analysis workflow (described in sec-

tion 3.5) as specified in the Petri net modeling language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PetriNetDiagram

<<ilodei>>

Eferment
<<FCO=>

Connection
=<Connection>>

Name:

Description : field

field

8.~

Place
<=HModel>>

Transition
0.7 [<<Atom>>

nTokens: field |

%8 ConnectionLimitation
@] Connectivity

&% NoSource TransitionLimitation 1 |
W PetiiNetDiagram

& Place

% TokenLimitation

& Transtion

% Transitioninput Limitation

88 TransiionOutputLimitation
5% nTokens

i

* petritet - TMPrediction - [TransmembranePredict - fTMPrediction]] i

"

thansmernbr?neP}rec

TransmembranePredict
&% TMPrediction

O

E!@
Seqg#Container s
NCBISearch
Input Data i
Start i@ NCBISearch
o ParaContainer
2 SeqiContainer
O SeqContainer {ad SeqContainer
. T Start
ParaContainer 58 TMPrad
-~
TMPred

Display o

End HelicsContainer

Generates

Figure 4. A Petri Net Domain in GME.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Meta-model

Domain Model

Artifact

40

41

GME permits model interpreters to be associated with specific domains as tool
plug-ins (Akos Ledeczi et al., 2001). A model interpreter traverses the internal structure
of a model and generates various artifacts during the interpretation. GME provides an
API for accessing the internal model structure to permit interpreters to be written in C++
or Java (High-Level Java Interface to GME -- Users Manual Version 1.0,2004). The bot-
tom of Figure 4 symbolically represents a generated artifact from the interpretation of the
workflow model; this artifact could be source code, an XML representation of the model,
or some other translation. A model interpreter is like compiler in that it generates ma-
chine code from a domain-specific model. Although the example in Figure 4 was chosen
for simplicity, GME has been used to create rich modeling environments containing

thousands of modeling components (Ledeczi, Davis, Neema, & Agrawal, 2003).

2.7 The Origin of Grid-Flow

The BioFlow system (Guan & Jamil, 2003) is the previous work of the author in
cooperation with others. Its initiation dates back to the early stages of the development of
Internet/Grid computing. With the support of Internet computing technology, BioFlow
provides a workflow platform for the development of high-level bioinformatics applica-
tions using both local and online resources. Using the Hyper Text Query Language
(HTQL) (Chen & Jamil, 2003), BioFlow can invoke Internet programs, query informa-
tion from web pages, as well as shield users from the distributed and heterogeneous de-
tails of the online resources. In addition, the BioFlow (Guan & Jamil, 2003) language re-
cords the “meta-information” of online resources and describes the flow control of ad hoc
high-level applications. From the viewpoint of Grid computing, however, BioFlow has

the following limitations:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

1. The prototype of the BioFlow GUI can only support simple workflow processes in-

stead of complex workflow patterns that arise from real-world applications (Guan &

Jamil, 2003).

2. BioFlow directly accesses web pages for submitting jobs to the Internet programs,

rather than employing web or Grid services.

3. BioFlow is not capable of tailoring itself in response to the rapid change of the Inter-

net programs (Guan & Jamil, 2003). Thus, the quality of the target Internet programs

cannot be guaranteed.

On the other hand, the architecture and the BioFlow language (Guan & Jamil,
2003) are flexible enough to accommodate the development of Grid computing technol-
ogy. Hence, the Grid-Flow system adapts and extends BioFlow’s architecture; the syntax
and grammar of the BioFlow language are reused to develop GFDL in the Grid-Flow sys-

tem. Based on the BioFlow system, the Grid-Flow system makes the following improve-

ments:

1. The Grid-Flow system provides an interface designed to be user-friendly and based
on the Petri net modeling approach; and

2. The Grid-Flow system adapts the program integration component to support web and
Grid services. The program integration component is based on WebRun (Guan et al.,
2004), which is a unified platform supporting Grid computing (Berman et al., 2003)

environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

2.8 Summary

This chapter focused on introducing two parts of key knowledge to build the
Grid-Flow system. One part is the basic concepts for the Grid-enabled workflow system,
such as concepts of the workflow management system, Grid computing, and Petri net
modeling. The other part is the surveys of scientific workflow systems, Grid workflow
systems, Grid workflow languages, and mechanisms to model processes. Starting with
the next chapter, the design and implementation details of the Grid-Flow system are pre-

sented based on the knowledge discussed in this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

3 ARCHITECTURE AND RATIONALE FOR GRID-FLOW
This section introduces the design and implementation approaches of the overall
Grid-Flow system, including descriptions of the Grid-Flow system architecture, the Grid-
Flow language, the graphical user interface, the Grid-Flow engine, the grid-enabled data
and program integration subsystem, and an illustrative workflow example that will be
used in the following chapters to demonstrate the salient features of each aspect of the

Grid-Flow system.

3.1 System Architecture

The Grid-Flow architecture (as shown in Figure 2) is adapted and extended based
on the BioFlow system architecture presented in (Guan & Jamil, 2003). This architecture
can be categorized into three layers: the Petri net-based user interface (please refer to
Chapter 5 for details), the Grid-Flow engine, and the Grid-enabled data and program in-
tegration framework. The Petri net-based user interface, implemented within a graphical
modeling environment, can help users design the workflow via a graphical editor. It can
translate the workflow specification into the Grid-Flow Description Language (GFDL)
(see Chapter 5 for details), and monitor the execution of the workflow process. The
GFDL, which conveys the specifications of workflow processes, acts as a bridge connect-
ing the Petri net models with the Grid-Flow engine. The Grid-flow engine layer is re-
sponsible for interpreting user-defined workflow process and responding to users’ moni-

toring. More importantly, it coordinates the activities and execution of user workflow us-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

ing appropriate services provided by the layer of Grid-enabled data and program integra-
tion. The data and program integration layer of the system infrastructure plays a critical
role of interconnecting distributed computing resources in the whole system. To simplify
its descriptions, the data and program integration layer can be divided into two compo-
nents. The data integration component can access various data sources with heterogene-
ous data formats and perform the transformation. The program integration component,
the other part in this layer, is based on the Internet program integration and WebRun sys-
tem (Guan et al., 2004), a unified platform that invokes remote programs via Grid com-

puting technology.

3.2 Grid-Flow Engine

The Grid-Flow engine is the key component of the Grid-Flow system. When a
workflow process is submitted by the user, the Grid-Flow engine checks the types of each
data for each of the programs. This checking is accomplished by retrieving the metadata
and provenance of the data, and matching these with the requirements of the programs.
After type checking, the Grid-Flow engine drives forward the control flow by invoking
programs through a program integration component, and feeding programs with corre-
sponding input files. The way to invoke a set of programs (that is, a sequential or concur-
rent invocation of programs) is chosen by the Grid-Flow engine based on the data and
programs interdependency among those programs. The communication between pro-
grams is based on file transfer. Each file acts as a token in the Petri net, whose arrival at
the places triggers the execution of multiple ready-to-run programs, once all precondi-
tions are met. The approach of reading and writing files acts as the inter-program com-

munication mechanism since it is easy to implement and a practical method for checking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

the data dependency. Advanced models of pipelining data between programs in Grid en-

vironments, including data streaming (McCune et al., 2004; Wu & Sussman, 2004) will

be applied to the Grid-Flow system with improvement over time enabled by ubiquitous

Grid file systems.

The Grid-Flow engine controls the scheduling and monitoring of the workflow

process execution. The implementation of the Grid-Flow engine is derived from the pre-

vious “BioFlow” system (Guan & Jamil, 2003).

The detailed inner structure of the Grid-Flow engine is depicted in Figure 5. The

engine has the following five components, mirroring the BioFlow engine structure (Guan

& Jamil, 2003):

1.

The Syntax Analyzer parses and compiles the workflow definition conveyed by

GFDL to generate executable tasks;

The Repository Interface maintains data and program information by interacting with

the Grid-Flow repository;

The Data Manager maintains application data through the Data Integration compo-

nent;

The Program Manager invokes the program tasks through the Program Integration
module, while coordinating the acquisition and organization of local and remote site

responses;

The Administrative Module is responsible for the marshalling the user applications,
execution, management of the program flow, and task allocation and the coordination
for the abovementioned components. A Grid resource broker and scheduler (Afgan,

Velusamy, & Bangalore) could be employed by this module to map the programs reg-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

isteréd in the Grid-Flow repository to the real-world Grid services, and schedule the

invocation of those Grid services via the Program Manager component.

User Interface

Syntax
Analyzer

Grid-Flow Repository

Program

Repository ¢—p Administrative ’
anager

Interface Module

Program Integration

Data Integration

Figure 5. Architecture of Grid-Flow Engine (¢f. (Guan & Jamil, 2003)).

In the Grid-Flow system, each component provides particular services to human
users, or other components. At the same time, each component uses the services provided
by the other components to fulfill its own function. Compof;ents need to communicate
with each other through well-designed interfaces. The Grid-Flow engine component fol-
lows this mechanism and coordinates the execution of tasks using appropriate services

provided by the subsystems described below.

3.3 Grid-Flow Repository

This component assists in storing the information of registered data and program,
process variables, and numerous system metadata necessary for application execution. It

also maps all data and program registration information into system tables for use by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Grid-Flow engine at run-time. The Grid-Flow data repository is implemented on a rela-
tional database management system that supports the Open Database Connectivity |
(ODBC) (Cannan & Otten, 1992) and Structured Query Language (SQL) (Cannan & Ot-
ten, 1992). Four primary system tables are maintained (as in the BioFlow system (Guan
& Jamil, 2003)):

» The System Information Table records the metadata of the Grid-Flow system, includ-
ing the execution path of the system, the location of the Grid-Flow repository, and all
kinds of configurations of Grid-Flow processes.

» The Process Status Table preserves all of the information about the current-running
Grid-Flow processes. Each running Grid-Flow process places a record in this table,
which records the identification (ID) and name of the Grid-Flow process, the status
(started, running, paused, waiting, and complete), the list of currently occupied re-
sources, and the waiting list of resources. The Grid-Flow engine is responsible for the
maintenance of this table.

* The Registered Data Table holds all of the information about registered data. This
information is collected from the registration procedure when the data are registered.
Information that is persistently stored includes data name, data type, data source, and
data access method. When the Grid-Flow process is running, some intermediate or
temporary data information may also be stored in the registered data table. The Grid-
Flow engine is charged with job cleanup of this table after the execution of each
workflow process.

* The Registered Program Table holds all of the information about a registered pro-

gram. This information is collected from the registration procedure when a program is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

registered. Stored information includes the program name, program type, program
path, and the program calling method. This information will be used when the Grid-
Flow engine invokes the programs from the WebRun platform.

The Grid-Flow process descriptions, however, are stored in the local file system
instead of the Grid-Flow repository. The process description in a file format is more port-
able than a record in the Grid-Flow repository table. Users can transfer their design of a
workflow process by copying description files from one system to another. This design
consideration facilitates the design and execution issues of a workflow process in a dis-

tributed computing environment.

3.4 Integrating Data and Computing Resources

This section introduces the data and program integration components of the Grid-

Flow system.

3.4.1 Data Integration

To handle the various formats of the different data sources, a Data Integration
component is introduced into the Grid-Flow system. Data Integration works by accessing
the data using self-describing information and then explicitly transforming the data into
the desired data format according to the requirerrient. Working with the Data Integration
component, the Grid-Flow engine can access the data without concern for issues of data
format. Thus, the Grid-Flow engine can interconnect the execution of programs by im-
plicitly transforming the data between them.

When the Grid-Flow engine wants to access data, it first searches the registration

information about that data in the Grid-Flow repository. After acquiring the required reg-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

istration information, the Grid-Flow engine provides the Data Integration component
with that registration information and its desired data format. Data Integration then re-
trieves the data with its own data engine, and subsequently transforms that data into the
desired format with the HTQL (Chen & Jamil, 2003). Data with various data types are
treated differently in the data engine. For data in the database, the data engine accesses
the data using SQL parser. For data in plain text, HTML, or XML formats, the data en-
gine accesses them through corresponding parsers. Data could come from different types
of data sources, located either locally or on remote systems. The data integration compo-
nent uses GridFTP (included in the Globus Toolkit) (The GridEF'TP Protocol and Soft-
ware) to transfer data files when needed. After retrieving data, Data Integration needs to
transform data into the destination format. The transformation approaches are discussed
in more detail in section 6.4. Finally, the Data Integration component returns the data to

the Data engine and accomplishes its data access service.

3.4.2° Program Integration

The Grid-Flow engine treats every Grid-Flow task as an executable program that
gets some data as input, processes the data, and outputs the results. Programs can be cate-
gorized into three types: internal programs, Grid-Flow programs, and OS programs. In-
ternal programs and Grid-Flow programs are executed by the Grid-Flow engine. OS pro-
grams are executed by the Program Integration component. An OS program could be a
program located on the local machine, or a distributed or parallel program located in a

“distributed environment, or an Internet program accessible only with CGI in web pages,
or even a web/Grid service that hides the software and hardware details of the implemen-

tation. Therefore, a unified platform able to cover over diverse environmental details

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

from the users is what is to be desired in order to manage various programs on distributed
and heterogeneous computing resources. The program integration component in the Grid-
Flow system is just such a unified platform. It can shield the variety of details and handle
different types of programs in different ways. For programs on the local machine or di-
rect-accessible environments (such as clusters that users can remotely log in), the pro-
gram integration component invokes them with system calls or the Secure Shell (SSH)
command executor. For CGI programs on the Internet, the program integration compo-
nent provides a systematic mechanism to register and invoke them, and transfer and
transform data for them as input and output. A detailed description of methodology for
CGI program integration is presented in Chapter 6. For programs in remote systems that
are not directly accessible, WebRun (Guan et al., 2004) is employed as a reference model
for wrapping those programs as web/Grid services. WebRun also provides different de-
ployment strategies for different types of programs. Appendix B describes the WebRun
system in more detail. In summary, the program integration component provides the

Grid-Flow system with an integral service that can handle most of the non-interactive

programs.

3.5 An Illustrative Example

The workflow described in this section will be used as an illustrative example in
the following chapters to demonstrate the methodologies and technologies that can facili-
tate users to design and execute scientific workflows with Grid-Flow. Section 8.1 pre-
sents the implementation and the execution of this workflow as a whole.

A biologist interested in bio-data analysis needs to predict the functionality of a

given protein sequence after completing the sequencing process that identifies each resi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

due of that protein sequence (Lawerence, Banes, & Azadi, 2003). The method of predic-
tion (Lawerence et al., 2003) essentially relies on several aspects of related information,
such as the functionality of similar protein sequences, the transmembrane regions of the
given sequence, and the promoter regions on the corresponding DNA sequence. The
transmembrane region identification is one of the most important steps that must be per-
formed during the work of protein functionality prediction. A protein with several poten-
tial transmembrane helices is likely an integral membrane protein that functions in trans-
port or polymerization of molecules, while proteins with no transmembrane helices are
likely cytosolic and function in synthesis of molecular building blocks (Lawerence et al.,
2003). An overview of the process design on prediction of transmembrane regions is il-
lustrated in Figure 6. In this figure, rectangular boxes represent the beginning or end of
the process, a set of document-style boxes describe the data transferred among the tasks,

and rectangular boxes with rounded corners stand for the programs that process the data.

Sequence
Number

Start "l Input Data

TMPred

Protein
Sequence

» NCBISearch '
Parameters
End Display - (TMPred
Transmembrance

Helices

Figure 6. Process of Transmembrane Regions Analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

The process operates in the following way. When a biologist plans to analyze the
transmembrane regions of the given protein sequence, he or she initializes an instance of
the workflow model for predicting transmembrane regions. This process first asks the
biologist to provide the protein sequence accession number and decide the analysis pa-
rameters of the TMPred task (TMpred - Prediction of Transmembrane Regions and Ori-
entation), which is a program that can predict the transmembrane regions against the pro-
tein sequences. The task Input Data is used to label this first step in the whole process.
After this step, there are two data values returned: Sequence Number and TMPred Pa-
rameters. In the second task, the workflow system will automatically submit the Se-
quence Number to program NCBISearch and search the protein sequence in the protein
database located on the same resource of the National Center for Biotechnology Informa-
tion (NCBI) website (NCBI Website). The program NCBISearch is an Internet CGI pro-
gram that compares a protein sequence against a large protein database distributed on a
cluster of computers. After using NCBISearch, the workflow system generates the data
Protein Sequence and then submits this sequence to the third task, TMPred. The TMPred
task uses two input data: one is the data Protein Sequence generated by NCBISearch; the
other is the data TMPred Parameters that served as input in the first task. The TMPred
task is responsible for predicting the transmembrane regions according to the input pro-
tein sequence and parameters. Once the TMPred task is executed, it predicts the possible
Transmembrane Helices and displays the result to the end-user through the task Display.
After the execution of Display task, the instance of the process goes to the end state and

its status is changed to “finish.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

3.6 Summary

The architecture of the Grid-Flow system has been presented as a whole in this
chapter based on its three-layer architecture. The following chapters discuss each sub-
components of the Grid-Flow system from differing aspects. Among the three layers, the
Grid-Flow engine layer is the only layer that has fully been investigated in this chapter
including its inner structure. The other two layers are studied in further detail in Chapter
5 (graphical user interface), Chapter 6 (data integration and matching), and Chapter 7
(prqgram integration), respectively. The “glue” between the graphical user interface layer
and the Grid-Flow engine layer, that is, the Grid-Flow Description Language (GFDL), is
examined in the next chapter as the first study of a subcomponent. The subcomponents
and their relationships comprise the horizontal integration theme of this dissertation. On
the other hand, the real-world workflow introduced in the last section of this chapter
represents the vertical integration theme. This workflow is revisited by each of the subse-
quent chapters and is partially implemented piece-by-piece based on the technology in-
troduced and discussed in those chapters. Section 8.1 summarizes the implementation of
this workflow by organizing all the pieces and presents the complete Visibn of the work-

flow design and its realization in Grid-Flow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

4 GRID-FLOW DESCRIPTION LANGUAGE

The Grid-Flow Description Language (GFDL) is a declarative workflow language
that is used to describe the data, programs, and processes in the Grid-Flow system. GFDL
supports two principal typgs of sentences: resource registration and process description.
To achieve the advantages of a declarative language that is both simple and easy to mas-
ter, GFDL was defined by features borrowed from a well-known declarative language,
the Structured Query Language (SQL) (Cannan & Otten, 1992). Resource registration
can be thought of as similar to the SQL Data Definition Language (DDL), while the
process descriptions closely resemble the SQL Data Manipulation Language (DML). For
a successful compilation of a process description, all resources and proéesses referred to
in the process description must also be deﬁnéd and compiled successfully.

As a workflow definition language, GFDL has been designed to provide three
main functions: data registration, program registration, and process description. The

grammar of GFDL is provided in Appendix A.

4.1 Data Registration

Most workflow processes involve a set of operations on various data from distrib-
uted resources. The data upon which the Grid-Flow system operates must first be regis-
tered. Registration implies recording meta-information about the data into the system re-
pository. Generally, the registration program needs to know two features of the data: the

source and the format. The source of the data informs the system where to get the data,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

while the format of the data tells the system how to use the data in a process. The follow-

ing syntax is used to register data resources:

Register Data data_name As Text | Table;
Set data_source= “data_source string”;
Set data_format= “data_format”;

Figure 7. Syntax of Data Registration in GFDL.

From the above declarative syntax, it can be observed that data could be regis-
tered as a Text file (including plain text, HTML, and XML) or a Table (as in a relational
database). The data source and format features are assigned following the data name dec-
laration. More features about the data, if needed, can be added into this template. For ex-
ample, if the data is a database record in a table, the SQL sentence querying the data from
the table can be added as a sq/ feature. The Grid-Flow engine interprets these features and
stores the corresponding meta-information into the Grid-Flow repository.

The Grid-Flow system simplifies the data registration procedure by providing us-
ers with a wizard (the interface is shown in Figure 8) to guide users’ step-by-step input of
required information. After retrieving all of the related information, the registration wiz-
ard automatically generates data-registering sentences and submits them to the Grid-Flow
engine. The Grid-Flow engine responds for processing data-registration sentences and
storing the meta-information about the data into Grid-Flow. For example, when a user
registers the data TMPredInput used in the workflow presented in section 3.5, the wizard

generates the sentences shown in Figure 9 and sends them to the Grid-Flow engine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

- Untitled - Pickup

ence ppdate by submitter
gy 5, 2002 this sequence version replaced gi:lé648654.
Locatiaon/Qualifiers
1..12218
/organism="Edwardsiella ictalpri®
/mol_type="genomic DNA"
/isolate="33-146"
/db_xref="taxon:§7780"
<1..1204
/gene="dcuC”
<1..1204
/gene="dcuC"
/codon_stare=2
/transl_table=11
/product="C4-dicarboxylate anaerckic carrier”
/protein_id="AAL25626 -an
/db_xref="GI:16648655"
PA S-S RN R Ly S TG RA T DIVEYVEVLLMSREGCDLGMM IMMECGFALA M T HIGAN
DMVWELASRPLRY IH S P I LM T AR Y FVALIM S LAV S SAT GLGVLIMATLE PVIMVIVE])
CRALAICASPALRIILAPT SEGDVVLLAXASEMPLIDFAFRITLRISTIIAIVOMRILY
EITTYAPSFYAILPFTPIIGVLVEDGRHGPHLHIISY
WY SGLEVAYRGMADAFASVIVMLLVAAGVE A f
FVITH I TGSGNAPFYAFVELIPRKLSGRMEIN
FHLGASNLGRILAPYVSGVVVEVSGMAR I SPFEVVART SWEVLVGLVVVIVAT]
EFMVPLERE
2078..2746
/insertion segq="IS1-like"
2079..2312

Figure 8. Interface of the Data Registration Wizard.

Register Data TMPredInput As Text;

Set data_source="http://www.ch.embnet.org/software/...";
Set data_format="HTML”

Set data_ddf="File:///c:\BioFlow\DDF\TMPredInput.ddf";
End;

Figure 9. Registration Sentences for Data TMPredInput.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

4.2 Program Registration

A program is also an important concept in GFDL. A program is defined to be an
atomic execution unit that cannot be subdivided in the Grid-Flow system. A task is an
instance of a program once scheduled or to be scheduled. A program could be invoked by
the Program Integration component, access some data through the Data Integration com-
ponent, and accomplish certain functions. For example, when the Program Integration
component plans to invoke “mpiblastp” (Darling, Carey, & Feng, 2003) on a remote re-
source to compare a protein sequence against a large protein database, it must retrieve the
analyzing sequence through the Data Integration component, send it to a remote resource,
call mpiblastp via the Globus Toolkit (Foster & Kesselman, 1999), and fetch the results
from the remote side after the execution.

In Grid-Flow, three types of programs can be used. One type of program is im-
plemented in the Grid-Flow system, such as basic mathematical operations (for example,
“< “>” “=") and fundamental logical operations (for example, “*”, “v”, “I’). This kind
of program is called an Internal Program. Another type of program is provided directly
by the operating system, either from local computers or from the distributed environment,
such as PAUP (Swofford, 2002) and ClustalW (ClustalW). These are called OS Pro-
grams. The third type of program is designed by users who utilize the Grid-Flow Lan-
guage to plan their processes. After the design process of data analysis with the Grid-
Flow Language, users can save their blueprints into Grid-Flow description files for future
use. A saved Grid-Flow process can be used to construct complex processes as a single

unit, and reused as a simple process definition. Such reusable programs are called Grid-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Flow Programs. Actually, Grid-Flow programs are a kind of reusable sub-process. The

syntax for registering programs is listed in Figure 10.

Register Program program_name As Internal Program | OS_Program |
Grid-Flow_Program;

Input input_parameters_list;

Output output_parameters_list;

// Program features description goes here

Figure 10. Syntax of Program Registration.

In this syntax, the program name and type must be declared followed by a list of
input and output parameters. The input parameter list defines what data should be fed into
the program when the program starts. The output parameter list defines what data should
be transferred out to the Grid-Flow system after the program ends. The remaining syntax
follows with different contents according to different types. For an Internal Program, it is
unnecessary to provide any additional information. For an OS Program, additional infor-
mation is provided about the program, such as the program’s location, operating sys-
tem(s) supporting the program, and what privileges are needed to execute the program.
For a subprocess program (that is, a Grid-Flow Program), the process description seg-
ment is added after the program definition head. All of the information about the program
will be registered into the Grid-Flow repository.

Similarly to the data registration wizard, the Grid-Flow system provides users
with a program registration wizard (shown in Figure 11) for recording program-related

meta-information. The registration wizard automatically generates program-registration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

sentences and submits them to the Grid-Flow engine. As an example, the sentences in

Figure 12 will generate a program record for the program named TMPred, which is used

in the example described in section 3.5.

Contact Information,
News, Citing BDGP

e |
Gegomic

Sequencing

Expression
Please Select Input Interfacet Pattermns

cDNAs & ESTs

Natural

Transposabie
Elements

Please Select Input Interfacel

Gene Disruption

cati
Genomics

SNPs
BDGP Resources

Berkeley Drosophila Genome |

Neural Network Promoter Prediction: In

Read Abstract

PLEASE NOTE: This server runs the 1899 NNPP versic
{March 1999) of the promoter predictor.

Enter a DNA sequence to find possible transcri
promoters

Include reverse strand? yes # no :
| Minimum promoter score (between 0 and 1) [9-3 ;

i Cutand paste your sequence(s) here: Use single-ik
{| nucleotides: {A, C, G, T). YL
| You caninclude multiple sequences if each has a FAS:

Type of organism: ¢ prokaryote & eukaryote

line starting with >

Figure 11. Interface of the Program Registration Wizard.

Register Program TMPred As OS_Program;
Input TMPredInput;
Output TMPredOutput;

End;

Set program_source="http://ardra.hpcl.cis.uab.edu:8080/webservices/...";

Figure 12. Registration Sentences for Program TMPred.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

4.3 Process Description

The major functionality of GFDL is to model all kinds of processes in the work-
flow system. A workflow process is a flexible combination of a set of activities. An activ-
ity is an atomic operation that cannot be further divided. A workflow process is responsi-
ble for organizing and scheduling activities in a workflow model, and accomplishing a
particular function. The workflow model is described as a process description, which is a
list of GFDL sentences that could be executed sequentially. Each GFDL sentence con-
tains one or more expressions. The expression is a logical connection of a set of regis-
tered programs and data. More detailed information about the general syntax of GFDL
can be found in (Guan & Jamil, 2003). Compared with the BioFlow language that it is
derived from, GFDL is equipped with more features to support program integration in
Grid environment and more abilities to describe advanced flow control structures such as
AndSplit and OrJoin.

According to the workflow models provided in (Aalst & Hee, 2002), there are
four major structures (routings) used for organizing activities. They are sequence struc-
ture, parallel structure, choice structure, and loop structure. In sequence structure, the ac-
tivities are carried out step-by-step in the order they appear. GFDL applies a program-
driven structure to facilitate the design and execution of sequence structures. In the pro-
gram-driven structure, registered programs interact with each other through their in-
put/output parameters, which means one program’s output is transferred to another pro-
gram as an input parameter. All of the programs in an expression construct a streamlining
structure with the output/input connections. For example, a set of programs with the rela-
tionships as shown in the left part of Figure 13 can be described as the expression on the

right with GFDL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

ProgA
Y
ProgB ProgC
\/ Set ProgD(ProgB(ProgA()),ProgC();

ProgD

Figure 13. Example of Sequence Structure.

In Figure 13, ProgA, ProgB, ProgC, and ProgD are all registered programs in the
Grid-Flow repository (described in section 3.3). This program-driven structure means the
output of ProgA will be transferred to ProgB as an input parameter; then the outputs of
ProgB and ProgC will be transferred to ProgD as input parameters. Consequently, the
result of ProgD will be saved in the Grid-Flow repository as the final result of this se-
quence structure. The advantage of this program-driven structure is that it arranges the
activities in a natural sequence, in which the corresponding tools are used for real work-
flow process. This makes it simple and intuitive for users to model their workflow proce-
dure with GFDL.

Sequence structure has an explicit dependency between its activities. This rela-
tionship relies not only on the input/output connection, but also reveals the execution or-
der between activities, which is, in turn, dependent on the input/output connection. If no
input/output connection exists between a set of activities, those activities can, however,
be executed in any order. A parallel structure is used to describe this unordered relation-
ship between activities. Figure 13 provides a good example for the parallel structure.

ProgB and ProgC have no input/output connection - they could be executed in any order.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

In the GFDL sentence, ProgB and ProgC are parallel and separated by a comma. The
Grid-Flow engine will analyze the sentence and arrange it to be executed logically.
Tasks in the Grid-Flow description can be organized into a nested structure as
well as an extended structure. For exami)le, the sequence of sentences in Figure 14 cap-
tures the same meaning as the single sentence in Figure 13 expresses via assignment

statements.

Set x=ProgA();
Set y=ProgB(x);
Set z=ProgC();
Set ProgD(y,z);

Figure 14. Extended Expression of Sequence Structure.

In the choice structure, one particular activity is selected out of two or more pos-
sible activities according to the running conditions set in the process. The following syn-
tax describes the choice structure.

Set expression] When expression2;

This syntax means expressionl will only be executed once if the value of expression2
is true. Otherwise, the Grid-Flow engine will skip expressionl and execute the sentences
following.

Every expression in the Grid-Flow Language returns an integer value. Similarly to
conventions often used in C-like languages, a non-zero positive value of the expression
implies true. The Grid-Flow engine controls the execution flow of the Set-When con-

struct according to the expression value of expression2. For instance, in Figure 15, if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

ProgB (ProgA()) returns true, ProgC will be executed before ProgD, otherwise only
ProgD will be executed after the execution of ProgB and ProgA. The corresponding

GFDL sentences are provided in the lower part of Figure 15.

y

Y

ProgC
N -1
ProgA ProgB »{ ProgD

A

Set ProgC{) When ProgB(ProgA());
Set ProgD();

Figure 15. Example of the Choice Structure.

The execution of activities in the loop structure also depends on the running con-
ditions set at the beginning or end of the loop. Whenever the running conditions are true,
the activities in the loop will be executed repeatedly. The different subtypes of loop struc-
ture are distinguished by position where the running conditions are defined. If the running
conditions are defined at the beginning of the loop, the workflow process first checks the
value of the conditions, and then decides whether the activities in the loop should be exe-
cuted. This kind of subtype is denoted a “begin-controlled loop.” On the other hand, if the
running conditions are defined at the end of the loop, the loop is called an “end-controlled
loop.” In end-controlled loops, the activities included in the loop will be executed at least
once, regardless of whether the running condition is true. The workflow process checks
the value of running conditions after each execution and decides whether the activities
should execute again. The GFDL supports two kinds of syntax, which conform to func-

tionalities of the two subtype loops, respectively. This syntax is described as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Set expressionl While expression2; 1

This syntax is applied to the subtype “begin-controlled loop,” which means ex-
pressionl will be executed if and only if the value of expression2 is true. When this sen-
tence is executed in the Grid-Flow engine, the value of expression2 will be first checked.
If true, the expression! could then be executed. If false, the engine will skip expressionl
and execute the following sentences.

Set expressionl Until expression2; 2)

This syntax is applied to the subtype “end-controlled loop,” which means expres-
sionl is guaranteed to execute once, and then the Grid-Flow engine will evaluate expres-

sion2 and decide whether to continue executing expressionl.

4.4 Summary

With the data/program registration templates and the flow controlling structures
provided by GFDL, a user can register all of the needed information of a workflow and
describe it via GFDL scripts in Grid-Flow. Though it is powerful and flexible on re-
cording meta-data and describing workflow processes, GFDL is not so easy to learn and
master by many classes of potential users, especially for those users who are lack of pro-
gramming experiences. Thus, a more intuitive graphical user interface, described in the

next chapter, is provided by Grid-Flow to assist users in designing scientific workflows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

5 GRAPHICAL USER INTERFACE
The User Interface component is responsible for the interaction between users and

Grid-Flow system. The four major functionalities of the User Interface component are

described as the following.

= Help the user register programs and data. Grid-Flow guides the registration proce-
dure of data and programs with different tools. To register a data source, a user first
executes PickUp (Chen & Jamil, 2003) (see Figure 8 for the interface) in order to cre-
ate a Data Description File (DDF) for the data. The DDF stores data-item-related in-
formation, such as the data item name, format, keywords, and wrapper. After saving
the DDF to the local disk, the user interface automatically generates the data registra-
tion procedures in GFDL and sends those sentences to the Grid-Flow engine. The
Grid-Flow engine compiles the procedure, executes it, and registers the data into the
Grid-Flow repository. The program registration procedure is similar to data registra-
tion excepf the user interface provides a step-by-step wizard (see Figure 11) instead
of executing the PickUp component. In the registration wizard, users need to select
the type for the registering program first. Then user interface will promote the user
with necessary information needed for registration. After users input all of the neces-
sary information, the user interface will automatically generate the corresponding

Grid-Flow registration scripts and send them to the Grid-Flow engine. The Grid-Flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

engine executes the registration scripts and registers program into the Grid-Flow re-
pository.

* Help the user design or reload the Grid-Flow process description. Grid-Flow pro-
vides users with a graphical user interface to design workflow processes. To describe
the workflow process, a user can use provided graphic components, (for example,
transitions, places, and connections) to draw a Petri net domain model (as described
in section 2.6.3). The system can automatically translate this Petri net model into
GFDL and execute the process thereafter. A user can also save the model of the proc-
ess to local disk for future modification and execution. In addition, the user interface
can help the user to reload existing Grid-Flow processes and integrate them into other
processes as subsystems.

= Help the user execute a Grid-Flow process and monitor the execution. Users can
send commands to the Grid-Flow engine through the User Interface. These com-
mands can accomplish the operations such as starting, suspending, resuming, stop-
ping a Grid-Flow process, and querying process status.

» Display the output result to the user. Grid-Flow haé already integrated several most
commonly used display functions for output data, like the integer number display,
string display, text file display, and HTML/XML document display. However, be-
cause of the variety of output data formats, Grid-Flow allows users to register their
own display functions. The User Interface can utilize both the system functions and
user-defined functions for display. Correspondingly, a user’s response input can also

be transmitted into the Grid-Flow engine through the User Interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

5.1 Petri Net Modeling

There are at least three categories of method that have been developed in the Grid
workflow research community to describe the workflow process in a Grid environment.
A Grid workflow process can be described in a scripting language (such as GridAnt
(Laszewski et al., 2004) and XCAT (S. Krishnan, Bramley, Gannon, Govindaraju, Indur-
kar et al., 2001)), in a graphical model (like Condor DAGman (Condor: The Directed
Acyclic Graph Manager, 2003) and FhRG (Fraunhofer Resource Grid)), or in a mixture
model of both (like WSFL (Leymann, 2001), BPEL4WS (T. Andrews et al., 2003), and
GSFL (Sriram Krishnan et al., 2002)). Scripting languages may be effective and efficient
for skilled users, but are not so intuitive for users who are unfamiliar with the control
logic and dataflow. On the contrary, graphical models allow even users without expertise
to describe the complex workflow process with only a few basic graph elements. That is,
users only need to know what the graph elements of the data and program components
are and how to connect them td control the executing flows. A graphical model, namely
the Petri net (Peterson, 1977), is used here to describe the Grid workflow process. Com-
pared with commonly used DAGs, the Petri net model has more powerful ability to de-
scribe various kinds of workflows, as are described in earlier chapters of this dissertation.

Although practically speaking, GFDL is powerful enough to describe most cur-
rent existing workflow processes accurately, it has a key drawback; namely, it requires
understanding and a proficient grasp of programming languages that is beyond the skill
sets of many users. To reduce the gap between required proficiency of GFDL and users’
capabilities, a graphical user interface is indispensable. Users specify a workflow process
with graphic tools that automatically translate the graphical model into the workflow de-

scription language using techniques of generative programming (Czarnecki & Eise-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

necker, 2000). Thus, a graphical model should be carefully selected to describe the work-
flow processes. It must be powerful with respect to description and comprehensible by
users of a specific domain.

A workflow process is usually described as a Petri net by intuitively mapping pro-
grams as transitions, status as places, and data as tokens. Although the concept of a Petri
net has been acknowledged to be one of the most powerful tools to describe multi-task
procedures, especially for asynchronous and concurrent tasks, the Petri net is seldom used
in practical scientific workflow systems because users are required to be equipped with
the knowledge of Petri net modeling for using it. The work described in this dissertation
employs Petri nets because it can describe data flow and control flow with a unique for-
mat. Petri nets can also construct the workflow hierarchy (that is, treat a sub-workflow as
an entity of a large, complex workflow process) easily. To build up a user-friendly in-
terface with Petri nets, the GME toolset (Akos Ledeczi et al., 2001) is used as the founda-

tion of the modeling language.

5.2 Workflow Meta-model

GME (A. Ledeczi et al., 2001) is a promising toolset that supports the easy crea-
tion of Petri net models. In the Grid workflow domain, the data and computing resources
are mapped onto grid resources, as well as the relationships are treated as the control
flows which dominate the execution of workflow process.

Three steps should be followed to model a Grid workflow process with a Petri net
model in the GME. First, a meta-model is created to characterize the basic elements of
the Petri net, such as places, transitions, connections, and tokens. Constraints and attrib-

utes of these elements are also integrated in this meta-model. The second step is to let the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

user define an application (domain-specific) model with the basic elements of a Petri net.
In an application model, a transition represents a program or computing resource. A place
represents a particular state in the process. Thus, a connection between two places and
one transition means the process transfer from one state to another state through the exe-
cution of a program. Users can compose an application model by defining a set of states
of the workflow process and choosing proper applications/programs to connect those
states to fulfill the control flow logic. The third step is to translate the application model
to the abstract (virtual) workflow language. This could be done automatically by setting
the interpreter in the GME. After the modeling process, an executing script of the Grid
workflow language is generated and transferred to workflow engine to execute.

To model the workflow process with a Petri net in GME, a meta-model (shown in
Figure 16) need to be created to describe the basic modeling components, their attributes,
relationships, constraints, and visualization preferences. In the class diagram of the meta-
model, a Petri net diagram is composed of classes representing places, transitions, and
connections (Peterson, 1977). From the viewpoint of class hierarchy, the place and tran-
sition are sub-classes of the super-class element, which has two common attributes, name
and description, to identify and describe the place and transition objects. The class place
has an attribute nTokens for recording the number of tokens stored in the place. There
exists a many-to-many association between element objects, which means any element
object, as a source (s7c), can be connected with any number (including zero) of element
objects, as destinations (dst). This association is implemented as an association class con-

nection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

iMetaGHME - Petritiel - [Petriliet - fPetriliet/]

PetriNet
PetriNetDiagram

<<Model>> -4 PeliNet

Connection
<<Cgnnection>>

% ConnectionLimitation
@ Connectivity
-1 Connector

Etement #] Description
2<FCO»> 3 f-'ﬁz Blemert
: % Inheritance

Name
& NoSource TransitionLimitation

Description ; field
Mame: field

Q.

Place Transition : _—
<<Model=> - - TokenLimitation

“<htom>> &, Transtion

& Transitioninputbimitation
@ TransitionOutput Limitation
‘& nTokens

nTokens : fieid

<<ifom»>

ersion Information
Displayed rane:

Figure 16. Meta Model of Petri Net in GME.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Since the connection relationship in a Petri net workflow model can only exist be-
tween different kinds of fundamental objects, that is, from a place to a transition or vice
versa, some constraints must be added on the connection to restrict the type of objects
that it can connect. GME provides an interface for the user to define the constraints based
on the Object Constraint Language (OCL) (Booch et al., 1998). Figure 17 shows one of
the constraints, namely ConnectionLimitation, defined in the Petri net meta-model to re-

strict the types of the connected objects of a connection.

parts(""Place")->forAll(x| x.connectedFCOs("dst")->forAll(y | y. kindName
= "Transition™))

and

parts("Transition")->forAll(x| x.connectedFCOs("dst")->forAll(y |
y.kindName = "Place"))

Figure 17. ConnectionLimitation Constraint.

This constraint defines two conditions that a connection must satisfy:

1. For any place object participated in a connection as a src, the dst object must be in the
type of transition; and

2. For any transition object participated in a connection as a src, the dst object must be
in the type of place.

This constraint is called an association constraint since it is based on an associa-
tion class connection. In addition to association constraints, GME can help users to define
constraints based on classes, operations, and attributes. For example, to restrict that a
transition object must have at least one input connection, a designer can define a class

constraint on class transition as shown in Figure 18.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

I parts("Transition")->for All(x| x.connectedFCOs("src")->size() >=1) |

Figure 18. NoSourceTransitionLimitation Constraint.

This constraint defines that for any transition object in a Petri net, the number of
objects that are connected with it as sources must be larger or equal to 1. This guarantees
that any transition object connects at least one place object as an input source. Thus, the
whole Petri net would not start with a transition, but with a place. Constraints can also
facilitate the user to manage the Petri net domain model by setting restrictions on the at-
tributes. For instance, to make sure a domain model (a workflow) does not accumulate
too many tokens (data or tasks) in one place, a user can set an attribute constraint associ-
ated with the place class as self.nTokens<=3. This constraint limits the number of tokens
stored in a place to be less than 6. If domain model violates this constraint, GME will re-
port an error to the user at the design time.

The visualization preferences for each component in the meta-model can be easily
set with the GME interface so that each building block has a unique and meaningful ex-
pression in the domain model. Following the idiom of the Petri net used in (Peterson,
1977), a circular icon and a bar is used to represent the place and transition, respectively.
Other visualization features, like the color of the icon, the location of the displaying name
of the class, the auto router preference of connections, can also be set in the preferences
tab of the attribute panel in the visualization view.

The meta-model is itself a correlated result of the Grid-Flow system. It provides

users a sound base for modeling workflow processes as Petri net domain models. No

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

other workflow management systems, to the author’s knowledge, clearly define such a
meta-model of Petri net in theory. After creating all the modeling components and the
constraints in the meta-model, users construct their own domain models by mapping

workflow processes into combinations of Petri net building blocks.

5.3 Workflow Domain Model

After meta-model designers define and register the meta-model with the local op-
erating system, the Petri net model can be used as a modeling tool in GME to describe
domain models. The GME interface used to create domain models is the same one for
building meta-models, except that the fundamental building components are different.
The basic components used for domain models are not classes, attributes, or constraints,
but rather are building blocks defined in the meta-model; that is, places and transitions.
The interface to define domain models in GME is shown in Figure 19. This interface in-
cludes three panels and one canvas. The building components of places and transitions
are displayed in the part browser panel. Users can drag the place and transition icons
from the connectivity tab and drop them on the canvas to build domain models. On the
right side of the canvas is the tree browser panel showing the tree structure of all the
components in the domain model, their inheritance relationships, and their meta-data. The
properties of each component in the canvas can be set in the attribute panel. The whole
domain model, associated with all of the property and attribute settings, can be saved in a
MultiGraph Architecture (mga) file. This file is interpretable by the interpreter of the do-
main model for generating executable scripts, which, in this case, are the GFDL sen-

tences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pot——

Seg#Container AN

o NCBISearch
input Data

o SeqContainer
ParaContainer

Start

TMPred

O

HelicsContainer

O

Display

Transition
Place

1 HelicsCortainer
%, Input Data
§, NCBISearch
ParaContainer
I SeqHContainer
Ja SeqContainer
Start

Model [Archetype]

lare

Figure 19. GME Interface for Defining Domain Models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

76

Transition icons on the canvas represent different programs that are executed in a
workflow process. Places in a domain model play two roles: one role is to store tokens
generated by the connected source transitions; the other is to indicate the current status of
a workflow process. Once a transition finishes its execution, it usually generates tokens
and sends those tokens to places that are connected with it via connections. If a token ar-
rives in a place, the arrival action to the place indicates that the workflow has finished the
execution of the previous transition and is ready for invoking the next transition.

Based on the roles played by places and transitions, users have two methodologi-
cal options for building the domain model. One option is to build the transitions first,
then consider the status and connections between and among transitions. Within this
methodology, the building procedure can be divided into two steps. First, a user needs to
analyze the programs used in the workflow process, and create representations for them
on the canvas. Then the second step is to consider the data generated from those pro-
grams, build the data containers to store them, and connect containers with corresponding
programs. For example, in the use case described in section 3.5, a workflow process uses
four programs: two Grid-Flow internal programs InputData and Display, and two OS
programs NCBISearch and TMPred. A user can draw four transition icons on the canvas
and change their names to represent these four programs respectively. The data generated
by these programs are analyzed as follows: InputData asks users to input two types of
data and sends them to two different programs. Thus, two data containers should be cre-
ated. Both NCBISearch and TMPred generate one data. One data container for each pro-
gram 1is sufficient. Display does not generate any data but present the data to the user. So

no data container is needed for Display. As shown in Figure 19, four data containers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

(places) are created and denoted Seq#Container, ParaContainer, SeqContainer, and Hel-
icsContainer. These data containers are connected with their transitions correspondingly.
Furthermore, two special places, which are used to represent the start (the start place) and
end (the end place) statuses of the workflow process, are also created. The start place is
connected with the program InputData since InputData is the first program to be exe-
cuted. It provides the initial token to InputData, and therefore triggers the whole work-
flow. The end place stores the token generated by the process and indicates the workflow
is finished.

The other method to build the domain model is to consider the sta‘éus of the work-
flow first, then to insert transitions among statues. This method can also be applied to the
example demonstrated in section 3.5. A workflow process of the example workflow
should experience the following status according to the order of execution: pre-input-
data, post-input-data, pre-NCBI-search, post-NCBI-search, pre-TMPred, post-TMPred,
pre-display, and post-display. After reconsidering the order of the execution of each pro-
gram, a user can easily find that some statuses can be combined together because they are
representing a continuous status between which the workflow process remains un-
changed. For example, post-TMPred can be combined with pre-display since no program
is executed between them. Therefore, five statuses are left after the combination step.
They are as follows: pre-input-data, pre-NCBI-search, pre-TMPred, pre-display, and
post-display. Users can then design places corresponding to these statuses, and insert
transitions among places to represent programs. Note the mapping between statuses and
places may not be a one-to-one mapping. For example, since program TMPred needs two

input data from two different programs InputData and NCBISearch, the status pre-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

TMPred should be translated into two places to denote the data arriving from different
transitions.

Both of these two methods have their own pros and cons. The first method fo-
cuses on modeling the programs. The mapping between the workflow process and the
domain model is intuitively straightforward. But the mapping is program-centric instead
of data-centric, which may not be easily accepted by some users. In addition, the start and
end statuses are treated as special cases in this method. The second method clearly de-
fines the status of each step in the workflow. The mapping in this method is not so
straightforward since in most cases users need to combine or split status to model places
in a workflow. However, the status-oriented definition matches the most popular under-
standing of workflows. Users can choose different methods to model workflow processes

according to their preferences and experiences.

5.4 Interpreter

One of the advantages of GME is that it can automatically generate GFDL based
on the Petri net models, which exempt users from the burden of writing code for work-
flow processes. The generation of GFDL from Petri net models is implemented by a
GME model interpreter. From a Petri net model, the GME interpreter first extracts the
relationships between places and transitions, and then maps the relationships into GFDL
control structures.

GME defines a high-level Java interface (High-Level Java Interface to GME --
Users Manual Version 1.0, 2004) that facilitates model designers to build interpreters for
domain models. This interface provides support for easy traversal through domain models

of the containment hierarchy, the atoms, the connections, and the references. An inter-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

preter for the domain model needs to implement the function invokeEx in the Java inter-
face as shown in Figure 20. A JBuilder object is passed as a parameter to this function for
accessing the whole hierarchy of the domain model. The hierarchy is denoted the builder
object network (BON) in which each model component, such as atoms, references, and
connections, has a corresponding builder object. When the GME user starts the inter-
preter, the BON is first created based on the components in the domain model, and then
the function invokeEx is called. Thus, the interpreter can traverse the BON, apply prede-
fined operations on builder objects and their relationships, and generate useful informa-

tion, like configuration files, database schema, and source code.

import org.isis.gme.mga.MgaFCO;
import org.isis.gme.mga.MgaFCOs;
import org.isis.gme.mga.MgaProject;

public void invokeEx(JBuilder builder, // root folder of the model
JBuilderObject focus, // model that has the focus
Collection selected, // objects that were selected
int param) // not used

/l Traverse the BON and generate GFDL

Figure 20. Java Interface for Domain Model Interpreter.

Grid-Flow has a Grid-Flow interpreter implemented based on the high-level Java
interface to translate Petri net domain models into GFDL scripts. Figure 20 shows the

Java class GridFlowInterpreter that realizes the BONComponent interface for the GFDL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

translation. The pseudocode of the method invokeEx is displayed in Figure 21. By calling
this method as an interpreter function, GME can compose the executable GFDL script for

a workflow process with tokens, places and transitions in the Petri net domain model.

METHOD invokeEx PARAMETERS builder, focus, selected and param

1. Search builder BON to find the szart place in the domain model

2. Put the Start place in the empty place set I1

3. FOR each transition in the domain model, DO

3.1 IF all the input places of a transition 7 is in the set II, THEN

3.1.1 Generate the GFDL for the transition t
3.1.2 Remove the input places of transition T from the set I1
3.1.3 Insert all the output places of transition 7 into the set I1

4, REPEAT step 3 UNTIL the End place enters into the set I1

Figure 21. Pseudocode of the Method invokeEx.

The pseudocode in Figure 21 demonstrates that the interpretation procedure starts
from the Start place, goes through each transition in the BON following the order defined
in connections, generates GFDL scripts, and stops at the End place. When applying the
interpreter to the domain model described in Figure 19, GME can generate the GFDL

script as shown in Figure 22.

Set _Seq#ContainerContent =InputData();

Set ParaContainerContent=InputData();

Set SeqContainerContent =NCBISearch(_Seq#ContainerContent);
Set HelicsContainerContent=TMPred(_ParaContainerContent,
_SeqContainerContent);

Set Display(_HelicsContainerContent);

Figure 22. GFDL Script Generated by the Interpreter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

The GFDL script for the workflow of Transmembrane Regions Analysis is gener-
ated as follows:

1. The interpreter first puts Start place in the set IT;

2. After checking all the transitions in the model, the interpreter finds that only transi-
tion InputData can be processed. So it generates the first and second GFDL sen-
tences, removes the Start place from the set I, and brings two places Seq#Container
and ParaContainer into the set IT;

3. The interpreter checks the transitions again. This time, transition NCBISearch is
ready to be processed. Therefore the interpreter generates the third line of GFDL sen-
tence. The place Seq#Container is removed from the set I and the SeqContainer is
added;

4. The transition TMPred is now the only candidate for the interpretation since all of its
input places are in the set I1. The interpreter processes this transition and generates
the fourth line of GFDL sentence. Places ParaContainer and SeqContainer are re-
moved and the place HelicsContainer is added into the set IT;

5. The transition Display is finally selected to be interpreted into the fifth line of GFDL
sentence. The End place is brought into the set I1. Thus, the interpreter procedure
stops successfully.

The implementation of the interpreter for workflow models has several draw-
backs. First, the code generated by the interpreter is not so efficient compared with the
scripts written directly by an experienced GFDL user. As shown in Figure 22, each tran-
sition in the domain model is translated into a GFDL sentence. Temporary Variableé are

automatically generated to store the intermediate results for each program in the work-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

flow. Since the Grid-Flow engine cannot distinguish the intermediate data from those
permanent data that users want to investigate after the workflow execution, it needs to
explicitly store the intermediate results and register their meta-data in the Grid-Flow re-
pository. In this case, the data between programs cannot be pipelined or streamlined. That
is, the data cannot be fed to another program for processing while it is being generated.
Workflows without data streamlining not only hinder the parallel execution of data-
dependent programs, but also waste large amounts of time and space on storing tempo-
rary data. The code generated by this interpreter implementation may diminish the effi-
ciency of the execution for some workflows that need to process large amounts of data.

Second, the interpreter cannot parse moderately complex flow control structures.
Most flow control structures, such as the sequence structure, the parallel structure, and
the choice structure, can be translated into appropriate GFDL scripts by the interpreter.
The loop structure, however, cannot be parsed by the interpreter since it contains point-
ing-back connections. For example, the End-controlléd Loop Structure in Figure 23 has a
connection pointing from the OrSplit place to the ProgA transition. According to the
logic embedded in the interpreter, the ProgA can never be parsed since its interpretation
requires the place OrSplit in the set I, while the OrSplit cannot enter into the set before
the ProgA is parsed. To bring the place OrSplit into the set I1, the transition ProgB must
be parsed. The ProgB is dependent on the ProgA, of which the interpretation requires the
place OrSplit. This dead loop cannot be solved by the interpreter. Thus, it needs the
GFDL user’s intervention.

Third, the interpreter cannot support some advanced features of the Petri net

model, which limits the positive impact of the Petri net on workflow process modeling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

&3

For instance, this interpreter does not distinguish the color of tokens in Petri net models.
Different colors of a token represent different attribute values of a data. Petri net models
usually set filters on the color of tokens as pre-conditions to prevent some tokens from
initializing a transition. This feature is especially useful for implementing the OrSplit
place. As shown in the Begin-controlled Loop Structure of Figure 23, the value of a token
generated by ProgA can determine if the workflow keeps executing the loop body
(ProgB), or jumps out the loop for the following transitions (ProgC). Since the value of
the data (the color of the token,(correspondingly) cannot be recognized by the interpreter,
the OrSplit cannot be translated into a GFDL script.

However, all of the drawbacks noted above can be overcome if the experience of
a GFDL user can be integrated into the interpreter design as routine patterns. Figure 23

shows some patterns and their corresponding flow control structures embedded in the

GFDL interpreter.

5.5 Graphical Design for Workflow Process

There are many existing approaches for modeling and analysis of processes. A
Petri net is one of those formal approaches that are based on established formalism (Aalst
& Hee, 2002). The use of Petri net has a number of major advantages. First, it guarantees
the precision of process definition. Compared with informal diagramming techniques, a
Petri net avoids any ambiguous definitions because of its precise structure limitations.
Second, the formalism of Petri nets can be used to verify logical properties and analyze

system performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

. GFDL Structrue
Petri Net Models & Sentences
' ' Sequence Structure
—_l ProgB Set ProgB(ProgA());
OJ | O
ProgA Parallel Structure
Of= —J—(S Set ProgA(),ProgB();
Anaspit | 1 T ariom et ProgA(),ProgB();
53 Prch o

Choice Structure

g Prog8
o o rog o Set ProgB() When ProgA();
ProgA

¢ .
OrSpiit P—— OrJoin Set ProgC() When !(ProgA());

i

i

l , | Begin-controlled Loop Structure
OJ ' o ProgB o Set ProgB() While ProgA();
s TR ot s2 | SetProgCO;
ProgC
| End-controlled Loop Structure
O — O — O — (O | Set ProgA() Until ProgB();
s1 o s2 09 OrSplit od s3 | Set ProgC();

Figure 23. Mapping between Petri Net Models and GFDL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

However, a Petri net has its own disadvantages. A Petri net is not so easy or intui-
tive to be grasped by users who do not have the experience on model-driven computation.
To use Petri net modeling workflow processes, a user needs to know at least the concepts
of transition, token, and place, as well as the flow controlling structures, such as OrJoin
and AndSplit. Users also need to know how to convert the workflow procedures in their
mind to the models in Petri nets. A user without any special training on Petri nets may not
be able to use Petri nets directly for workflow process modeling.

Since Petri nets are not such an intuitive tool for untrained users to model work-
flow process, a more straight-forward graphical mapping approach needs to be either de-
veloped or adopted to help users describe the workflow process in WFMS. This mapping
approach should possess the following competencies.

1) This approach should be able to represent the programs and data used in the workflow
process;

2) This approach should be able to describe the relationship between data and programs;

3) This approach should be able to model the flow controlling structures.

There is no modeling approach of which the author is aware in the current work-
flow research community that can satisfy the three requirements provided above, and
more important, be easily learned by new WEMS users. Therefore, a new graphical proc-
ess modeling approach, namely the Data/Program Chart, is designed in Grid-Flow to help
users model the workflow processes in their mind. Data/Program Chart approach is de-
signed to be a concise, intuitive, and easy to learn approach. Although the model de-
scribed with this approach cannot be directly interpreted by the Grid-Flow user interface,

the Data/Program Chart approach is still useful for communicating the workflow specifi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

cations between workflow end-users and workflow system experts. End-users can use the
Data/Program Chart approach conveying workflow processes to the workflow designer.
The workflow designer can sequentially translate those processes into Petri net models or
directly to GFDL. The Data/Program Chart approach acts as a bridge and an interface
between end-users and workflow designers, which also lowers the learning curve for end-
users to use WFMS. The following sections present more detailed information about
Data/Program Chart, its usage, and its translation into the Grid-Flow language. Thé trans-
lation between Data/Program Charts and Petri net models needs more expertise and is
mainly based on workflow designers’ improvisation. Although these two models are used
to describe workflow processes with the same flow controlling structures, there is no
formal procedure currently existing for users to follow in order to map them to each
other. This dissertation does not describe potential translation and mapping techniques; it

remains for future work.

5.5.1 Data/Program Chart

A Data/Program Chart consists of three kinds of component: data, program, and
start/end position. An oval is used to represent data; a program is shown as a rectangle;
and the start/end position is presented as a circle. Figure 24 shows the simple
Data/Program Chart corresponding to the process illustrated in section 3.5. This chart
consists of four programs (InputSN, NCBISearch, TMPred, and Display), two data (PSeq
and TMPredpar), and two start/end positions (Start and End). This network models the

process for prediction of transmembrane regions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

InputSN » NCBISearch

\

@
TMPredpar ¥
~a

TMPred

A 4
Display

Figure 24. Example Data/Program Chart: Prediction of Transmembrane Regions.

Data, program, and sfart/ end position in a data/program chart can be linked by di-
rected arcs. There are two types of arcs, described as follows: those that indicate the start-
ing and ending programs of the process, and those that present the flow of data between
data/program and program/program. The former one conveys the signals of starting and
ending the workflow process, while the latter indicates the path that data flows.

In any Data/Program Chart, there are only one start position and end position. The
start position indicates via directed arcs which programs the process should start from. A
process may start from multiple programs simultaneously, thus, the Data/Program Chart
may have multiple arcs connected from the unique start position to multiple starting pro-
grams. Similarly, a process may end upon multiple programs, thus, the Data/Program
Chart may have multiple arcs connected from ending programs to the unique ending posi-
tion. Note that the start/end position can only be connected with programs, never with
data. The start/end position can also play the role as the “accessing points” when a small
process is integrated into a large, hierarchical process. That is, the upper-level process
invokes the subprocess from the subprocess’ start position, and gets response from the

end position.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Based upon the arcs between data/program and program/program, one can deter-
mine the inputs of any programs. A data d is the input of a program p if and only if there
is a directed arc running from d to p. Similarly, an output of a program p/ is the input of a
program p2 if and only if there is a directed arc running from p/ to p2. For example, in
Figure 24, PSeq is the input data of InputSN because there is an arc from PSeq to In-
putSN. Program TMPred has two input data sources, one is data TMPredpar, the other is
the output of program NCBISearch. Note that data can only connect with a program, but
a program can be connected with either data or other programs.

A program may only fire if all of its inputs are available. When a program gets all
of its inputs, it turns into the status of “enabled.” Then the program can load its inputs,
run and generate the output. The output generated may, therefore, enable other programs
and push the progress of the process forward. The first “firing” signal is sent by the start
position. The end position responses for collecting all of the outputs generated from the

programs it connects with, and then notify the end-user of the completion of the process.

3.5.2 Mapping Process onto Data/Program Chart

A process is used to indicate in which way a particular category of applications
should be handled in a workflow management system. The process contains all of the in-
formation about the application, such as which programs should be carried out, in which
order the programs should be performed, and what data need to be used in the applica-
tion. It therefore is obvious to define a process using a Data/Program Chart. Each process
has one entrance and one exit, which can be exactly mapped to the start/end position of a
Data/Program Chart, respectively. The data and conditions in the process can be mapped

to data in the Data/Program Chart. Similarly, the tools and programs used in a process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

can be mapped to programs in the Data/Program Chart. The order in which the programs
should be performed can be expressed as arcs in Data/Program Chart.

The procedure for mapping process onto the Data/Program Chart is intuitive for
the end-user. A procedure with three steps can be followed. In the first step, users need to
plan what data and programs should be involved in the process. After collecting all of
these components of a process, users can draw corresponding ovals and rectangles of a
Data/Program Chart on the paper. The second step is to connect data and programs using
arcs. Data should be connected with corresponding programs, as well as programs having
input/output streamlining relationships should be connected. Users can also describe the
executing order with some patterns provided in Figure 25. The patterns are introduced in
detail in the following paragraphs. The third step is to indicate the entrance and exit of
the process, that is, a user should draw the start/end position and connect them with
proper starting and ending programs.

Since the relation between data and programs is relatively simple in contrast with
the relation among programs, all of the related data in the pattern are omitted and the fol-
lowing focuses on the arcs between programs. Pattern (a) in Figure 25 represents the se-
quential execution of three programs: A, B, and C. This Jpattem is the most commonly
used pattern in streamlining data analysis. It means the output of A is fed to B, and the
output of B is treated as one of the inputs of C. Consequently, A is executed prior to B,
and B is executed prior to C. Pattern (b) is generally called parallel and-split. It means
that the output of A should be feed to B and C, thus, B and C can be executed in parallel
after the execution of A. Pattern (c) and (d) are both selective routings. Program A de-

cides which branch should be selected according to particular conditions, and then B or C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

is executed following the branch. Program A is regarded as or-split since the two
branches from it are selected alternatively. Note that the difference between “or-split”
and “and-split” is the two arcs of “or-split” start from different sides of the rectangle A,
while arcs of “and-split” start from the same side of the rectangle. Patterns (e) and (f) are
both iterative routings. The difference between them is the location of the program that
makes the choices. In pattern (e), program B evaluates the conditions and decides to ei-
ther repeatedly execute A, or transit to C. Program A in pattern (f) plays the same role

except it first checks the condition, and then goes into the iteration.

A
A
! A
B A 4
4\ ;
v B C
C Y
» C
(a) ® ©
A A [A e
y y y A 4
B C B B
A 4 \ 4
» D C C
(d © ®

Figure 25. Data/Program Chart Patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

5.5.3 Translating Data/Program Chart into GFDL

The Data/Program Chart is meaningless to a computer, though it is helpful for us-
ers to describe the process. Thus, one needs to translate a Data/Program Chart into a lan-
guage that computers can understand, compile, and execute. In Grid-Flow, the simple
Data/Program Chart can be directly translated into GFDL without going though the Petri
net modeling step. Complex Data/Program Charts may need the help of Petri net model-
ing to translate the embedded workflow definitions into GFDL indirectly.

The translation between Data/Program Chart and GFDL could be performed by
workflow designers. The translation process starts from the start position in the chart, fol-
lows the direction of the arcs through the network, and finishes at the end position. Dur-
ing the translation, data are translated as parameters of the programs which are connected
with corresponding arcs. Programs in the Data/Program Chart are translated into executa-
ble programs in GFDL. Streamline programs connected with arcs in Data/Program Chart
are translated into a sentence with cascading programs in GFDL. Patterns in Figure 25
will be translated into the sentences and structures in GFDL (as shown in Figure 26), re-
spectively. Note that x, y are both temporary variables. NULL means an initial empty

value for the variables.

5.6 Summary

Two workflow modeling approaches have been introduced in this chapter; they
are the Petri net modeling approach and the Data/Program Chart. Petri net modeling is a
formal defined mechanism that has a sound theoretical foundation and strict modeling
procedures (from a Petri net meta-model, to workflow domain models, then to GFDL

scripts translated by the Grid-Flow interpreter.) The Data/Program Chart method, how-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

ever, is not so profound from a theoretical perspective but proves agile because of its
component structure and because it is easy to learn for relatively unsophisticated users.
After modeling the workflow and translating it into GFDL scripts, a WEMS need to
check the availability of data and programs, and a schedule for execution of programs to
process data is also required. The data and program integration componénts are crucial
for a WFMS on the aspects of accessing heterogeneous data and orchestrating distributed

programs. The next two chapters discuss the data and program integration components in

Grid-Flow.

(a) Set C(B(A(...)));
(b) Set x=A(...);
Set B(x);
Set C(x);
() Set C(B(x)) When x=A(...);
Set C(x) When .NOT. x;
(d Set D(B(x)) When x=A(...);
Set D(C(x)) When .NOT. x;
(e) Set x=NULL;
Set y=A(x, ...) Until x=B(y);
Set C(x);
® Set x=NULL,;
Set y=NULL,;
Set y=B(x) While x=A(y, ...);
Set C(x);

Figure 26. Translated Data/Program Chart Patterns in GFDL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

6 ONLINE RESOURCES REGISTRATION

Large-scale scientific researchers request, intuitively, the integration of vast
amounts of online diverse data, the cooperatibn among ever changing and sophisticated
analysis tools, as well as the collaboration between physically distributed investigators
and organizations. With the development Qf enabling workflow management techniques,
workflow researchers now urgently need a system that can be used to model the distrib-
uted and hetero geneous online resources as one unique-form source, and to design work-
flow process using online tools without taking too much concern about the underlying
details of data transformation. To address the integrated data analysis issue presented in
current workflow research, a powerful mechanism is needed to unite the online data and
programs together. The development of Internet and distributed computing in recent
years catches up with the rapid-evolving requirements of current workflow research.
More workflow systems have been developed to employ web data and web services with
limited success to address the issue of integration and automation. Since bioinformatics is
a major application area of contemporary scientific workflow systems, bioinformatics
workflow systems and processes will be used as the major research objects in the rest of
this chapter.

Some data integration and mediation systems have already been developed to fa-
cilitate the knowledge sharing among biological data sources and experience exploitation

among biologists. One of these systems in this direction is Transparent Access to Multi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

ple Bioinformatics Information Sources project (TAMBIS) (Goble et al., 2001). This sys-
tem applies domain ontology for molecular biology and bioinformatics on the retrieval-
based information integration system for biologists. Most of these projects focus on ac-
cessing and integrating data from remote sites based on some kind of ontology of the
data. Currently, these systems face two major deficiencies.

First, integrating any remote data needs to register complex information and
manually tune the system, both of which need domain-specific knowledge related to data
integration. According to the OIL system described in (Stevens, Goble, Horrocks, &
Bechhofer, 2002), three aspects of information (that is, metadata, terminologies, and on-
tology) are required to make an understanding of the data between machines and biolo-
gists. To the author’s knowledge, not too much, if any, biological resources on the Inter-
net provide all of these three kinds of information until now. Due to the large amount of
data used in biological analysis, one cannot expect the biologists to provide ontology in-
formation about the data they utilized, not to mention the arbitrary information sources on
the Internet. It is the author’s contention that ad hoc querying involving arbitrary sets of
resources is almost impossible using current technologies. Yet, a compact, declarative,
but powerful resource registration schema is needed for resource integration.

Second, most of these systems focus only on data integration. The integration of
remote programs and online analysis tools is not emphasized. To use the tools on a re-
mote site, these systems force the code migration, instead of data migration, from remote
site to local. In (Chen & Jamil, 2003), Chen et al. argued that in most cases the code mi-
gration is expensive, if not impossible. A few projects try to apply ontology and semantic

web technologies, which is successful for data integration, onto the issue of program in-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

tegration with limited success. Obviously the ontology for data integration is dramatically
different with the ontology for data/program interaction. For data integration, ontology
information is used to reconcile the difference among heterogeneous data sources and
build up a universal view of the data. But, for data and program interaction, ontology ex-
tracted from the data is used to cater to the ontology of the program and submit the data
to the program. This difference makes it necessary to build up a sophisticated matching
mechanism for online resource integration.

This chapter focuses on aspects of online resource registration and online
data/program integration in Grid-Flow. A compact and powerful mechanism to handle
the heterogeneity of online resources is presented with its application on an illustrative
example. This mechanism not only facilitates the design and execution of processes on

data analysis, but also strengthens the extensibility and usability of the system.

6.1 Related Work

Modern scientific workflow systems need to support ad hoc integration of arbi-
trary distributed and heterogeneous data sources and online programs. An object-based
information exchange model is defined in (Papakonstantinou, Garcia-Molina, & Widom,
1995) to handle the integration of diverse information sources. This model uses a laconic
expression to represent an bbj ect in the resources, which motivates compact design of-
fered here of the data item description in the Data Description File. Several data integra-
tion projects using ontology information have developed resource description languages
to specify the resources used in data integration and analysis, such as OIL (Stevens et al.,

2002) and Context Specification Language (CSL) (Gupta, Ludascher, & Martone, 2002).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Recently, workflow technology has been exploited into biological processes to
support the heterogeneous and distributed environment. IntelliGEN (Kochut et al., 2002)
is developed to map protein-protein interactions of fungi for a large genomic project.
While the Remote User Defined Function (RUDF) in (Chen & Jamil, 2003) exploits the
advantages of Internet Functions and HTQL in order to provide the local database a
unique calling mechanism for both local programs and programs on the remote sites.
However, a substantial amount of coding is still needed in such systems to cope with
change, especially when new resources need to be incorporated into the system.

A research prototype studied in (Cardoso & Sheth, 2003) addresses two problems
about program integration. One is how to efficiently discover a web service. The other is
how to facilitate the interoperability of heterogeneous web services. This workflow proto-
type employs semantic web and ontology technology to handle the heterogeneity of web
services. These technologies facilitate the automation of web service integration. How-
ever, the ontology of web services cannot be generated automatically, which damages the
autonomy of the whole workflow system. The offered matching mechanism is enlight-
ened by the matching evaluation function for service template and service object de-

scribed in (Cardoso & Sheth, 2003).

6.2 Registration of Data/Program

This section begins to present a brief discussion of the online data and program
integration in Grid-Flow. Data and program registration is introduced first.

The major purpose for registration of data/program is to record necessary infor-
mation of the data/program used in workflow processes. Data and program registration

usually involves the recording of three related structures: Data Record (DR), Program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Record (PR), and Data Description File (DDF). In this section, each of these structures is

formally described.

6.2.1 Data Record

DR is used to store fundamental meta-information of the data used in the work-

flow process. A DR is formally defined as a five tuple, which is shown in Figure 27.

[DR(d) =<ID, Label, Type, Source, DDF>

Figure 27. DR Definition.

Where ID, Label, Type, Source, and DDF are the identification number, name,
data format, location, and data description file of the data record d, respectively. The ID
is a token for the data which is unique in the universal Grid-Flow system. In denoting a
DR in this dissertation, /D will often be dropped (that is, one writes <Label, Type, Source,
DDF> instead) since /D field is automatically generated by Grid-Flow. The Label field is
the name of data; note it need not to be unique in the system. Type field indicates the
format of the data, such as a relational database table (TABLE), a HTML file (HTML), or
a plain text file (ZX7). The Source field is mainly concerned about where to get the data.
If the Type of the data is TABLE, the Source stores the connection method of the corre-
sponding database and the table name. If the Type of the data is a structured or semi/un-
structured file, the Source field is a Uniform Resource Locator (URL) (Naming and Ad-
dressing: URIs, URLs, ...) address of the data. The DDF field stores a link to the corre-

sponding Data Description File of the data, which is described in section 6.2.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

For instance, in the illustrative workflow (described in section 3.5) “prediction of
transmembrane regions,” the task TMPred is an Internet Program, which has a webpage
interface (shown in Figure 30) where one can set the parameters and submit the sequence.

This webpage is data in the process definition and has the DR as shown in Figure 28.

DR(TMPredInput) = <"TMPredInput", "HTML",
"http://www.ch.embnet.org/software/TMPRED_form.html",
"File:///c:\BioFlow\ADDF\TMPredInput.ddf">

Figure 28. DR for Data TMPredInput.

6.2.2 Program Record

PR is a structure that records the related ad hoc information of a program. A PR is

specified as shown in Figure 29.

’ PR(p) = <ID, Label, Type, Source, InputSet, OutputSet> J

Figure 29. PR Definition.

The fields ID, Label, Type, and Source have similar meanings for program p as
described above for DR. The fields InputSet and OutputSet are two sets of DRs, which
respectively describe the input data record set and output data record set for the program
p. For instance, let one assume to have already defined the output data record for the
Internet program TMPred, which is TransHelix. Then, one can define the PR of program

TMPred as shown in Figure 31.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

¢ THMpred Server - Mozilla Firefox

@ Firefox Help & Firefox Support Bl Plu

The TMpred program makes a prediction of membrane-spanning regions and their
orientation. The algorithm is based on the statistical analysis of TMbase, a database
of naturally occuring transmembrane proteins. The prediction is made using a
combination of several weight-matrices for scoring.

K. Hofmann & W. Stoffel {1993)
TMbase - A database of membrane spanning proteins segments
Biol. Chem. Hoppe-Seyler 374,166

For further information see the TMbase and TMpredict documentation.

Usage: Paste your sequence in one of the supported formats inte the sequence
field below

and press the "Run TMpred" button.

Mzke sure that the format button {next to the sequence field) shows the
correct format

Choose the minimal and maximal length of the hydrophic part of the
transmembrane helix

vp,g_}tw L
,,9equen'c:e| Plain Text
L
SQuery
seguence:
oriDor
AL or Gl
t (see
above for
. wvalid
“formats) .

Figure 30. Input Web Interface for TMPred (TMpred - Prediction of Transmembrane Re-
gions and Orientation).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

PR(TMPred) = <"TMPred", "OS_Program",
"http://www.ch.embnet.org/cgi-bin/TMPRED_form_parser", "TMPredIn-

put", "TransHelix">

Figure 31. PR for Program‘TMPred.

6.2.3 Data Description File

In Grid-Flow, data item is defined as the meaningful segment of data which is op-
erable by the Grid-Flow language. For example, in a webpage about protein sequence, the
locus, definition, features and sequence of the protein are all data items. It is actually the
data items, not the data, which can be extracted, transferred, transformed, and operated in
a workflow process. One data could contain more than one data item. Thus, the registra-
tion information of data is not enough for one to understand the details of the data items
contained in the data. So the DDF was designed to describe the inner details of the regis-
tered data. A Data Description File is composed with a set of data item records (DIRs).

DIR is a four tuple with the format shown in Figure 32.

] DIR(i) = <Name, Format, Keywords, Access>

Figure 32. DIR Definition.

In the DDF of one certain data, each data item has a unique Name to identify itself

from the other data items. The Format depicts the format of the value of the data item. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Grid-Flow, the formats of data for bioinformatics research are grouped into three primary
categories, which are Basic type, Sequence type, and Tree type, as shown in Figure 33.
Each primary category can be subdivided into several sub categories, for instance, Basic -
type can be refined as String type, Number type, Date type, and Boolean type. In this hi-
erarchical format system, subdividable types are denoted conceptual types. Contrarily,
types without any sub-types are called primitive types. The Format value of a data item
must be one primitive type in the hierarchy because any data item has only one prede-
fined format in a real-world data source definition. The advantages of this hierarchical

structure are demonstrated in section 6.3.

Data Format

GeneBank | | FASTA| -+ -+ |PHYLIP | | |PAUP| | MacClade | - -

1 1
3
l String | [Number I I Date | Boolean

O.N

| Integer I l Real I

Figure 33. Hierarchy of Format Categories for Bioinformatics Workflows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

The field Keywords is a set of words that are used to give a description of the data
item. The Keywords field plays a great role during the matching of the output and input
data items, which will be explained in section 6.3. Access field depicts the access method
of the data item. The content of Access field varies according to the different data
sources. For a data item in a relational database, Access field stores a SQL sentence
which could generate the data item as the query result, while the Access field of a data
item in a semi/un-structured file would be a wrapper that can extract or access that corre-
sponding data item. In Grid-Flow, the semi-structured data, which is specialized as
HTML files, can be categorized into two types according to various services they can
provide. One kind of semi-structured data can only provide information, but not accept
information, such as most common web pages with textual content. The other kind of
semi-structured data, such as the interfaces of Internet analysis tools, can not only pro-
vide information, but also accept information from the end-users or other programs.
These two kinds of data are called information-based and query-based semi-structured
data, respectively. Wrappers stored in the Access field have different formats for these
two kinds of semi-structured data. The wrapper for a data item in an information-based
webpage is a HTQL (Chen & Jamil, 2003) sentence, which is used to extract the data
from the webpage. The wrapper for a data item in a query-based webpage is the name of
that data item in the query form, which is used to construct the query when the Internet
program is called.

Figure 34 shows part of the DDF (whose name is TMPredInput.ddf) of the data
TMPredInput (the interface webpage is shown in Figure 30). Note this part of the DDF

describes those input boxes of the query form in the interface webpage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

<QutputFormat, String, “output, format”, outmode>
<Minimum, Integer, “minimum, length, helix”, min>
<Maximum, Integer, “maximum, length, helix”, max>

......

<QuerySeq, Sequence.plain, “query, protein, sequence”, Seq>

Figure 34. Part of the DDF for TMPredInput.

Since the data item is the meaningful segment of the data, it can have its own hi-
erarchical structure. For example, a user can define a publication of a certain protein se-
quence as a data item publication. Meanwhile, the user can also define the author, title,
and journal name of that publication as three different data items: author, title, and jour-
nal, respectively. Thus, data item publication is composed of three small data items. This
hierarchical structure cannot be presented in the DDF, since the DDF is only an unor-
dered set of DIRs without any expression ability for the relationships between DIRs.
However, it will be proved in the next section that this deficiency does not harm the roles
that the DDF plays in the streamlining analysis.

The next issue about DDF is how to generate it. To generate a DDF, the Grid-
Flow users need to provide accurate information for each data item in the data. This in-
formation includes the name, format, keywords of the data item and the wrapper to access
the data item. Grid-Flow provides users an integrated environment to generate the DDF
of the data with limited interaction between user and the data. To generate a DIR with
this integrated environment, a user first generates the wrapper of that data item with a

semi-automatic tool, PickUp (Chen & Jamil, 2003), then the user need to input name,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

keywords of that data item, and finally select the data format for that data item. The inter-

face of software PickUp (Chen & Jamil, 2003) is shown in Figure 35. -

6.3 Matching Output and Input

The streamlining analysis of biological data is carried out by a key operation: the
matching function. Suppose Grid-Flow needs to call the ongoing program P and feed P
with a set of data {OD,, OD;, ..., OD,} which have the corresponding DDFs: O, O, ...,
O,. The program P has a set of predefined input data set {ID,, ID,, ..., ID,,} which have
the corresponding DDFs: 1}, I, ..., I,,. Grid-Flow first takes the union of all of the DDFs
0;, 0;, ..., O, together and names it as DDF O. All of the DIRs in DDF O are called out-
put DIRs. Similarly Grid-Flow takes the union of DDFs I}, I, ..., I,, together and names it
as DDF 1. Thus, all of the DIRs in DDF [are called input DIRs. The matching function is
dedicated to find correspondences between an output DIR O and an input DIR 1.

During the matching phase, the matching function is employed to match any out-
put DIR against any input DIR and rank the output-input DIRs pair according to the simi-
larity and compatibility. All of the output-input DIRs pairs are finally sorted according to
their ranks. The user can select the best matched output-input DIRs pairs as the match
result, or manually solve the output-input differences that are not solved by the Grid-
Flow system. A matching mechanism is implemented in Grid-Flow to realize the above
function. Given a set of output DIRs and a set of input DIRs, this mechanism examines
the DIRs and tries to find similarities and compatibilities between any output-input DIRs
pair. This is done by using syntactic information matching and data transformation
evaluation. The syntactic matching is based on DIR's Keywords field, and the transforma-

tion evaluation is based on DIR's Format field.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

TMpred - Prediction of Transmembrane
and Orientation ‘

<TABLESD <TABLE>1 <TR-1 <DN>2 <HE1 The TMpred program makes a pradiction of mer'nb.rane-spanrjing region
TABLE®Z <TR=1 <TABLE1 <DN>2 <HS1 orientation. The algorithm is based on the statistical analysis of TMbas
<TABLE»2 <TR»1.<TABLE>1.<TR>1.<H552 of naturally occuring transmembrane proteins. The prediction is made
<TABLE>2 <TABLE>1.<TR>1.<TD»2.<H5%1 combination of several weight-matrices for scoring.
<TR>3.<TABLE>1.<TR>1 <DIV»Z <H5>1
<TABLE=2 <TABLE>1.<TR>1.<TD>2.«DV>1.<H{ K. Hofmann & W. Stoffel {1993)

TMbase - A database of membrane spanning proteins segments

Biol. Chem. Hoppe-Seyler 374,166

For further information see the TMbase and TMpredict documentation.

<H5><SELECT size=1 name=putmode> <QFTION value=ht e
Usage: Paste your sequence in one of the supported formats int

field below

and press the "Run TMpred" button.

Make sure that the format button {naxt to the sequence field} sl
correct format

Choose the minimal and maximal length of the hydrophic part of t
transmembrane helix

g Gutput format| html

Figure 35. Interface of PickUp (Chen & Jamil, 2003).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

The similarity and compatibility of an output DIR (o) and an input DIR (i) is cal-
culated with the function Match(o,i) presented as Equation 1. The similarity and com-
patibility computation relies on functions Transform(o.Format, i.Format) and Key-
Match(o.Keywords, i.Keywords), and the weights ®; and w,. Function Trans-
form(o.Format, i.Format) evaluates the compatibility between the output data item and
input data item. Function KeyMatch(o.Keywords, i.Keywords) takes into account the
functional similarities between the output data item and input data item. Both of these
two functions return a real value between 0 and 1, for the sake of comparison based on
the same scale. The weights ®; and @, are real values between 0 and 1. They indicate the
ratio of importance that the designer considers for the data format transformation and the

functionality match. The sum of the weights should be 1 to keep a reasonable ratio.

Match(o,i) = o, x Transform(o.Format,i.Format)

+ w, x KeyMatch(o.Keywords,i.Keywords)

Equation 1. Matching Function.

Function Transform(o.Format, i.Format) evaluates the compatibility between the
formats of output data item and input data item according to the length of the path in the
format category tree (Figure 33). The length of the branch in the format category tree in-
dicates the cost of transformation from one data type on one end of the branch to the
other data type on the other end of the branch. For example, in Figure 33, the length of
path from integer to real is 1 (0.5+0.5), which means the transformation between them is

easy. On the contrary, the length of path between Sequence. PHYLIP and real is 22.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

(1+10+10+1+0.5), which means the cost of transformation is so high that makes it hardly
possible. Equation 2 is applied in order to calculate function Transform(f;, f2). This equa-
tion returns a value between 0 and 1; the larger the return value, the more compatible

these two formats.

_ Length(f,, 1)

T S2) =1
ransform(f,, f,) MaxLen(Tree)

Equation 2. Transform Function.

In Equation 2, Length(f1,f>) returns the length of the path between format type f;
and f>, and MaxLen(Tree) returns the length of the longest path in the format category
tree.

Function KeyMatch(o.Keywords, i.Keywords) depicts the functional similarity be-
tween the Keywords fields of the two data items. Since the Keywords field is a set of
keywords, one uses string-matching as a way to calculate how closely these two data
items resemble each other. To achieve a better comparison between two Keywords fields,
the keywords are preprocessed. The preprocessing includes removing prefixes and suf-
fixes of the keywords, and equalizing the synonyms. For instance, after removing suf-
fixes, “analysis” matches to “analyze.” Similarly, “phylogeny” matches to “tree of life”
since they have the same meaning. Suppose those two Keywords fields k;, k; contain kn;
and kn;, keywords, respectively, Equation 3 can be used to calculate the function Key-

Match(ky, k).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

StringMatch(k,,k,)

KeyMatch(k, ,k,) =
yMatch(k, k) Min(kn, kn,)

Equation 3. KeyMatch Function.

In Equation 3, StringMatch(k,,k;) calculates the number of string match and
Min(kn;,kn,) returns the minimum number between kn; and kn,.

The equation makes sure the return value is between 0 and 1. The higher value of
this equation indicates the compared two data items are more similar.

From the analysis above, one can see if two data items match well, the return
value of Transform(o.Format, i.Format) and KeyMatch(o.Keywords, i.Keywords) must
be high. Thus, the value of Match(o,i) must be high. The perfect match generates high
evaluation value. On the other hand, if March(o,i) returns a high value, it means either
Transform(o.Format, i.Format) or KeyMatch(o.Keywords, i.Keywords) or both of them
return high values. This means the functionalities of the compared two data items are
similar or the data formats are compatible. Both are prerequisites of the perfect matches.
So, one can draw the conclusion that the function Match(o,i) is an effective evaluation
function for data and program matching.

Figure 36 is a data/program matching example corresponding to the examples
presented in section 3.5. In this example, the hexagons represent registered programs,
while the rectangles indicate the DDF of each data source. Suppose that the execution of
program NCBISearch has finished and the execution of next program TMPred is to begin.
Before the program TMPred is called, Grid-Flow must satisfy the input requirements of

TMPred with two data: “Protein Sequence” and “TMPred Parameters.” “Protein Se-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

quence” is generated by NCBISearch and contains the protein sequence that needs to be
analyzed. “TMPred Parameters” is provided by the user and contains the necessary pro-
gram parameters for TMPred. So the best matches should be matching “Origin” in “Pro-
tein Sequence” to “QuerySequence” in “TMPredInput.” Meanwhile, “Minimum” and
“Maximum” in “TMPred Parameters” should be matched to “Minimum” and “Maximum”

in “TMPredInput” respectively.

Protein Search Locus
| Definition Minimum
: = NCBISearch =
Accession Input | \ /) | Maximum
Number Origin e I TRV
Helices OutputFormat
correspondences Minimum -*
topology = TMPred = Maximum -
QueryTitle
InputFormat
QuerySequence

Figure 36. Matching Data for Predication of Transmembrane Regions.

The matching step is the next thing to be accomplished, just before the program
TMPred can be invoked by the Grid-Flow engine. First, Grid-Flow need to combine
those two DDFs together for the output data “Protein Sequence” and “TMPred Parame-
ters,” since more than one output data is obtained and there is a desire to match these data
to one input data “TMPredInput.” To match the output-input pairs, Grid-Flow can calcu-

late the Match(o,i) value for each output-input data item pair (0,7) and sort them accord-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

ing to this value. Table 1 shows the matching results under the parameter w;=0.2 and

0)220.8.

Table 1. Matching results for TMPred.

Output DIR Input DIR Match(o,i)
Origin QuerySequence 1.0
Minimum Minimum 1.0
Maximum Maximum 1.0
Locus QuerySequence 0.54

From the results, one can safely select the first three output-input data item pairs

as the perfect matches. Thus, the input requirements of TMPred can be satisfied and the

whole workflow can progress.

6.4 Data Transformation

Grid-Flow makes a best effort to alleviate the burden of data format transforma-
tion by providing a group of automatic transformation programs. The data formats used
in bioinformatics workflows are shown in Figure 33. Within any major format category,
most of the sub-types can be automatically transformed into other sub-types by using
some Grid-Flow internal program. For example, in the major category Basic, Grid-Flow
provides’pro grams StrTolnt(), IntToStr(), and StrToDate() to carry out the automatic
transformation from String to Integer, from Integer to String, and from String to Date,
respectively. In the major category Sequence, Grid-Flow employs a tool named Readseq
(Readseq: Read and reformat biosequences) to handle the data transformation issue. With

the help of these programs and tools, most of the data transformation can be handled by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

Grid-Flow without users’ interference. This feature, accompanied with the output/input
matching mechanism, greatly reduces the labor of designing and executing bioinformat-

ics workflows with Grid-Flow.

6.5 Summary

In this chapter, the Grid-Flow system was investigated regarding the aspects of
online resource registration and online data/program integration. A methodology for re-
cording and representing data/program meta-data in Grid-Flow was presented, accompa-
nied with the output/input data matching mechanism. The data matching mechanism is an
important enabling capability for st;eamlining the data processes with incompatible pro-
gram input/output interfaces. With the development of web and Grid computing tech-
nologies, more web ser;/ers provide their data and computing resources in the format of
web/Grid services. Compared with online programs, web/Grid services provide users a
unique, stable, secure, and program accessible way to access remote resources. Then next
chapter will examine the benefits of using web/Grid services and Grid-Flow’s ability to

utilize web/Grid services for scientific workflows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

7 GRID-SERVICE-BASED PROGRAM DEPLOYMENT

The online resource registration and online data/program integration discussed in
Chapter 6 enable Grid-Flow to utilize physically distributed tools for heterogeneous data
analyses through a web-based accessing interface. The online data and programs, how-
ever, only account for part of the resources that are scheduled by Grid-Flow for running
real world workflow applications. Grid-Flow also needs to integrate large amounts of
data and programs which lack a web-based interface for public access. These data and
programs could locate in the local computer as well as in local and/or wide area net-
works. Choosing ways to effectively integrate these distributed resources is an active re-
search topic in the workflow community.

In this chapter, programs invoked by Grid-Flow are first categorized according to
their location and user interface. Then methods to access these programs are provided for
each category. The benefits of using Grid services for remote non-interactive programs in
scientific workflow systems are discussed, followed by a demonstrative example of
wrapping a popular bioinformatics application BLAST (Altschul, Gish, Miller, Myers, &

Lipman, 1990) into a Grid service, and integrating this Grid service as a transition in

Grid-Flow.

7.1 Categories of OS Programs in Grid-Flow

As described in section 3.4.2, all the external programs invoked by Grid-Flow are

denoted OS programs, as opposed to the internal programs and Grid-Flow programs that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

are directly executed by the Grid-Flow engine. The program integration component in
Grid-Flow is responsible for integrating these external programs and providing the Grid-
Flow engine a unified platform to invoke them. In this section, the external programs are
first categorized into four classes. Then different invoking strategies used to call pro-
grams in different classes are discussed in detail.

The external programs invoked by Grid-Flow could be categorized according to
their location and the type of their user interface. For the criteria of program location,
programs could be classified as ‘local’ programs and ‘remote’ programs. Here local pro-
grams are defined as programs that are located in the same operating system with Grid-

. Flow and can be invoked via system calls. Remote programs, as opposed to local pro-
grams, are programs that are located out of the scope of the operating system where Grid-
Flow resides. Usually, the programs that are in local operating system but cannot be in-
voked by system calls are not considered since Grid-Flow cannot utilize them in any way.
Similarly, programs cannot be invoked via system calls if they are not in the local operat-
ing system. Thus Grid-Flow is safe to distinguish the local and remote programs by esti-
mating whether the program can be invoked with system calls. For user interface, a pro-
gram could be interactive, which means user inputs are required during the program’s
execution, or non-interactive, which means users should set all the parameters when in-
voking the program and the program does not need any further inputs during its execu-
tion. As shown in Figure 37, with the two criteria of location and user interface, programs
used in WFMS can be categorized into four classes: local interactive, local non-

interactive, remote interactive, and remote non-interactive programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

Location .
a Rem
User Interface Local emote
Interactive Local interactive Remote Interactive
Non-interactive Local non—interactive Remote non-interactive

Figure 37. Categories of Programs in WFMS.

Local programs can be handled easily by most of the current WFMSs with system
calls. The operating system where the WFMS is based on provides abundant system calls
for local program invocation and process management. Correspondingly, most of the
programming languages provide interfaces for applications to perform system calls in
order to utilize local programs. Grid-Flow, similar to all the other scientific WFMSs, uses
the interface provided by the programming language to invoke local programs. Particu-
larly, since Microsoft Visual Basic is used to implement the Grid-Flow engine, Grid-
Flow uses Visual Basic system calls (Shell Function (Microsoft)) to invoke programs in
the local operating system. For instance, in order to invoke the program Notepad in Mi-
crosoft Windows system for displaying a text file, the code demonstrated in Figure 38 is

embedded in the program integration component.

filePath = App.Path & fileName
Dim retValue As Variant
retValue = Shell("c:\windows\system32\notepad.exe " & filePath, vbMaximizedFocus)

Figure 38, System Call to Invoke Notepad in Grid-Flow Engine.

Although both local interactive programs and local non-interactive programs can

be invoked by system calls, Grid-Flow treats them differently on the aspect of process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

management. When Grid-Flow engine calls a non-interactive program, the system call
would not return until the non-interactive program finishes its execution. Thus the Grid-
Flow engine remains halted and cannot process any other workflow tasks. However, for
an interactive program, the system call returns immediately after the program starts up.
The Grid-Flow engine can gain the control of the workflow without waiting till the pro-
gram execution ends. The benefit brought out by this immediate return mechanism is that
Grid-Flow engine can execute multiple tasks at the same time, which in turn improve the
performance and throughput of the whole workflow system. The pitfall of this mecha-
nism, however, is that the Grid-Flow engine cannot be informed when the program stops.
Owing to lack of time information on program termination, the Grid-Flow engine cannot
precisely schedule tasks that are time dependent on other tasks/programs. That is, if one
task A in the workflow can only be started after another program B’s fully termination,
the Grid-Flow engine may not be able to know when to start task A since it cannot get
notification about the accomplishment of program B. For instance, if a workflow task (A)
is designed to process the data users inputted through an anterior local interactive pro-
gram (B), it should not start until the user inputs all the data. The Grid-Flow engine
should only schedule the start of the data processing task (A) after the finish of the data
input task (B). If the Grid-Flow engine cannot trace the whole data input task, it may im-
properly invoke the data processing task so early that users have not inputted the data.
This may cause the whole workflow crash.

To overcome this drawback, Grid-Flow employs the function of process man-
agement provided by the Microsoft Visual Basic (Microsoft) to monitor the whole lifecy-

cle of the local program execution. Figure 39 shows the code of process management for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

local interactive programs in Grid-Flow. With the process management, each execution
of an interactive program is monitored as a process. The Grid-Flow engine starts the
process by feeding the program name and necessary inputs to the Skell function, and then
calling OpenProcess. The process management afterwards takes over the control and
checks the exit code of the process periodically till the process is inactive. Once the proc-
ess terminates, the process management hands the control back to the Grid-Flow engine.
Thus the Grid-Flow engine is informed of the time of the event of execution termination.
It can then perform the post-execution processing and schedule other tasks which are

time and/or data dependent on this terminated program.

Dim pid As Integer
Dim hProcess As Long
Dim RetVal As Long

hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, False,
Shell(commandString, vbMinimizedNoFocus))
Call GetExitCodeProcess(hProcess, RetVal)
Do While RetVal = STILL._ACTIVE
pid = DoEvents()
Call GetExitCodeProcess(hProcess, RetVal)
Loop

Figure 39. Code for Process Management of Interactive Programs.

Although the system calls are broadly used to call local programs in current
WEFMSs, they cannot be applied to the invocation of remote programs because the system
calls cannot act beyond the local system boundary to reach remote systems. The program
integration component in Grid-Flow provides different strategies to invoke remote non-

interactive programs according to the availability of their accessing methods: for pro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

grams that are wrapped as CGI programs, the Grid-Flow engine uses the techniques de-
scribed in Chapter 6 to integrate the program’s web interface; for programs that are avail-
able through web/Grid services, the program integration component has a programming
interface to contact those services and utilize the functions provided by the programs; for
programs that are only available on remote site without any web/programming interfaces,
the program integration component also provides predefined functions to help users
manually login into the remote system, run the program, and retrieve back the output re-
sults. The next section compares these three strategies and analyzes the disadvantages of
calling remote programs with CGI programs. Grid-Flow prefers web/Grid services to
other strategies for accessing remote non-interactive programs.

Invoking remote interactive programs is more complex compared to interactions
with remote non-interactive programs. The system needs to not only invoke the program
properly, but also to transfer and transform the interaction between the remote program
and the end users. Current scientific WFMSs do not have any approach available to trans-
fer users’ input directly to the remote program during execution. Grid-Flow does not sup-
port invoking remote interactive programs either. However, a potential approach to en-
able the interaction between the user and the remote programs is to combine a desktop
sharing system (like Virtual Network Computing (VNC) (Wikipedia)) with the tradi-
tional remote program calls. Thus a remote program could be invoked by remote program
calls and displayed on the virtual desktop simulated by the desktop sharing system. The
user could then interact with the program process running on the remote site. The desktop

sharing system handles all of the communication between remote systems and the user

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

during the execution. When the remote program terminates, it would return the control

back to the Grid-Flow engine and automatically turn off the virtual desktop.

7.2 Grid Services in Grid-Flow

Most non-interactive programs could be invoked by calling an executable, fol-
lowed by optional or mandatory parameters and input data that influence the execution of
the program. WFMS can invoke programs in the local operating system using system
calls. To run remote non-interactive programs in the network environment, WFMS needs
to either login into the remote system for direct access, or wrap the programs with wrap-
pers for indirect invocation. Conventional WFMSs usually use the mechanism of remote
login to access programs. That is, WFMSs are delegated by the user to stage input data
onto the target system, remotely log into the system, invoke the program, check the status
of the execution periodically, wait until the execution finishes, and fetch the output data
back to the local computer. This ad hoc remote login method not only introduces exces-
sive coupling between WFMS and target systems, but also brings potential threats to the
security mechanism of remote systems. Facing these drawbacks, most of the advanced
scientific WFMSs adopt various kinds of wrappers or adapters to access remote non-
interactive programs, without directly login into the remote system. Wrappers of remote
programs, with well designed interfaces, could provide a unique, compact, and secure
way to access data and programs on the remote site.

The most commonly used wrappers in WFMSs are CGI programs and web/Grid
services. Grid-Flow supports both of these two wrappers for remote program accessing.

Integrating CGI programs as Grid-Flow functional units has been discussed in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Compared with web/Grid services, using online CGI programs as the method to access

remote data and programs has the following disadvantages:

1. Not all authors prefer to publish their data/programs online. Some authors would
rather like to only reveal their private data/programs to limited authorized access.
Currently CGI programs are able to provide a login mechanism for user authentica-
tion and authorization. This login mechanism is dependent on the website that con-
tains the corresponding CGI programs. For any workflows that need to access multi-
ple online programs, the user must manually login into all the relevant websites and
remember all the associated usernames/passwords. In addition, the login process is
usually integrated in the website. It is hard, if not impossible to model each login
process in workflow system without revealing all the inner details. On the other hand,
from the perspective of WFMS, this login mechanism not only makes the workflow
engine more complicated in architecture and functionality to implement, but also
weakens the security strength of the whole architecture. These integrated login meth-
ods are hard-coded within the workflow engine, making it difficult for the workflow
system to accommodate future changes. A single sign-on system would greatly facili-
tate the user to access multiple password protected CGI pro grarris within a workflow.
Grid Security Infrastructure (GSI) provides such a single sign-on system for the user
to login once and automatically communicate with all the services for the issue of
user authentications.

2. Transferring the input data is still a problem for CGI programs. CGI programs do not
have a standard approach to transfer the input data from the client side to the server.

Some CGI programs ask users to cut-and-paste the content of the input files into the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

webpage interface, which in turn transfers the content as a string stream. Some other
CGI programs ask users to upload input files to a specific directory on the remote site,
and then read those input files locally on the server side. The channel used to transfer
the data could be either non-secured or secured, depending on whether the CGI pro-
gram supports the secured communication. To integrate CGI programs, Grid-Flow
needs to model the data staging from the client to the server. Since there is no stan-
dard way defined for CGI programs, Grid-Flow can only handle the data transfer case
by case. This ad hoc manner damages the generalizability and extensibility of the
workflow system. Thus a mechanism to transfer large amount of input data to pro-
grams on remote sites is required for scientific workflow system. GridFTP (7he
GridFTP Protocol and Software) is over time becoming the standard and secure ap-
proach for transferring data among Grid nodes. Grid-Flow has integrated GridFTP
into the Grid services used for workflow composition.

3. CGI programs are designed for human interaction, not for program-level interaction.
Both the input interface and the output result of CGI programs are displayed in web
pages with HTML format. HTML format is designed to convey information over
Internet, as well as to control the display format of the information. The information,
format controlling tags, and functional scripts are mixed and tangled together in
HTML files. Though flexible, the semi-structured, entangled format impacts the de-
velopment of efficient HTML parsers for information query and retrieval. The lack of
efficient parsers further encumbers WEMSs to integrate CGI programs as functional
units because it is hard to flow the data through CGI programs without the support of

parsers. Workflow engines prefer a program accessible interface through which they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

can feed the input data into the CGI program, and retrieve the information out of the
output result. Web/Grid services defined exactly the programmable interfaces re-
quired by workflow engines.

4. CGI programs are ever-changing. Compared with parameter settings and the function,
the input/output web interface of a CGI program are prone to changes since they need
to satisfy users’ ever-changing requirements. Some changes of the interfaces may not
affect the human interaction, but they could dramatically mess workflows that use the
CGI program. For example, changing the position of one text box in the input inter-
face may not even noticeable to the user’s eyes. But the workflow could fail to feed
parameters to that text box if the parser of the input interface cannot adapt itself to
this change. The lack of adaptability and robustness of CGI parsers essentially makes
the workflow fragile and sensitive to changes. On the other hand, there exists no noti-
fication mechanism for the changes of the CGI programs. Thus users can only pas-
sively change the parsers of CGI programs when they find the workflow fails to exe-
cute the CGI programs. Chen et al (Chen & Jamil, 2003) provide an semi-automatic
way to wrap the CGI programs with interface parsers. But even with regeneration of
the parsers, it is still hard to keep up with the changes of the CGI programs. Web/Grid
services provide a program-accessible interface, which could be easily integrated into
the WFMS engine. This interface is an agreement between the service provider and
the end user. So it strictly follows its definition and seldom changes once the
web/Grid service is published. WFMS always prefer a stable, robust, and uniform in-

terface to access the data and programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

5. Adding a CGI program into WFMS needs more efforts than integrating a web/Grid
service. To access the CGI program, the parsers for input/output interfaces are re-
quired to be registered with WFMS. The workflow engine then needs to configure it-
self for connecting the CGI program for submitting jobs. With new CGI programs
and more computing resources becoming available for executing workflow tasks, the
workflow engine needs to make changes frequently. On the contrary, the component
to access web/Grid services has already been integrated in most of the advanced
WFMS engines. WFMS engines can automatically read the definition of web/Grid
services and integrate them for workflow execution. No more work needs to be done
for adding a new web/Grid service.

Similarly to many advanced academic WFMSs, Grid-Flow employs Grid comput-
ing technique as its method to transfer data and invoke programs through web/Grid ser-
vices. In Grid-Flow, Grid authentication mechanism (Foster et al., 2002) is used to sim-
plify the management of users account, and provide a single login for all the Grid appli-
cations. GridFTP (The GridFIP Protocol and Software) is employed to transfer data be-
tween systems securely. Grid-Flow also has the ability to access service-based programs
on the remote site if the programs are deployed as Grid services (Foster et al., 2002). Grid
computing techniques (described in section 2.3) can satisfy the requirements for building
that kind of interface by providing the following: 1) a security infrastructure for user au-
thentication and authorization with remote systems; 2) a data transfer protocol to transfer
data between systems with the support of the security infrastructure; and 3) a service-

oriented architecture (SOA) for wrapping programs and applications as web or Grid ser-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

vices. There has been a tendency to use more web/Grid services instead of CGI programs
for program invocation in the recent development of WFMS.

With more WFMSs using web/Grid services as their program integration mecha-
nisms, the methodology and framework of wrapping programs as web/Grid services have
brought forth broad research interests in the workflow community. A novel system,
namely WebRun (Guan et al., 2004), is designed for Grid-Flow and described in Appen-
dix B to provide an infrastructure and strategies for wrapping existing programs distrib-
uted on various hosting environments as Grid services for users’ directly and/or pro-
grammatically access. WebRun provides a reference model for building Grid services
based on existing applications, as well as the methodologies for developing and deploy-
ing Grid services in a Grid environment. The conceptual design of WebRun has been fin-
ished and the implementation of the system is on the schedule. To prove the idea of We-
bRun, a Grid service for Blast (Altschul et al., 1990), namely G-Blast, is implemented
following the WebRun model and strategies, and integrated into Grid-Flow. The follow-

ing section described G-Blast in detail.

7.3 G-BLAST

G-BLAST is an illustrative example of Grid services that are designed and devel-
oped based on the architecture of WebRun. The overall architecture of G-BLAST is illus-
trated in Figure 40. G-BLAST has the following four key components:

1. G-BLAST Core Service: Provides a uniform interface through which a specific ver-
sion of BLAST (Altschul et al., 1990) was able to be instantiated. This service en-
ables application developers to extend the core interface and incorporate newer ver-

sions of BLAST applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

Users
Notifyf | Query Web icati
Interface Application
(6) (1), 7 12 Information
. ' Query AIS
G?d Service (2), p| Scheduler
L nterface]
' Invoker Resppnse
3) GIS
Dispatch (4 E Resource
information

Grid Sérvice

Figure 40. Overall Architecture of G-BLAST.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.

125

User Interfaces: Provide web and programmatic interfaces for file transfer, job sub-
mission, job monitoring and notification. These interfaces support user interactions
without exposing any of the details about the grid environment and the application se-
lection process.

Scheduler: Selects the best available resource and application based on user request
using a two-level adaptive scheduling scheme.

BLAST Grid Services: Individual grid services for each of the BLAST variations that
are deployed on each of the computational resources.

A typical user interaction in G-BLAST involves the following steps (indicated in

Figure 40 with numbered arrows):

1.

2.

User submiits queries and specifies database name.

G-BLAST core interacts with the scheduler.

Scheduler makes suggestions on resources and specific type of application to select
based on number of queries, query size, database selected, and available resources.
Queries are dispatched to suitable computing nodes by invoking appropriate BLAST
service(s).

Compute nodes execute BLAST search and return a job handle.

G-BLAST core service provides client notification.

User fetches the results from the G-BLAST core when job is completed.

The remainder of this section focuses on describing the G-BLAST core service,

the user interface, and the BLAST Grid service. The scheduler part of G-BLAST is only

in its conceptual design and initial implementation (Afgan et al., 2005). Though the

scheduling mechanism is crucial for integrating the individual BLAST Grid services to-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

gether as part of a job dispatching system, scheduling concerns are beyond the scope of
this work; G-BLAST still provides a good example of using Grid services in Grid-Flow
WFMS. A demonstrative workflow example including the use of G-BLAST 1s described

in detail in section 8.1.4.

7.3.1 G-BLAST Core Service

A BLAST Grid Service with a uniform Grid service interface is deployed on each
of the computing resources. It is located between the Invoker and each implementation of
BLAST programs. No matter what kind of BLAST programs are deployed on each re-
source, the BLAST Grid service should cover the differences and provide fundamental
features. To facilitate developers integrating individual BLAST instances into the G-
BLAST framework, the BLAST Grid service defines the following methods for each in-
stance:

1. UploadFile: Upload query sequences to the computing node.

2. DownloadFile: Download query results from the computing node.

3. RunBlast: Invoke corresponding BLAST programs on the computing node(s).

4. GetStatus: Return current status of the job.

5. NotifyUser: Notify the user once the query is complete and the result is available.

With G-BLAST, developers can easily add a new BLAST service (corresponding
to the BLAST programs and the computing resources supporting it) without modifying
any G-BLAST core source code. In addition to that, developers can add new BLAST ser-
vices dynamically, without interrupting any of the other G-BLAST services. G-BLAST
employs the creational design pattern factory method (Gamma, Helm, Johnson, & Vlis-

sides, 1995) to enable the invoker to call newly-built BLAST services without changing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

its source code. To integrate their corresponding BLAST programs into the G-BLAST

framework, developers should create and deploy Grid services on each of the computing

resources in the Grid. The steps to generate the Grid service on G-BLAST computing re-

sources are described as follows (Sotomayor, 2004):

1. Inherit the interface of the BLAST Grid services to define the service interface for the
local computing resources.

2. Implement the local service interface by writing appropriate code to wrap local
BLAST programs.

3. Define the deployment parameters for the local BLAST services in the Web Service
Deployment Descriptor (Sotomayor, 2004) file.

4. Create the BLAST service GAR (Grid ARchive) file using Ant (Ant - A Java-based
Build Tool).

5. Deploy the BLAST service on the local Grid service container.

The interface of the local BLAST service is defined in a Grid Web Service De-
scription Language (GWSDL) (Berman et al., 2003) file. Figure 41 presents the interface
definition of method TransferFile in the GWSDL file of a BLAST service. This definition
describes the method TransferFile that has three input parameters (fileName, srcHost,
remoteHost) and one return result (TFResponse). Other methods of the BLAST service
are defined accordingly in the GWSDL file.

As described in Figure 42, Invoker and BLASTService are two abstract classes
representing the invoker in the G-BLAST service core and the BLAST services on com-
puting resources, correspondingly. When a new BLAST service (for example, mpiB-

LAST (Darling et al., 2003)) is added into the system, the relevant invoker (mpilnvoker)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

for that service must be integrated as a subclass of the class Invoker. When the invoker
wants to call the new BLAST service, it can first create an instance of mpilnvoker, then
let the new invoker generate an instance of mpiBLAST by calling the member function

CreateService(). Thus, the invoker does not need to hard-code the instantiation of each

type of BLAST service.

<!-- TansferFile-->
<xsd:element name="TransferFile" type="tns:TransferFile">
<xsd:complexType name="TransferFile">
<xsd:sequence>
<xsd:element name="fileName" type="xsd:string"/>
<xsd:element name="srcHost" type="xsd:string"/>
<xsd:element name="remoteHost" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="TFResponse" type="tns:TFResponse">
<xsd:complexType name="TFResponse"/>
</xsd:element>

Figure 41. Interface of Method TransferFile in GWSDL.

BLASTService L(—————c Invoker

UploadFile() CreateService()
DownloadFile() SendQuery()
Z# < mpilnvoker
mpiBLAST 7
CreateService() o4~ - =
]

'
1
return new mpiBLAST ' ——)

Figure 42. Factory Method for BLAST service.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

This design pattern encapsulates the knowledge of which BLAST services to cre-
ate and delegate the responsibility of choosing the appropriate BLAST service(s) to the
scheduler. The Invoker could invoke more than one BLAST service based on the avail-

ability of resources to satisfy user requirements.

7.3.2 User Interfaces

The G-BLAST framework provides unified, integrated interfaces for users to in-
voke BLAST services over the heterogeneous and distributed Grid computing environ-
ment. The interfaces summarize the general functionalities that are provided by each in-
dividual BLAST service, as well as cover the implementation details from the end-users.
Two user interfaces are currently implemented to satisfy different users’ requirements.
For users who want to submit queries as part of workflow, a programmable interface is
furnished through a Grid Service. Service data and notification mechanism supported by
Grid Services are integrated into the BLAST Grid service to provide stateful services
with better job monitoring and notification. For users who are familiar with traditional
BLAST interface (like NCBI BLAST (NCBI, 2004)) and want to submit each query with
individual parameter settings, a web interface is implemented for job submission, moni-
toring, and file management. The programmatic interface is designed as follows:

1. FileTransfer: This method can be used to upload the local files to the servers,
download the files to a local machine, or perform third-party file transfers using
GridFTP (The GridFTP Protocol and Software). G-BLAST uses GridFTP for trans-
ferring the query files instead of directly sending the queries as SOAP (W3C, 2003)

messages to avoid serialization and deserialization overheads.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

2. BLASTRequest: This method defines users’ request of BLAST queries via a Job De-
scription File (JDF) — an XML file based on Job Submission Description Language
(JSDL) (Job Submission Description Language (JSDL) Specification, 2005). JDF will
be consumed by the Scheduler to generate appropriate job submission strings in the
Resource Specification Language (RSL) (The Globus Resource Specification Lan-
guage RSL v1.0). Consequently, the job submission will be taken by the Invoker and
submitted to local job managers on the computing nodes.

3. JobSubmit: This method submits queries to G-BLAST Core Service and returns a job
handle.

4. JobStatus: The status of the submitted job can be queried with this method using the
job handle returned by the JobSubmit method. Since the order of completion may not
be in the same order as that of submission this method provides a convenient way to
check the status of submitted queries.

5. ResultRetrieve: This method provides an approach to fetching the results of a particu-
lar job using the job handle.

G-BLAST exploits the notification mechanism (Foster et al., 2002) provided by
grid services in two aspects. One aspect is the notification of changes by BLAST services
to the scheduler. The other aspect is the notification of job completion to thevend-users.
Both of these two instances strictly follow the protocol of notification. In notification of
service changes, the BLAST services are the notification source, and the scheduler is the
notification subscriber. Whenever the BLAST service on the computing node has any
changes, the service itself will automatically notify the scheduler with up-to-date infor-

mation. This mechanism keeps the scheduler updated with the most recent status of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

"BLAST service, therefore helps the scheduler make informed decisions on the selection
of computing resources. Notification for job completion has a similar implementation,
except that the notification sink is the registered client program.

The notification mechanism in Grid Services is closely related to the service data.
The notification sinks do not subscribe to the whole service, but to a particular Service
Data Element (SDE) (Foster et al., 2002). The function addListener is called when the
subscriber wants to register with a particular SDE. After registration, the subscriber waits
for notification, instead of querying the services constantly. Whenever any changes occur
in the BLAST service, the function notifyChange will be called to request the SDE to no-
tify its subscribers. After receiving this request, tﬁe SDE will send the notifications to the
subscribers by calling function deliverNotification. Since this notification includes the
actual service data, the subscriber does not need to make any more calls to the service.

To facilitate users using G-BLAST, a programming template is also provided to
guide users coding their own client program for G-BLAST service invocation. Figure 43
demonstrates the major part of a client program that invokes a G-BLAST service by cre-
ating a Grid service handler, uploading query sequence(s) to the back end server, submit-
ting a query job, checking the job status, and finally retrieving back the query results in a
sequential mode.

In addition to providing a programmatic interface for the end-user, the framework
also provides a web workspace that supports the needs of a general, non-technical Grid
user who prefers graphical user interface to writing code. The most common needs of a

general user are file management, job submission, and job monitoring.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

/I Get command-line argument as Grid Service Handler
URL GSH = new java.net.URIL(args[0]);

/I Get areference to the Grid Service instance
GBLASTServiceGridLocator gblastServiceLocator = new GBLASTServiceGridLoca-

tor();
GBLASTPortType gblast = gblastServiceLocator.getGBLASTServicePort(GSH);

//Query sequence uploading
gblast.FileTransfer(inputFile, src, remote};
//Submit query as a job

gblast. BLASTRequest(blastRequest);
jobid=gblast.JobSubmit();

//Check query (job) status
gblast.JobStatus(jobid);

//Retrieve back the query result
gblast.ResultRetrive(jobid);

Figure 43. Client Program to Invoke G-BLAST Service.

File management is supported through a web file browser allowing users to up-
load new query files or download search result files. It is a simplified version of an FTP
client that is developed in PHP. The job submission module is made as simple as possible
to use, the user after naming the job for easy reference only provides or selects a search
query file and chooses the database to search against. Application selection, resource se-
lection, file mapping, and data transfer are handled automatically by the system. Finally,
the job monitoring module presents the user with the list of his or her jobs. It includes a
date range allowing the user to view not only the currently running jobs, but the com-
pleted jobs as well. When viewing the jobs, the user is given the name of the job, current

status (running, done, pending, or failed) and job execution start/end time. Upon clicking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

on the job name, the user can view more detailed information about the query file, data-
base used, and start and end time. The user is also given the option to re-submit a job

with the same set of parameters or after changing one of the parameters.

7.4 Summary

Grid-Flow’s ability to integrate web and Grid services has been fully investigated
in this chapter. The web and Grid services are mainly used to wrap remote non-
interactive programs as workflow transitions. G-BLAST service, as a demonstrative ex-
ample of wrapping bioinformatics tools as Grid services, is implemented and discussed in
detail on the aspects of the architecture, core services, and user interface. So far all the
technologies used in Grid-Flow have been presented. The next chapter illustrates the
overall design and implementation issues of scientific workflows by demonstrating Grid-

Flow with two use cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

8 EXPERIMENTAL WORKFLOW APPLICATIONS
This chapter presents examples that describe how to design and execute workflow
applications for biological data analyses within the Grid-Flow system. Two real work-
flow applications in Bioinformatics research are used to demonstrate the benefits that
workflow technologies bring to the biological research. Each workflow application is pre-
sented with the overall description, the organization and its components, the design, the

implementation, and the execution.

i

8.1 Transmembrane Region Analysis

This experiment works to introduce the basic idea of using Grid-Flow system to
model and execute a bioinformatics data analysis process as a scientific workflow. It de-
scribes in.detail the workflow modeling procedure with Petri nets, the operations of data
and online program registration, the GFDL script generation, and the execution of the
workflow including the data matching between linked programs. Here this experiment is
used to demonstrate Grid-Flow system’s abilities of modeling workflow processes with
Petri nets, translating Petri net models into GFDL scripts, and controlling data and online
resources for workflow execution.

The requirements of the Transmembrane Region Analysis workflow were de-
scribed in section 3.5. This section focuses on the implementation details of this work-

flow process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

8.1.1 Data Analysis without Workflow

Before workflow technologies were applied to biological data analysis, biologists
used to analyze the data manually following a step-by-step procedure designed before the
experiment. For example, to analyze the transmembrane region of a particular DNA se-
quence, a biologist needs to follow these steps:

1 Data preparation for the experiment
1.1 Get the accession number of the DNA sequence;
1.2 Choose the parameters for transmembrane region analysis based on experiment
plan;
2 Get the DNA sequence
2.1 Open the website http://www.ncbi.nlm.nih.gov/ in a web browser, fill in the pa-
rameters for sequence search, and click “Go”;
2.2 Wait till the search result displayed in the browser, click the one that best matches
the target sequence; |
2.3 In the sequence viewer page, locate the DNA sequence (the “ORIGIN” part), copy
and paste that sequence into a temporary file with a file editor;
3 Analyze the transmembrane regions
3.1 Open the website http://www.ch.embnet.org/software/TMPRED form.html in a
web browser;
3.2 Set all the necessary parameters for the analysis (though some parameters can use
the default settings);
3.3 Copy and past the DNA sequence from the temporary file into the “Query Se-

quence” box, and click the “Run TMpred” button;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

3.4 Wait till the result of the transmembrane analysis of the DNA sequence is displayed
in the browser;
4 View and save the results
4.1 Check the result displayed in the web browser, and save the results in the file sys-

tem for future reference.

8.1.2 Workflow Designers and Workflow Users

The steps presented in previous section are the base of the blueprint of the trans-
membrane region analysis workflow. To model such a workflow, a workflow designer
should simply model each major step as a task, wrap all the functions represented by the
sub-steps in the task, implement the task, and connect tasks following the designed logic
as a workflow.

A workflow designer is the key person who designs the whole workflow, tests it,
and delivers it to the workflow users. This workflow designer should be a domain expert,
equipped with appropriate knowledge of process modeling and workflow systems. The
responsibility of a workflow designer is to help the workflow users locate their user re-
quirements, understand the whole procedure of the experiment, draw the blueprint of the
workflow, implement the workflow, test it via test cases, write the documentation for the
resulting workflow, teach the end user the way to run that workflow, edit this workflow
according to users’ requirements, and maintain the workflow. WFMS can facilitate work-
flow designers on designing and implementing workflows, as well as provide an easy-to-
use platform to workflow users for executing and monitoring workflows. To design a
workflow in Grid-Flow, a workflow designer need first to register the data and programs

that will be used in the workflow, then draw the Petri net model with the Grid-Flow GUI,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

run the generated GFDL script within the Grid-Flow interface, and test the workflow with
designed test cases. The aspects of registering data and programs, designing and imple-
menting the workflow, and running test cases for the workflow are described in detail in
the following three sections, respectively.

From the viewpoint of workflow users, running a biological workflow is much
easier than analyzing the data manually following a step-by-step procedure. With Grid-
Flow, a workflow user only needs to load the workflow (GFDL script file) into the Grid-
Flow interface, click the “Run” button to start the workflow, feed the workflow with re-
quired user input, monitor the execution, and await the results. All the data and programs
are predefined in the workflow. And all the control logic is managed by workflow itself.
Users can easily change the parameters of the workflow and reuse it for analysis of other

biological data.

8.1.3 Registering Data/Program

To accomplish the analysis, the following data and programs need to be registered
with Grid-Flow system. Names, registration codes, and DDFs (for data only) are listed
for selected data and programs. Section 6.2 describes the meaning of the data and pro-
gram registration procedures in detail, as well as the format of the DDF and the semantics
of the registration code.

Data:

1. PSeq contains the access number of particular sequence being worked on. Its content,

DDF, and registration code are shown in Figure 44.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

PSeq file:

Nucleotide
ay057452

DDF of PSeq:

DDF

<Database, String, "database name db", ".11">
<AccessID, String, "access ID term", ".12">
End DDF

FORMS

End FORMS

Registration Code:

Register Data PSeq As Text;

Set data_source="file:///C:\BioFlow\Data\PSeq.txt";
Set data_format="TEXT”

Set data_ddf="File:///C:\BioFlow\DDF\PSeq.dd{f";
End;

Figure 44. The Content, DDF, and Registration Code of PSeq.

2. TMPredpar contains the parameters of the program TMPred. Its content, DDF, and
registration code are shown in Figure 45.

3. Other data need to be registered are InputSNInput, InputSNOutput, NCBISearchinput,
NCBISearchOutput, TMPredInput, TMPredOutput, Displaylnput, and DisplayOutput. All
of these data are the input/output interfaces for the programs. These data can be regis-

tered in the same way as was just presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

TMPredpar file:

plain_text
html

17

33

DDF of TMPredpar:

DDF

<format, String, "format", ".11">

<outputmode, String, "output mode outmode", ".12">
<minimum, Integer, "minimum min", ".13">
<maximum, Integer, "maximum max", ".14">

End DDF

FORMS

End FORMS

Registration Procedure:

Register Data TMPredpar As Text;

Set data_source="file:///C:\BioFlow\Data\TMPredpar.txt";
Set data_format="TEXT”

Set data_ddf="File:///c:\BioFlow\DDF\TMPredpar.ddf";
End;

Figure 45. The Content, DDF, and Registration Code of TMPredpar.

Program:
1. NCBISearch searches the protein accession number on NCBI website (NCBI Website),

and returns the protein sequence. The registration procedure of NCBISearch is shown in

Figure 46.
2. TMPred performs the transmembrane regions analysis based on provided protein se-

quences. The registration procedure of TMPred is shown in Figure 47.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

Register Program NCBISearch As OS_Program;

Input NCBISearchInput;

Output NCBISearchOutput;

Set program_source=" http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?...";
End;

Figure 46. Registration Procedure of NCBISearch.

Register Program TMPred As OS_Program,;

Input TMPredInput;

Output TMPredOutput;

Set program_source="http://www.ch.embnet.org/...";
End;

Figure 47. Registration Procedure of TMPred.

3. Other programs need to be registered are InputSN and Display.

8.1.4 Design & Implementation

To model this workflow process, a workflow designer may intuitively translate
the graph in Figure 6 into a Petri net model as shown in Figure 48. From a structural
viewpoint, the Petri net model is similar to the data and program model described in
Figure 6. The Start and End places indicates the beginning and finish of the process. Each
transition corresponds to a program in the data and program model. The data is repre-
sented by the token, and places are data containers connecting transitions. Transitions In-
put Data and TMPred are featured as AndSplit and AndJoin transitions respectively,
since a parallel structure exists in this workflow process. Transition Input Data is the

starting transition of the parallel structure, and TMPred is the ending transition of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

same structure. With this Petri net model, the graphical user interface can generate the

GFDL as shown in Figure 49, under the administration of the workflow designer.

}O l

Seg#Container

@ NCBISearch
Input Data

Start O

O SeqContainer

ParaContainer
TMPred

O Display) , o o
End HelicsContainer

Figure 48. A Petri Net Model for Analysis of Transmembrane Regions.

Set Display(TMPred(NCBISearch(Input Data()),Input Data()));

Figure 49. GFDL for the Workflow of Transmembrance Regions Analysis.

In this GFDL sentence, program Display, TMPred, NCBISearch, and Input Data
have already been registered with Program Registration component before the design of

the workflow process. Program Display and Input Data are programs on the local com-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

puter where the workflow is executed. Programs TMPred and NCBISearch locate on web
servers which can only be accessed by‘ Internet. The data are input by the user through the
program Input Data. Because the programs involved in this process are located on vari-
ous computing resources distributed on the network, the Grid-Flow engine should invoke
the programs through program integration component. The input data and temporary in-

termediate results are transferred over the network.

8.1.5 Execution

During the execution, Grid-Flow engine first fetches the accession number of pro-
tein sequence through the program /nputSN. Then Grid-Flow engine submits this acces-
sion number to NCBI website for searching. The accession number needs to be matched
with the input interface of NCBI website. This matching is performed by Grid-Flow en-
gine. Matching mechanism between data and program interface has been discussed in
section 6.3. The matching result is provided to the end-users for review as shown in
Figure 50. After approval by the user, Grid-Flow engine invokes the program NCBI-
Search and geﬁerates the desired sequence, which is shown in Figure 51. Then Grid-Flow
engine tries to match the sequence and TMPredpar to the input interface of program
TMPred. The matching job is shown in Figure 52. The matching procedure has also been
shown in section 6.3 as an example. If matched and approved, the protein sequence is
sent to TMPred for analysis of transmembrane regions. The analysis result is retrieved
and displayed to the end-user as Figure 53. The successful execution of this workflow
process shows that users can use Grid-Flow system to design and execute workflow
processes. During the design and execution, a Petri net model is generated to describe the

workflow process in the graphical user interface. After that, the model is translated into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

GFDL script. The Grid-Flow engine then takes over the GFDL script and maps it to the
execution sequence of tasks with proper data feeding, generation, and transportation.
What’s more, the invocation of programs TMPred and NCBISearch proves that Grid-
Flow system can schedule the data and online computing resources to support the work-

flow execution. That’s all that Grid-Flow system aims to achieve.

. t1atch Mechanism : g o]

Input Parameters .0 Input Form - : : i Match
: Dotabase == b
Database s g R !db . :..I JAccessiD ==> tem

Kucleotide X S
‘ayUE'{d;Z | % NCBI National

Nationl -

FubMed All Databases BLASR
| All Databases ~| forr

» Whatdoes |

Established in *
molecular biolo
public databast .
computational I~
tools for analyzi
disseminates b
the better undel

processes affer :

Aicoaco Mnr:-’_'-' Add Delete
>

- Done l

Figure 50. Matching PSeq to NCBISearch.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TF200512415315547 tx't !‘k)tepad

1STGWRATDIVEYVKVLLMSRGGDLGMMIMMLCGFAAYMTHIGAN
DMVYVKLASRPLRYINSPYILMIAAYFVACLMSLAVSSATGL GVLLMATL FPVMVNVGI
SRGAAAATCASPAATIILAPTSGDVVLAAKASEMPLIDFAFKTTLPISITAIVCMATIAH
YFWQRYLDNKEQAQHEILDVNEITTTAPSFYAILPFTPIIGVLVFDGKWGPHLHIISY
LVICMLLASVTEFLRSFDAKKVYSGLEVAYRGMADAF ASYYMLLVAAGVFAQGLSTVG
FISSLIELAQSFGTGGIIMMLVLVVITMLAAMTTGSGNAPFYAFVELIPKL SGQMGIN
PAYLTIPMLQASNLGRTLSPVSGVVVAVSGMAKISPFEVVKRTSVPVLVGLVVVIVAT
EFMVPLHRMSSLLKNSISLLAMQGINYILPLVTLPYLTRVLHVYPFGIYSAT
MSVGAYVILFINFGFDLSATRKIAKNKGDNYAISAIFFNVILAKFLLFFLSLVIVFLL
LYTIDSFYPIRSLFFLLIPQFIGCVFFPAWLYQGVERLYLISAITSATKLLITIPLFFL
FYRDAGDIDKAIIISGFPLFFSGIIGFYLAYKENIINFSDVRVRVNDAILLIKESTSY
FIGAVAISIYTACTPIILSIVSNYTEVGYFSAVDKLRSATLGMFIVLGQVFYPRATVL
FESNFSKYKLFIRRIIFSQIIFGGVGTILFYFFMPITAPFILGRGFHGLTELIEIMAP
MILLIPLSVIFSNCILLPMGKSKLFYIAPTIITAIIHLPYSIYLSEKYGAFGGGVSILI
TEVLSLMLLVFFSYKYANLKSIFMFPTKEFKYFDFFCVIEGLFKVLLSKLSVNRSVNLLFFYLEFSY
FVLIFIFKPPFHFFLLNALFIHVYSLVALIFSFFYRVKRKYITIIFFIFLFPLSYLTIM
DRVTAAYPLVVALFSLLIISDKFQFHNYSCRNLTHFILISTVLFSFLFLYESHIDRYS

[EVNGDPNYTSLILLTYLLISFVFSVYSNKLKVLVLLLMLFYWYLTKSRTAILALAAFFL

: CCKIKRKLLLFYFILFVSIASQYFFSYIFPSILSDLDFGHSRFFDLNDASNMERITIY
KEAVDFILSHFTHFLINGVTNYLEINKLATNIPHNWFIQF ILGFGFLFSTYYLAVVVF -
VAKIVSGKSYYLLAFMCFFFVYASFLSYYSLATPLLFLVLSLFVCHSIERVARMKTFIISLKDEVARRNSISDRLUHE -
AVKCKNINYKHPAIREHMTKGEIGCAL SHMQLYKKIVDDNL AFARVIEDDAVILNHDE 3
KILNDFILALEMKNIDWDIMLLGYSKLKACDSFGFYLKEPIKNIVKSGAYSLGIPFRN
WTCGTVGYLVSQSGAKKMINNAAFGKVC TVADDWLFFEKNYNLKILHIRPLIVLEDFE :
SYESSIETDRKTYVNHESHISFFLRVMRGVVRKVYLSISWKSLMKILYVITGLGLGGAEKQLSLLADNFTARGEQV‘
KPKNKNIKIYNLGIDKSFS5S5L IKGIWKLKSIISDVRPDVIHSHMYHANILARISCCLS
] LFSSRLVCSAHNKNEGGRVRMIIYRMTDFLCAKTTNVSQEAL DEF ITKKAFRKRKSSL
4 VYNGIDLSIFKKKSTNIQNIKNKLEGINFDEKVIFCAGRLTEAKDYPNLILATISKMHQK
E KCKIIIAGDGPMRSDIERLIDRCHLSHRILLIGIIDNISDYYNLSDLFVLPSRWEGFG
] LVVAEAMACECPVIATDAGGVAEVL SNADWLVPIADSSKLAEKIDEFFLLDSSEVKDI :
; KAKNKDHCENQF STIGAIINNWYATYNGIRSKLMKKIFFVITKSEIGGAQKWIVEL SNILKEQYEIFIITSGDGWLT
SKFDSSHVILYPGLLNLKSIFCFFKLANIFRKYKADIVISSSANAGVYARLSKFLYSH
L

-..Mtchred‘mnism R ; : ,..JQL’L‘

Match.f Mechamsm ’

Input Parameters . ;f‘npUt orm Match

Sequence ==) seq

i ISequence :J : L |wtmode _:j | fomat ==> format]
T S i S L 5 foutputmode ==> outmode
STGWRETDIVEYVKVLLHSRGGDLGMMIHM ,_j ﬁeld below “af < Aminimum ==> min
SRGAAAATCASPAATILAPTSGDYVLAAKA and press the "Run TMpred" but e oy oo
‘- JLYICMLLASVTEFLRSFDAKKVYSGLEVAY Make sure that the farmat butte
|PAYLTIPHLQASNLGRTLSPVSGVVVAVSG, correct format

- JNSVGAYVILFINFGFDLSATRKIAKNKGDN
{FVRDAGDIDKAIIISGFPLFFSGIIGFYLA
L |FESNFSKYKLFIRRIIFSQIIFGGVGTILF

- {TEVLSLNLLVFFSYKYANLKSIFHFPTKEF.

Choose the minimal and maximai
transmembrane helix -

FVLIFIFKPPFHFFLLNALFTHVYSLVALL : Output formatlhfm'] shinimum

|LVNGDPNYTSLILLTVLLISFVFSVSNELK ™ | Qiiery title

“. IREAVDFILSHFTHFIINGVINYLEINKLAT. | {optional) o

 [VAKIVSGESYYLLAFNCFFEVYASFLSYYS, |~ Input sequencel——————plam —— 5

AVKCENINYKHPAIREHMTRGEIGCAL SHIl - o formatl. oo -

WTCGTVGYLVSQSGAKKMINNAAFGRVCTY. Query sequence:
SYESSIETDRKTYVNHESHI SFFLRVHRGV or 10 or AC ‘oF €1
KPKNENIKIYNLGIDKSFSSLIKGIWKLKS * | (see ‘above for valid
‘IVINGIDLSIFEKESTNIQNIKNKLGINFDE. -« ' - @i formats)

LYVAEANACECPVI ATDAGGVAE VL SNADW.

- |RAKNKDHCENQFSTGATTNWWYATYNGIRS = o] = Add | Delete. -

Figure 52. Matching Sequence and TMPredpar to TMPred.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

§ Chuseriguan\res.htm] - Micrasoft Intemt plnrer

Ciiwser\guanyeshtml

145

| TMpred output for unknown

| [ISREC-Server] Date: Sun Oct 30 0:57:40 Europe/Zurich 2005

{ Sequence: STG...KST, length: 3253
| Prediction parameters: TM-helix length between 17 and 33

O

o

AT

1.) Possible transmembrane helices

|| The sequence positions in brackets denominate the core region.
Only scores above 500 are considered significant.

Inside to outside helices : 52 found
from to score center

24 (24) 43 { 43) 1715 34

63 { &3} 85 { 81) 2233 72
107 { 107} 124 (124) 1245 116
144 (144) 163 (161) 2167 153

] 189 (189) 205 (205) 1225 157
1 213 (213) 232 (232} 1928 222
1 254 (z54) 272 (272} 2101 264
291 (2%1) 308 (308) 2355 29%

oA,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 53. Transmembrane Regions for Protein Sequence.

146

8.2 Protein Function and Expression

Prediction of transmembrane regions is only part of the job for protein function
and expression. The following is the whole illustration of the job on protein function and
expression.

The prediction of the protein function and expression can be drawn based on three
aspects of related information (Lawerence et al., 2003): 1) the functionalities of the other
protein sequences that have similar sequence structures; 2) the transmembrane regions
and orientation of the protein sequence; and 3) the promoter existed in the corresponding
DNA sequence. To get this vital information, biologists need to analyze the protein se-
quence with some web-based tools, find the similar protein sequences via BLAST search
(Darling et al., 2003), and collect the literature of similar protein sequences. This is a
typical data analysis experiment scheduled by biologists.

This experiment describes in detail the workflow modeling approach using the
Data/Program Chart and Petri net in Grid-Flow system. The demonstration in this section
focuses on how to use Petri net structures modeling complex workflow process and how
to mapping the Petri net structures into GFDL scripts. The generation of a coordinating
GFDL script based on a Petri net model is also described with this experiment. In addi-
tion, the usage of the G-BLAST service provided by WebRun system is presented in this
experiment, partially revealing the flexibility and portability that Grid computing tech-

niques bring to the Grid-Flow system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

8.2.1 Problem Description

Intuitively, one can divide the whole experimental proycess into three independent
threads according to the different goals they strive to achieve. Each thread collects one
aspect of related information. The flowchart of the threads is shown in Figure 54. The
respective goals of each task are described as the following.

Thread 1 Literature Search. In this thread, the workflow process first input the
protein sequence into a BLAST search to find similar protein sequences. Then the system
retrieves all of the accession number of those protein sequences whose similarity evalua-
tion code is less than a threshold. After that, the system accesses each similar protein se-
quence through NCBI PubMed website (NCBI), and extracts the literature-related infor-
mation from web pages. Finally, system puts all of the information together and displays
it to the user.

Thread 2 Transmembrane Regions Finding. In this thread, the workflow proc-
ess puts the prétein sequence into the web-based tool TMPred (TMpred - Prediction of
Transmembrane Regions and Orientation), collects the prediction result, and then shows
the result to the user. Since the functionality of the workflow is similar to the workflow
of transmembrane region analysis, some parts of the workflow described in 8.1 can be
reused in this thread.

Thread 3 Promoters Predicting. In this thread, the workflow process finds the
corresponding DNA sequences from the NCBI (NCBI Website) website, puts it into a
web-based tool “Neural Network Promoter Prediction” (BDGP: Neural Network Pro-
moter Prediction) (shown in the web browser window of Figure 55), collects the predic-

tion results, and displays the results to the end-users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

Process Begimming | | -..... » Thread 1
] ————Thread 2
Input Accession Number —_—— » Thread 3
v
Search on NCBI Website
Get Protein Sequence Get DNA Sequence
P e !
' ea v
Put into TMpred Search Sequence on BLAST Put into Neural Network
I T Promoter Predication

v v)

Find Transmem- Collect Evaluation Code < Threshold y

brane Regions T Find Promoters Sites
]

< Y -
~Na . . v
~o Collect Literature Information -
~~ - R B
=~ ~ N .
~< A A7
~
Ry Show to the users

Figure 54. Protein Function and Expression.

organism ==> organism
feverse == reveise
threshold ==> threshold
sequence ==> lest

STGYRATDIVEYVKVLLMSRGGDLGMMINMLCGE
DHVVKLASRPLRYINSPYILMIAAYFVACLMSLS
SRGAAAAICASPAATILAPTSGDVVLAAKASENE
YFWQRYLDNKEQAQHEILDVNEITTTAPSFYA.

LVICHLLASVTEFLRSFDAKKVYSGLEVAYRGM.
FISSLIELAQSFGTGGIIMNLVLVVITMLAAMT]

PAYLTIPHLQASNLGRTLSPVSGVVVAVSGMAK.

EFMVPLHRMS SLLKNSTSLLAMQGINYILPLV'

MSVGAYVILFINFGFDLSATRKTAKNKGDNYAIS:

LYTIDSFYPIRSLFFLLIPQFIGCVFFPAWLYQC
FVRDAGDIDKAITISGFPLFFSGIIGFYLAYKLY}
FIGAVAISIVTACTPIILSIVSNYTEVGYFSA

FESNFSKYKLFIRRIIFSQIIFGGVGTILFYFFL
MILLIPLSVIFSNCILLPHGKSKLFYIAPIITAI:
TEVLSLMLLVFFSYKYANLKSIFMFPTKEFKYFL-
FVLIFIFKPPFHFFLLNALF IHVYSLVALIFSFE:
DRVTAAYPLVVALFSLLITSDKFQFHNYSCRNLI:
LVNGDPNYTSLILLTVLLISFVFSVSNKLKVLYL:

CCKIXRKLLLFYFILFVSIASQYFFSYIFPSILS
KEAVDFILSHF THFIINGVINYLEINKLATNIP
MCFFRVYASRLSYYSI

LEASE NOTE: This sefver runs the
arch 1999) of the promoter predicto

Enter a DNA sequence to find:
promoter:

Type of organism: ¢ prokaryote -

Include reverse strand? ¢ yes
Minimum promoter score (betwe

Cut and paste your sequence(s)
)]

e

Figure 55. Matching Input Data to Neural Network Promoter Prediction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

8.2.2 Design and Implementation

Since this is a somewhat more complex workflow process, a Data/Program Chart
describing all of these three threads is needed to help better communication between end-
users and the workflow designer. The Data/Program Chart drawn by the user is shown in
Figure 56. Basically the whole process starts from the task InputSN that asks the user for
the identification number of the target protein sequence. Then the task NCBISearch is
invoked to search the protein sequence in NCBI database and retrieve it back to the local
machine. Three tasks, TMPred, BLAST, and Promoter, need to use the prbtein sequence
retrieved by the task NCBISearch. Task TMPred marks the transmembrane regions of the
sequence. Task Promoter predicts the promoter regions of the sequence by using a neural
network. And task BLAST searches the sequence database to find sequences that are simi-
lar to the target sequence on structure. The outputs of the tasks TMPred and Promoter
will be displayed directly to the user. The process following the task BLAST, which col-
lects similar sequences, is more complex than the other straight forward display tasks.
The output of task BLAST is a set of similar sequences associate with their similarity cri-
teria value, called e-value (Altschul et al., 1990). This set of sequence will be fed to the
next step — task Threshold. Task Threshold filters the set of sequences according to their
e-values. That is, sequences with e-values lower than the threshold will be kept while the
others are discarded. The qualified sequences are then sent one-by-one to the task Lit/nfo
. The function of task LitInfo is to search each input sequence against the NCBI PubMed
database (NCBI), extract the literature-oriented information from the resulting web pages,
then send back the literature-oriented information to the Threshold task. After collecting
all of the literature-related information for all similar sequences, task Threshold puts

them together into a HTML file and sends the file to the Display task (for display to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

user). Note that the sequence is sent one-by-one from task Threshold to task LitInfo. Fur-
thermore, the literature-related information is collected one-by-one from the Litlnfo task

for each sequence. Thus a loop structure is employed here to address the iteration issue.

BLASTpar ,
InputSN
TMPredpar

& NCBISearch

TMPred) BLAST @ Promoter

v
Display » Threshold

4
Display Display

LitInfo /

Figure 56. Data/Program Chart for Protein Function and Expression.

«

A 4

According to the Data/Program Chart, workflow designers, with their workflow
modeling expertise, can draw the Petri net model for this workflow process with the Petri
net-based user interface. The Petri net model is displayed in Figure 57. Transitions In-
putTMPredpar, InputBLASTpar, InputThres, and InputPromoterpar are added into the
model to explicitly represent the parameter input tasks. The other part of the Petri net
model is a straightforward mapping between the Data/Program Chart tasks and the Petri
net transitions and places, except for the iteration part for literature information search-

ing. To describe the iteration of transition Lit/nfo, an OrSplit place is used to dispatch the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

®
Start
fnputSN O NCBISearch
SNContainer
SeqContainer
i —— —
LlnputTMPredpar InputBLASTpar Input‘l’hre-s::| InputPromoterpar l
ThMPredparContainer BLASTparContainer ThresContainer PromoterparContainer
y Yy
TWPred BLAST Promoter
O] O : O—
HelicsContainer SN&EValContainer 1nreshold Promoterinfo
DisplayHelics Litinfo O DisplayPromoterinfo
OrSplit

N
DisplayLitinfo

End

Figure 57. Petri Net Model for Protein Function and Expression Workflow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

output of transition Threshold to appropriate transition (LitInfo or DisplayLitinfo) based
on the features of the output. If the output is a sequence, it will be directed to transition
LitInfo by the OrSplict place. If the output is a texf file containing all of the literature in-
formation for all the sequences, it will be forwarded directly to transition DisplayLitInfo.
The mechanism of using OrSplit to construct loop structure in Petri net model is de-
scribed in section 5.4. Note this loop structure is hard, if not impossible, to be represented
in a DAG. Data in a DAG is not explicitly expressed. So basicall}; any processes ex-
pressed in a DAG are static processes. No dynamic decisions based on data features can
be made during the execution. It is the Petri net model that enables the modeling of itera-
tion in this workflow case.

After been input with the Petri net workflow model, the Graphic User Interface
can, with the help of the workflow designer, translate this workflow model into GFDL

script as shown in Figure 58.

Set x=NCBISearch(InputSN(PSeq));

Set DisplayHelics(TMPred(x,InputTMPredpar()));

Set y=BLAST(x,InputBLASTpar());

Set z=NULL;

Set z=LitInfo(1) While 1=Threshold(y,z, Thres);

Set DisplayLitInfo(l);

Set DisplayPromoterInfo(Promoter(x,InputPromoterpar()));

Figure 58. GFDL Script for Protein Function and Expression Workflow.

The translation procedure goes as follows. When the interpreter first analyzes the
whole model, it detects that the transitions /nputSN and NCBISearch are in a sequence

structure with all the other parts of the process. So the interpreter generates the sentence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

Set x=NCBISearch(InputSN(PSeq)); (the variable name x is randomly selected) and goes
recursively into the exploration of the rest part (lower part in Figure 57) of the process
model. After going further into the lower part, the interpreter detects that the lower part is
consisted of three parallel routines. So the sentences Set DisplayHelics(TMPred(x, In-
putTMPredpar())); and Set DisplayPromoterInfo(Promoter(x,Input-Promoterpar())); are
generated and the interpreter goes further into another parsing recursion. In this recursion,
the most inner structures are revealed: a Begin-controlled loop structure is embedded into
a sequence structure. Thus the interpreter can generate the last part of the GFDL script.
That is, the code for the first step in the sequence structure is generated as sentence Set
y=BLAST(x,InputBLASTpar()),; and the following loop structure is interpreted as GFDL

scripts shown in Figure 59.

Set z=NULL,;
Set z=LitInfo(l) While I=Threshold(y,z, Thres);
Set DisplayLitInfo(l),

Figure 59. The Loop Structure in Protein Function and Expression Workflow.

8.2.3 Execution

Before the GFDL script can be executed, all the data and programs used in the
sentences must be registered with the Grid-Flow system. There is only one data PSeq
need to be registered by the user. All the other data are generated as intermediate vari-
ables during the workflow execution and thus automatically registered by the system. On

the contrary, all the programs used in the script needs to be manually registered by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

user. Programs InputSN, InputTMPredpar, InputBLASTpar, Threshold, InputPromoter-

par, DisplayHelics, DisplayLitlnfo, and DisplayPromoterInfo are all local programs lo-

cated in the local operating system. Programs NCBISearch, TMPred, Promoter, and Lit-
Info are Internet programs which are based on webpage format CGI programs.

Program BLAST is different from the other programs since it is based on the G-
BLAST services provided by the WebRun system. This G-BLAST web service locates
on the Titanic cluster of the High Performance Computing Lab (HPCL) in UAB. It pro-
vides the service of searching single genomic sequence against predefined sequence da-
tabases. Since the G-BLAST service has a unique interface definition, it is easy to replace
this G-BLAST service with other services without changing any GFDL code. The G-
BLAST service could also be extended to other service providers for better performance
if more computing power should be desired. This service-oriented architecture enhances
the flexibility, extensibility, and performance of the Grid-Flow system.

Most of the workflow process can be automatically executed by the workflow en-
gine. The only part that requires human interference is the matching of input/output data
between programs (shown in Figure 55). The workflow process will finally present users
with three types of data. They are information about sequence transmembrane regiohs,
sequence promoter regions, and the literature-related information for the sequence in the
genomic research area. Figure 53 offers a good example of the information for sequence
transmembrane regions, generated by the workflow process. Figure 60 and Figure 61 dis-
play the literature-oriented information and the result of promoter prediction of a‘particu—

lar protein sequence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

3 Chuser\guan\TF200510317435657.htmi

C:luser\guaniTF200510317435657 him|

LOCUS AY057452 12215 bp DNA linear BCT 03-JUN-2003 Reference Genome"™>MGCA

FHPRDA FSTSA W{RNA
[C1: AY(057452. Reports Edwardsiella icta...[gi:19113666] Links

| nocus RYD57452 12215 bp DNA linear BCT 03-J1

DEFINITION Edwardsiella ictaluri isclate 93-146 O antigen biosynthesis
cluster, partial sequence; and ISl-like insertion sequence,
complete seguence.

ACCESSION AY(057452

VERSION AY(}57452.2 1:19113666
REYWORDS .
| SOURCE Edwardsiella ictaluri

ORGANISM Edwardsiella ictaluri
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteri
Entercbacteriaceae; Edwardsiella.

| REFERENCE 1 (bases 1 to 12215)
1 AUTHORS Lawrence,M.L., Banes,M.M., Azadi,P. and Reeks,B.Y.

TITLE The Bdwardsiella ictaluri O polysaccharide biosynthesis gene
cluster and the role of O polysaccharide in resistance to no
catfish serum and catfish neutrephils

JOURNAL Microbiclogy {Reading, Engl.)} 149 (Pt 6), 1409-1421 (2003)

PUBMED 12777482

REFERENCE 2 (bases 1 to 12215}

: AUTHORS Lawrence,M.L. and Banes,M.M.

: TITLE Direct Submission

l JOURNAL Submitted (26-SEP-2001) Veterinary Basic Sciences, Mississip
State University, P.0. Box 6100, Mississippi State, M8 39762
Usa

REFERENCE 3 (bases 1 to 12215)

AUTHORS Lawrence,M.L. and Banes,M.M.
TITLE Direct Submission ‘
JOURNAL Submitted (0S5-MAR-2002) Veterinarv Basic Sciences

i

Figure 60. Literatures Information of a Protein Sequence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

Promuoter predictions - Microsoft Internet Explorer

Promoter predictions for 1 eukaryotic sequence with score
cutoff 0.80 (transcription start shown in larger font):

Promoter predictions for seq0 :

Start End Score Promoter Sequence
28 8 0.95 cgatatcgttgagtatgtaaaagttotgotgatgagtecgeBgoggcgace
162 212 0.83 ceccgeoecegetgegetatattaactogeoectatattttaatBattgeggce
41T 467 0.98 tgatcgactttgectttaaaacaaccotgoccatoteocatCatogeotate

704 754 0.96 cgecagettcgacget aaaaaggt ctatagegggetggaggt ggcctaces
1210 1260 0.83 acaaatgcaagcgatatacacggagagggcaggecagaggCotgectttt
1361 1401 0.90 agatgcagatattggttatatacacagggtgatatacaatatcggaaag
1602 1652 0.91 ggcatagatgtaaacacagtaaaaagttgctcagggtagtCagtgcattyg
1893 1943 0.91 atccattccagtaggaatatattattgecacccagtttagaCeoggacages
2035 = 2085 0. 97 ttagctgatateggtgtataattcocogetgttgaggttgtCtoatggcoea
2301 2351 1. 00 gtcattattcgocacttaaaaaaacgcacgeoogaggogaatdacatcatee
2987 3037 0. 88 attatgagttcacttctaaaaaattccatatcotttacttgCaatgcaagg
3000 3140 0.93 atgtatatccatttggtatatatagtgoaacgatgagtgttggogettat
3372 3422 0.82 tttttcoctgcttggttatatcaaggegtegageggttatat ctaatatea
3651 3701 0.98 ggectgtggctataagtatatatacggoatgtactccaat tattttaage
3832 3882 0. 95 ttcaaaatataagctatttataaggegaattattitttcgCagattattt
4286 4336 0. 93 aattaggtzagggctatatataattataggetttettgaatcatgetett
E 4501 4551 0.88 taactatgaacatccgtataaactcctgaataacctgactCtagaggagt

5604 5654

atggaaaggataactatttataaggaggecogtgeatttt atattatccca

Figure 61. Promoter Prediction for Protein Sequence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

8.3 Discussion

These two workflow use cases offer good demonstrations of the benefits that
WFMS can bring to bioinformatics research. Compared with analyzing the protein trans-
membrane regions in 10 steps without workflow (described in section 8.1), a user can
easily go through the first workflow process by clicking several buttons and monitoring
the execution under the control of WFMS. The significant number of functions provided
by input/output tools, such as InputSN and Display, greatly facilitate the interaction be-
tween workflow users and the management system. Users are now shielded from the
complicated implementation details of the data transfer and transformation. They need
not even bother to learn the usage of various web interfaces for different web programs.
A uniform interface for data input and output has been provided by Grid-Flow for users
to communicate with the system efficiently. The flexible flow controls supported by the
GFDL also enable users to describe advanced streamlining workflow processes. In addi-
tion, the powerful data and program integration engine, via novel technologies like
Grid/web services, extends the scope of workflow execution over the traditional system-
level boundary. More workflows can now be executed in heterogeneous and distributed
environments, which fully exploit the power of distributed computation.

With the help of the WFMS, users can reduce the amount of errors and mistakes
they may make while doing the data analysis manually. Current data analyses usually in-
volve large amount of data input and output, as well as complicated procedures with nu-
merous tasks using multiple tools. Users are prone to make mistakes when facing the
large amount of data and various tools. WFMS reduce the users’ burden by providing a
systematic way to handle the data, tools, and procedures. As shown in the second work-

flow use case, the whole workflow process is predefined and recorded in GFDL scripts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Users can check the workflow definition thoroughly beforehand based on the design of
the data analysis protocol. Once the workflow is defined, WFMS would strictly execute
this workflow without further human interaction. Thus, mistakes and errors introduced by
human operations can mostly be avoided in WEMS. On the other hand, the complete
definition of workflow process cah also help users on bookkeeping and communicating
their works and ideas with their colleagues.

From the perspective of performance, WFMS can improve the throughput of data
analyses. The author of this dissertation made a comparison of the time used by an ex-
perienced user (manually) and WFMS to complete the data analysis defined in section
8.2.1. The user took 125 minutes to complete the whole procedure, including the waiting
time of progrém execution and the time used for copy-and-paste data between programs.
Grid-Flow spent less than two second to interpret the GFDL script, and about 67 minutes
to finish the whole data analysis on the same input sequence. The improvement of per-
formance would be more significant if a batch of sequences need to be analyzed: Grid-
Flow system can parallelize the processing of multiple sequences and dramatically reduce
the time used by slow human input and output operations, like copy-and-paste of data
between programs.

VThis chapter described two workflow use cases performed with the Grid-Flow
system and discussed briefly the benefits of using WFMS in bioinformatics research.
Each workflow use case is demonstrated with its definition, design, implementation, and
execution. The benefits of using Grid-Flow system are described based on three aspects:
usability, reliability, and performance. The next chapter will summarize the dissertation

and offer conclusions of the Grid-Flow research and its practice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

9 SUMMARY AND CONCLUSIONS

The Grid-Flow system is implemented as a proof-of-concept prototype to investi-
gate the feasibility of applying Petri net modeling and Grid computing techniques to the
traditional workflow management system in order to support design and execution of ad-
vanced scientific workflows in Grid environment. Briefly, the Grid-Flow system can be
divided into three subsystems with their relatively individual functionalities. These sub-
systems are as follows: workflow modeling subsystem, which uses Petri net modeling
approach to help users define workflow processes and monitor the execution; workflow
execution subsystem, which employs GFDL to convey process definitions and executes
workflows by scheduling appropriate data and programs; and data/program integration
subsystems, which provides a uniform interface to data access and program invocation. In
this chapter, each individual subsystem is evaluated and summarized, followed with an

evaluation of the whole Grid-Flow system and the conclusion of the whole dissertation.

9.1 Workflow Modeling Subsystem

The main functionality of workflow modeling subsystem is to model workflow
processes, or in other words, to help WFMS users to design workflows. The Petri net is
used in the Grid-Flow system as the modeling approach. Compared with a DAG formula-
tion, Petri net is a more powerful modeling approach that has broader coverage on work-
flow structures. Petri nets can support not only the four common routines used in work-

flow process, but also elaborate flow control structures, like the implicit OrSplit. In addi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

tion, Petri net modeling has support for the explicit expression of data and state in work-
flow process, which enables the data feature-based flow control and workflow execution
monitoring, bookkeeping, and fault recovering. The Grid-Flow system equipped with
Petri net modeling approach thus has the ability to model advanced workflow processes
and perform more subtle controls over the workflow cases.

The instantiation of Petri net modeling accomplished in this dissertation, as well
as the user interface of Grid-Flow system, is based on GME. GME provides many useful
features to support the model-driven design and computation. First, the meta-model of the
Petri net, which is the foundation of Petri net domain models, is defined in GME. Second,
after setting up the meta-model, a user can build Petri net domain models directly within
GME to model the workflow process. Third, GME supports the definition of checking
constraints for the domain model. This feature can help users check the validity of the
workflow definition and avoid many mistakes during the modeling. Fourth, an interpreter
has been implemented within GME to automatically translate the Petri net workflow defi-
nition into GFDL.

The workflow modeling subsystem also provides another modeling approach, the
Data/Program Chart, for defining workflow processes. Compared with the Petri net, the
Data/Program Chart is not as powerful but is easier to grasp by inexperienced users. It
facilitates the communication of informal definitions of workflow processes between
end-users and workflow designers.

In a summary, the workflow modeling subsystem is a powerful, agile, and con-

venient system supporting advanced workflow definition and modeling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

9.2 Workflow Execution Subsystem

The workflow execution subsystem provides not only a language (GFDL) to de-
fine and convey the workflow process, but also a platform to support the execution and
administration of workflow cases.

GFDL is a programmable language used to describe workflow processes. It has
the ability to define variables, data, programs (functional units) in the workflow process,
control the data and execution flow, and support the hierarchical definition of workflow
processes. Petri net models can directly be mapped to GFDL by the interpreter. Com-
pared with other workflow languages, GFDL is a human readable, agile, light-weight,
and extensible workflow description language. Experienced users can furthermore define
workﬂow process directly with GFDL, like using a programming language. This particu-
lar feature can help to avoid the overhead of mapping between the Petri net models and
GFDL scripts, therefore improve the effectiveness of the Grid-Flow system and the per-
formance of workflows.

The workflow execution subsystem is responsible for interpreting user-defined
workflow process in GFDL, and coordinating the execution of user workflows using ap-
propriate services provided by the data/program integration subsystem. It is based on a
service-oriented architecture, which is organized as communicating as services through
well-defined interfaces without knowing the implementation details. The workflow exe-
cution subsystem is implemented as an assembled system of five modules; each module
has its clear defined functionality. The interfaces among functional modules are well-
defined. Modules communicate with each other by using services. This architecture
modularizes the function of the whole subsystem and simplifies the implementation of

each module.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

9.3 Data/Program Integration Subsystem

Data and program integration subsystem can actually be divided into two compo-
nents: the data integration component and the program integration component. Data used
in écientiﬁc workflows come from different resources in diverse formats. So, the major
function of data integration component is to retrieve data from different data sources, and
transform data among various formats if necessary. Similarly to data, programs could
also locate in various environments and have their special execution mechanisms. Pro-
gram integration component covers all of these heterogeneities by providing a uniform
program invocation service to Grid-Flow engine.

The data and program integration subsystem employs several strategies to handle
distributed and heterogeneous scientific data and programs. The online data and program
registration mechanisms provide a formal approach to record information and tools in the
Grid-Flow system, and therefore Grid-Flow effectively integrates CGI programs, which
can only be invoked manually in other workflow systems. Since the online CGI programs
provide such abundant functions for data analysis, scientists, especially bioinformati-
cians, urgently need such a mechanism that can enable them to automate the streamlining
analysis involving CGI programs. On the other hand, the data transformation and match-
ing components can transform the data and link the input and output data sets together,
which ease the connection between programs in workflows and facilitate setting up the
data/program pipeline. All of these mechanisms help to reduce the burden of end-users
therefore improve users’ productivity.

WebRun system is also used in data and program integration subsystem to pro-
vide a methodology and reference model for wrapping applications into web/Grid ser-

vices. It proposes a novel approach to utilize data resources and computing power which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

otherwise cannot be accessed. The G-BLAST services, which were established based on
the architecture of the WebRun system, provide a good example of integrating distributed
computing power to provide better performance and system portability, extensibility, and

address implementation details.

9.4 Evaluation Based on Use Cases

Two bioinformatics workflow cases, 1) protein transmembrane region analysis
and 2) protein function and expression, are modeled using this enabling workflow man-
agement system. The success of these two use cases motivates strongly that the Grid-
Flow system is a non-trivial contribution to both modeling and executing scientific work-
flows. The two workflow processes depicted using the Petri net-based user interface illus-
trate that Petri nets can be used to model advanced workflow structures. In addition, the
fact that one workflow model can be reused in the other workflow case presents the a‘bil-
ity of building hierarchical workflow models in Grid-Flow. On the other hand, the real-
world workflow applications demonstrate the requirements of a powerful modeling ap-

. proach to model complex workflow patterns. Compared to a DAG-based formalism, Petri
nets are more capable to meet such requirements. GFDL scripts used to convey workflow
definitions demonstrate the usability and efficiency of the light-weighted workflow lan-
guage on describing control flow structures and the data flow. Several programs located
in distributed and heterogeneous environments are integrated into the Grid-Flow system
as workflow tasks. The effectiveness and utility of the data and program integration com-

ponent are therefore motivated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

9.5 Conclusions

In a summary, the GridFlow system is a non-trivial contribution to scientific
workflow modeling and to orchestrating programs in Grid computing environment. With
prototyping of Grid-Flow, as well as running real-world workflow applications on it, one
can reasonably accept that the hypothesis of this dissertation is demonstrated. That is, it is
possible to applying Petri net modeling, Internet computing, and Grid computing tech-
niques together, to create a Grid service-based workflow management system that can
model workflow process with Petri nets, and execute workflows over distributed and het-
erogeneous environments, without. sacrificing any capability and generalizability of the
workflow system. The Grid-Flow system is just such a system, constructively demon-
strating the hypothesis. Furthermore, Grid-Flow system and associated experiments dem-
onstrate that the Petri net is qualified to model scientific workflow processes, and the data
and program integration component in Grid-Flow has the ability to integrate newly emer-
gent, disparate and distributed data and computing resources to provide new capabilities
for workflow applications.

This dissertation analyzes three critical issues that distinguish the utility of Grid
workflow systems and provides a novel solution to address these in Grid-Flow system. A
brief survey was first presented on current Grid workflow systems, their modeling ap-
proaches, and their workflow languages. Based on this investigation, the drawbacks of
existing systems are noted with current modeling approaches and workflow languages. In
view of these drawbacks, a novel Grid workflow system is presented, which employs a
Petri net modeling approach based on a user-friendly graphical interface (GME), de-
scribes the workflow process definitions with a light-weight workflow language (GFDL),

and integrates heterogeneous data and distributed analysis tools through a unified plat-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

form (data and program integration components). The meta-model that describes the Petri
net-based workflow process in GME is a novel achievement of this work. To the best of
the author’s knowledge, no similar meta-model has been developed in GME (or equiva-
lent systems) to address the modeling problem of workflow processes. Furthermore, the
architecture of the Grid-Flow system comprises its workflow language GFDL, its graphi-
cal user interface, its workflow engine, its system repository, and its data and program
integration mechanism; these are described in detail. Finally, with the help of two illus-
trative workflow examples, the feasibility of the proposal of the Grid-Flow system is mo-

tivated and further shows advantages of using the Grid-Flow system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

10 FUTURE WORK

The Grid-Flow system is an on-going project. It needs further work to adapt it to
the ever-changing Grid computing environment. Possible future work may focus further
on the Petri net modeling approach. As a modeling approach, Petri nets have their own
limitations. As reported in (Hoheisel, 2004), the size of the Petri net will increase dra-
matically when the modeled workflow process becomes progressively more complex.
Although currently one can use hierarchical Petri net models to describe the workflow
process in a hierarchical structure, more elegant and sophisticated models are needed to
organize such processes in an abstract manner. Another concern about the future devel-
opment of the system is to adapt the Grid-Flow language to business-oriented applica-
tions, such as banking, finance, and data mining. Based on the recognition that the essen-
tial characteristics of scientific and industrial workflows are similar, the authors are con-
vinced the Grid-Flow language with appropriate adjustments is capable of describing
business-oriented workflow processes. The Grid-Flow language will become friendlier in
the near future for designing and carrying out business operational patterns and protocols.
Finally, optimization and fault management features should also be considered in the fu-
ture design of the Grid workflow system, including reexecution of steps in the workflow
based on local failure recovery, and potentially global techniques for recovery from fail-

ure that are weak enough to work fast enough (not limit scalability).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

LIST OF REFERENCES

Aalst, W. v. d. (1994). Putting Petri nets to work in industry. Computers in Industry,
25(1), 45-54.

Aalst, W. v. d. (1996, Nov.). Three good reasons for using a Petri-net-based workflow
management system. Paper presented at the the International Working Conference
on Information and Process Integration in Enterprises (IPIC'96), Camebridge,
Massachusetts.

Aalst, W. v. d. (1998). The application of Petri nets to workflow management. The Jour-
nal of Circuits, Systems and Computers, 8(1), 21-66.

Aalst, W. v. d., & Hee, K. v. (2002). Workflow Management: Models, Methods, and Sys-
tems. Cambridge, Massachusetts: The MIT Press.

Afgan, E., Velusamy, V., & Bangalore, P. (2005, Feb. 14-16). Grid Resource Broker with
Application Profiling and Benchmarking. Paper presented at the European Grid
Conference, Amsterdam, Netherlands.

Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., Meder, S., et al.Gridfip
protocol specification. Retrieved Sepetember, 2002, from
http://www.globus.org/research/papers/GridfipSpec02.doc

Allen, M. P., & Tildesley, D. JI. (1987). Computer Simulation of Liquids. New York, NY:
Oxford University Press.

Altintas, L., Berkley, C., Jaeger, E., Jones, M., Ludaescher, B., & Mock, S. (2004,
March). Kepler: Towards a Grid-Enabled System for Scientific Workflows. Paper
presented at the Workflow in Grid Systems Workshop in GGF10, Berlin, Ger-
many.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
alignment search tool. Journal of Molecular Biology, 215(3), 403-410.

Ames, C. K., Burleigh, S. C., & Mitchell, S. J. (1997, November 16-19). 4 web based
enterprise workflow system. Paper presented at the the International ACM
SIGGROUP Conference on Supporting Group Work: the Integration Challenge,
Phoenix, Arizona.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., et al. (2003).
Business Process Execution Language for Web Services (BPEL4WS) Spcification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

Version 1.1. Retrieved May 12th, 2004, from
ftp://'www6.software.ibm.com/software/developer/library/ws-bepl1 1 .pdf

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., et al. (2003,
May 05). Specification: Business Process Execution Language for Web Services
Version 1.1. Retrieved May 31st, 2004, from http://www-
106.ibm.com/developerworks/library/ws-bpel/

Ant - A Java-based Build Tool. Retrieved May 31st, 2004, from http://ant.apache.org

Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., et al. (2002).
Web Services Choreography Interface (WSCI) 1.0 Specification. Retrieved May
31st, 2004, from http://wwws.sun.com/software/xml/developers/wsci/index.html

BDGP: Neural Network Promoter Prediction. Retrieved October, 2005, from
http://www.fruitflly.org/seq tools/promoter.html

Berman, F., Fox, G. C., & Hey, A. J. G. (Eds.). (2003). Grid Computing: Making The
Global Infrastructure a Reality. West Sussex, England: John Wiley & Sons Ltd.

Bhatia, D., Burzevski, V., Camuseva, M., Fox, G., Furmanski, W., & Premchandran, G.
(1997). WebFlow - A Visual Programming Paradigm for Web/Java Based Coarse
Grain Distributed Computing. Concurrency: Practice and Experience, 9(6), 555-
577.

Booch, G., Rumbaugh, J., & Jacobson, 1. (1998). The Unified Modeling Language User
Guide. Reading, Massachusetts: Addison-Wesley.

Brumfiel, G. (2002). Astronomy: The heavens at your fingertips. Nature, 420(6913), 262-
264.

Camarda, K., He, Y., & Bishop, K. (2001, June 25-27). 4 Parallel Chemical Reactor
Simulation Using Cactus. Paper presented at the Linux Clusters: the HPC Revolu-
tion, Urbana, IL.

Cannan, S. J., & Otten, G. A. M. (1992). SQL - THE STANDARD HANDBOOK. New
York: McGraw-Hill Book Company.

Cao, J., Jarvis, S. A., Saini, S., & Nudd, G. R. (2003, May 12-15). GridFlow: Workflow
Management for Grid Computing. Paper presented at the 3rd International Sym-
posium on Cluster Computing and the Grid, Tokyo, Japan.

Cardoso, J., & Sheth, A. (2003). Semantic E-Workflow Composition. Journal of Intelli-
gent Information Systems, 21(3), 191-225.

Casati, F., & Discenza, A. (2000, March 19-21). Supporting Workflow Cooperation
Within and Across Organizations. Paper presented at the The 2000 ACM Sympo-
sium on Applied Computing, Como, Italy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

Chen, L., & Jamil, H. M. (2003). On Using Remote User Defined Functions as Wrappers
for Biological Database Interoperability. International Journal of Cooperative In-
formation Systems (IJCIS), Special Issue on Data Management and Modeling
Support in Bioinformatics, 12(2), 161-195.

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). W3C Web Ser-
vices Description Language (WSDL) 1.1. Retrieved May 31st, 2004, from
http://www.w3.org/TR/wsdl

ClustalW. Retrieved May 31st, 2004, from http://www.ebi.ac.uk/clustalw

Common Component Architecture. Retrieved May 31st, 2004, from http://www.cca-
forum.or

Condor: The Directed Acyclzc Graph Manager. (2003). Retrieved May 12th 2004, from
http://www.cs.wisc.edu/condor/dagman

Cybok, D. (2004, March). 4 Grid Workflow Infrastructure. Paper presented at the Work-
flow in Grid Systems Workshop in GGF10, Berlin, Germany.

Czarnecki, K., & Eisenecker, U. (2000). Generative Programming: Methods, Tools, and
Applications (1st ed.): Addison-Wesley Pub. Co.

DAGMan (Directed Acyclic Graph Manager). (2002). Retrieved May 31st, 2004, from
http://www.cs.wisc.edu/condor/dagman

Darling, A. E., Carey, L., & Feng, W.-c. (2003, June, 2003). The Design, Implementation,
and Evaluation of mpiBLAST. Paper presented at the ClusterWorld Conference &
Expo in conjunction with the 4th International Conference on Linux Clusters: The
HPC Revolution 2003, San Jose, CA.

Davulcu, H., Kifer, M., Ramakrishnan, C. R., & Ramakrishnan, 1. V. (1998). Logic Based
Modeling and Analysis of Workflows. Paper presented at the ACM Symposium on
Principles of Databases Systems.

Deelman, E., Blythe, J., Gil, Y., & Kesselman, C. (2003). Workflow Management in
GriPhyN. In J. Nabrzyski, J. M. Schopf & Jan Weglarz (Eds.), Grid Resource
Management: State of the Art and Future Trends: Kluwer Publishing.

Dogac, A., Leonid, K., Ozsu, M. T., & Sheth, A. (Eds.). (1998). Workflow Management
Systems and Interoperability (Vol. 164): Springer Verlag.

Dozsa, G., Kacsuk, P., Lovas, R., Podhorszki, N., & Drotos, D. (2004, March). P-
GRADE: A Graphical Environment to Create and Execute Workflows in Various
Grids. Paper presented at the Workflow in Grid Systems Workshop in GGF10,
Berlin, Germany.

Earth System Grid. Retrieved Nov. 27, 2005, from https://www.earthsystemgrid.org/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170
Erwin, D. W., & Snelling, D. F. (2001). UNICORE: A Grid Computing Environment.
Lecture Notes in Computer Science, 2150, 825-834.

Extensible Markup Language (XML). Retrieved May 31st, 2004, from
http://www.w3.org/ XML/

Forum, G. G. (2004). The JSDL Specification. Retrieved October, 2004, from
https://forge.gridforum.org/projects/jsdl-wg/document/draft-ggf-jsdl-spec/en/8

Foster, L. (2002, July 22). What is the Grid? A Three Point Checklist. Retrieved May
31st, 2004, from http://www.gridtoday.com/02/0722/100136.html

Foster, 1., & Kesselman, C. (1999). The Globus toolkit. In I. Foster & C. Kesselman
(Eds.), The Grid: Blueprint for a New Computing Infrastructure (pp. 259--278).
San Francisco, California: Morgan Kaufmann.

Foster, I., Kesselman, C., Nick, J., & Tuecke, S. (2002). The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Retrieved
May 31st, 2004, from http://www.globus.org/research/papers/ogsa.pdf

Foster, 1., Kesselman, C., Tsudik, G., & Tuecke, S. (1998). 4 Security Architecture for
Computational Grids. Paper presented at the 5th ACM conference on Computer
and Communications Security, San Francisco, California.

Fraunhofer Resource Grid. Retrieved May 31st, 2004, from http://www.fhrg.fhg.de

Functional Bioinformatics System. Retrieved Aug. 23, 2003, from
http://www.ppddiscovery.com/PPD FGS 3 5.htm

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns (1st ed.): Ad-
dison-Wesley Professional.

Genomics and Its Impact on Science and Society: A 2003 Primer. (2003). Human Ge-
nome Program, U.S. Department of Energy.

Global Grid Forum. Retrieved August, 2003, from http://www.ggf.org

The Globus Alliance. Retrieved October, 2005, from http://www.globus.org/

The Globus Resource Specification Language RSL v1.0. Retrieved May 31st, 2004, from
http://www.globus.org/gram/rsl specl.html

Goble, C. A., Paton, N. W., Stevens, R., Baker, P. G., Ng, G., Peim, M., et al. (2001).
Transparent Access to Multiple Bioinformatics Information Sources. IBM Systems
Journal, 40(2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

Graham, G. E., Evans, D., & Bertram, 1. (2003, March 24-28). McRunjob: A High Energy
Physics Workflow Planner for Grid Production Processing. Paper presented at the
Computing in High Energy and Nuclear Physics, La Jolla, California.

The GridFTP Protocol and Software. Retrieved May 31st, 2004, from
http://www.globus.org/datagrid/gridftp.html

GriPhyN - Grid Physics Network. Retrieved Nov. 27, 2005, from
http://www.griphyn.org/

Guan, Z., & Jamil, H. M. (2003, March 10-12). Streamlining Biological Data Analysis
Using BioFlow. Paper presented at the the Third IEEE Symposium on Bioinfor-
matics and Bioengineering (BIBEO3), Bethesda, Maryland.

Guan, Z., Liu, Y., Velusamy, V., & Bangalore, P. V. (2004). WebRun: A Unified Plat-
form Supporting Grid Computing Environment (Technical Report No. UABCIS-
TR-2004-1404-1): Department of Computer and Information Sciences, University
of Alabama at Birmingham.

Gupta, A., Ludascher, B., & Martone, M. E. (2002, October). Registering Scientific In-
formation Sources for Semantic Mediation. Paper presented at the 21st Interna-
tional Conference on Conceptual Modeling, Tampere, Finland.

Harary, F. (1995). Graph Theory: Addison Wesley Publishing Company.

Hayes, K., & Lavery, K. (1991). Workflow management software: the business opportu-
nity (Technical report). London: Ovum Ltd.

Hernandez, F. (2004). Domain Specific Models and the Globus Toolkit (Technical Report
No. UABCIS-TR-2004-0504-1): Department of Computer and Information Sci-
ences, University of Alabama at Birmingham.

High-Level Java Interface to GME -- Users Manual Version 1.0. (2004). Institute for
Software Integrated Systems, Vanderbilt University.

Hoheisel, A. (2004, March). User Tools and Languages for Graph-based Grid Work-
flows. Paper presented at the Workflow in Grid Systems Workshop in GGF10,
Berlin, Germany.

Hull, R., Llirbat, F., Simon, E., Su, J., Dong, G., Kuman, B., et al. (1999, February 23-
25). Declarative Workflows that Support Easy Modification and Dynamic Brows-
ing. Paper presented at the International Joint Conference on Work Activities Co-
ordination and Collaboration.

Jacko, J. A., & Sears, A. (Eds.). (2003). The Human-Computer Interaction Handbook:
Fundamentals, Evolving Technologies and Emerging Applications. Mahwah, NJ:
Lawrence Erlbaum Associates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

Jacob, J. C., Williams, R., Babu, J., Djorgovski, S. G., Graham, M. J., Katz, D. S, et al.
(2004, Oct. 24-27). Grist: Grid Data Mining for Astronomy. Paper presented at
the Astronomical Data Analysis Software & Systems (ADASS) XIV, Pasadena,

CA.

Jensen, K. (1997). Coloured Petri nets: basic concepts, analysis methods and practical
use (Vol. 3). Berlin, Germany: Springer-Verlag.

Job Submission Description Language (JSDL) Specification. (2005). GGF.

Kang, M. H., Park, J. S., & Froscher, J. N. (2001, May). Access Control Mechanisms for
Inter-Organizational Workflow. Paper presented at the the 6th ACM Symposium
on Access Control Models and Technologies, Chantilly, Virginia.

Karsai, G., Maroti, M., Ledeczi, A., Gray, J., & Sztipanovits, J. (2004). Composition and
- Cloning in Modeling and Meta-Modeling. I[EEE Transactions on Control System
Technology (special issue on Computer Automated Multi-Paradigm Modeling),
263-278.

Kitano, H. (2002). Computational systems biology. Nature, 420(6912), 206-210.

Kochut, K. J., Amold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., et al. (2002). In-
telliGEN: A Distributed Workflow System for Discovering Protein-Protein Inter-
actions. Special Issue on Bioinformatics, International Journal on Distributed and
Parallel Database.

Koulopoulos, T. M. (1995). The workflow imperative. New York: Van Nostrand Rein-
hold.

Krishnan, S., Bramley, R., Gannon, D., Govindaraju, M., Alameda, J., Alkire, R., et al.
(2001, Nov. 10-16). The XCAT Science Portal. Paper presented at the Supercom-
puting (SC2001), Danver, Colorado.

Krishnan, S., Bramley, R., Gannon, D., Govindaraju, M., Indurkar, R., Slominski, A., et
al. (2001). The XCAT Science Portal. Paper presented at the SC 2001, Denver.

Krishnan, S., Wagstrom, P., & Laszewski, G. v. (2002, July, 19). GSFL: A Workflow
Framework for Grid Services. Retrieved May 31st, 2004, from
http://www.globus.org/cog/papers/gsfl-paper.pdf

Laszewski, G. v., Amin, K., Hategan, M., Zaluzec, N. J., Hampton, S., & Rossi, A.
(2004, Jan. 5-8). GridAnt: A Client-Controllable Grid Workflow System. Paper
presented at the 37th Hawaii International Conference on System Science, Island
of Hawaii, Big Island.

Laszewski, G. v., Foster, 1., Gawor, J., & Lane, P. (2001). A Java Commodity Grid Kit.
Concurrency and Computation: Practice and Experience, 13(8-9), 643-662.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

Lawerence, M. L., Banes, M. M., & Azadi, P. (2003). The Edwardsiella Ictaluri O Poly-
saccharide Biosynthesis Gene Cluster: Correlation between Predicted Enzyme
Functions and O Polysaccharide Composition.Unpublished manuscript, Missis-
sippi State University.

Leach, A. R., & Gillet, V. J. (2003). An Introduction to Chemoinformatics. Dordrecht,
Netherlands: Springer.

Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., et al.
(2001). Composing Domain-Specific Design Environments. [EEE Computer, 44-
51.

Ledeczi, A., Davis, J., Neema, S., & Agrawal, A. (2003). Modeling Methodology for In-
tegrated Simulation of Embedded Systems. ACM Transactions on Modeling and
Computer Simulation, 82-103.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C. L, et al. (2001,
May 17). The Generic Modeling Environment. Paper presented at the Workshop
on Intelligent Signal Processing, Budapest, Hungary.

Leymann, F. (2001). Web Services Flow Language (WSFL 1.0). Retrieved May 31st, (
2004, from http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL .pdf

Lomet, D. B., & Weikum, G. (1998, June 2-4). Efficient and Transparent Application
Recovery in Client-Server Information Systems. Paper presented at the ACM
SIGMOD International Conference on Management of Data, Seattle, WA.

Lorch, M., & Kafura, D. (2002, May 21-24). Symphony - A Java-based Composition and
Manipulation Framework for Computational Grids. Paper presented at the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid 2002), Berlin, Germany.

McCann, K. M., Yarrow, M., DeVivo, A., & Mehrotra, P. (2004, March). ScyFlow: An
Environment for the Visual Specification and Execution of Scientific Workflows.
Paper presented at the Workflow in Grid Systems Workshop in GGF10, Berlin,
Germany.

McCune, D., Parashar, M., Beck, M., Klasky, S., Bhat, V., & Atchley, S. (2004, Novem-
ber). High Performance Threaded Data Streaming for Large Scale Simulations.
Paper presented at the 5th IEEE/ACM International Workshop on Grid Comput-
ing, Pittsburgh, PA.

Microsoft.Visual Basic Language Reference: Shell Function. Retrieved October 2, 2005,
from http://msdn.microsoft.convlibrarv/default.asp?url=/library/en-
us/vblr7/html/vafctshell.asp

Mohan, C. (1998, Spetember 7-10). Workflow Management in the Internet Age. Paper
presented at the Second East European Symposium, ADBIS'98, Poznan, Poland.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

Naming and Addressing: URIs, URLs, ... Retrieved October, 2005, from
http://www.w3.org/Addressing/

NCBI.Entrez PubMed. Retrieved Oct. 28, 2005, from http://www.pubmed.gov

NCBIL. (2004, November 15). NCBI BLAST. Retrieved 4/21, 2005, from
http://www.ncbinlm.nih.eov/BLAST/ ‘

NCBI Website. Retrieved August, 2003, from http://www.ncbi.nlm.nih.gov/

Neema, S., Bapty, T., Gray, J., & Gokhale, A. (2002, October 6-8). Generators for Syn-
thesis of QoS Adaptation in Distributed Real-Time Embedded Systems. Paper pre-
sented at the First ACM SIGPLAN/SIGSOFT Conference on Generative Pro-
gramming and Component Engineering (GPCE '02), Pittsburgh, PA. ’

Novotny, J., Tuecke, S., & Welch, V. (2001, August). An Online Credential Repository
for the Grid: MyProxy. Paper presented at the The Tenth International Sympo-
sium on High Performance Distributed Computing (HPDC-10).

Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Carver, T., et al. (2004,
March). Taverna, Lessons in Creating a Workflow Environment for the Life Sci-
ences. Paper presented at the Workflow in Grid Systems Workshop in GGF10,
Berlin, Germany.

Papakonstantinou, Y., Garcia-Molina, H., & Widom, J. (1995). Object Exchange across
Heterogeneous Information Sources. Paper presented at the 11th Conference on
Data Engineering, Taipei, Taiwan.

Peterson, J. L. (1977). Petri Nets. ACM Computing Surveys, 9(3), 223-252.

The Ptolemy II Project. (1996). Retrieved May 31st, 2004, from
http://ptolemy.eecs.berkeley.edu/ptolemvIl

Ramakrishnan, R., & Gehrke, J. (2003). Database Management System (3rd ed.). New
York, NY: The McGraw-Hill Companies.

Readseq: Read and reformat biosequences. Retrieved August, 2003, from
http://iubio.bio.indiana.edu/soft/molbio/readseqg/java/

Shields, M., & Taylor, 1. (2004, March). Programming Scientific and Distributed Work-
flow with Triana Services. Paper presented at the Workflow in Grid Systems
Workshop in GGF10, Berlin, Germany.

Sotomayor, B. (2004). Chapter 3. Writing Your First Grid Service in 5 Simple Steps. Re-
trieved 6/1/2005, 2005, from http://gdp.globus.org/gt3-
tutorial/multiplehtml/ch03.html

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

Stein, L., Rozen, S., & Goodman, N. (1995). Managing Laboratory Workflow with
LABBASE. Paper presented at the the 1994 Conference on Computers in Medicine

(CompMed94).

Stevens, R., Goble, C., Horrocks, 1., & Bechhofer, S. (2002). OILing the Way to Machine
Understandable Bioinformatics Resources. IEEE Transactions on Information
Technology in Biomedicine, 6(2), 129-134.

Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods) (Version Version 4). Sunderland, Massachusetts: Sinauer Associates.

Systinet.Systinet Products Overview. Retrieved May 31st, 2004, from
http://www.systinet.com/products/overview

Sztipanovits, J. (2002). Generative Programming for Embedded Systems. Keynote Ad-
dress: Generative Programming and Component Engineering (GPCE), Springer-
Verlag LNCS 2487, 32-49.

TeraGrid. Retrieved Nov. 27, 2005, from http://www.teragrid.org/

Thatte, S. (2001). XLANG: Web Services for Business Process Design. Retrieved May
31st, 2004, from http://www.gotdotnet.com/team/xml wsspecs/xlang-

¢/default.htm

Thompson, R. D., & Perry, A. (Eds.). (1997). Applied Climatology: Principles and Prac-
tice. London, England: Routledge.

TMpred - Prediction of Transmembrane Regions and Orientation. Retrieved May 3 1st,
2004, from http://www.ch.embnet.org/software/TMPRED_form.html

Tuecke, S., Czajkowski, K., Foster, L., Frey, J., Graham, S., Kesselman, C., et al. Open
Grid Services Infrastructure (OGSI). Retrieved October, 2005, from http://www-
unix.globus.org/toolkit/draft-ggf-ogsi-gridservice-33 2003-06-27.pdf

TurboBench Worlg‘low System. Retrieved Aug. 23, 2003, from
htip://www.turbogenomics.com/products/turbobench example.html

uberTOOL. Retrieved Aug. 23, 2003, from http://www.science-
factory.com/ubertool.html

Vossen, G., & Weske, M. (1999, June 1-3). The WASA2 Object-oriented Workflow Man-
agement System. Paper presented at the ACM SIGMOD International Conference
on Management of Data, Philadephia, Pennsylvania.

W3C. (2003). SOAP Version 1.2 Part 1: Messaging Framework.

Warmer, J., & Kleppe, A. (2003). The Object Constraint Language Second Edition, Get-
ting Your Models Ready for MDA (Second Edition ed.). Boston: Addison-Wesley.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

Web Services Conversation Language (WSCL 1.0). (2002). Retrieved May 31st, 2004,
from http://www.w3.org/TR/wscl10/

Weske, M. (1999, June). Workflow Management through Distributed and Persistent
CORBA Workflow Objects. Paper presented at the 11th Int. Conf. on Advanced
Information Systems Engineering (CAiSE), Heidelberg, Germany.

Wikipedia.Directed Acyclic Graph. Retrieved September 24, 2005, from
http://en.wikipedia.org/wiki/Directed acyclic graph

Wikipedia.Petri net. Retrieved September 25, 2005, from
http://en.wikipedia.org/wiki/Petri net

Wikipedia. Virtual Network Computing. Retrieved October 8, 2005, from
http://en.wikipedia.org/wiki/'VNC

Workflow Management Coalition. Retrieved May 31st, 2004, from http://www.wfmc.org

Wu, J. S.-c., & Sussman, A. (2004). Flexible Control of Data Transfers between Parallel
Programs. Paper presented at the Fifth IEEE/ACM International Workshop on

Grid Computing, Pittsburgh, PA.

Zeleznik, F. J. (1968). Quasi-Newton methods for nonlinear equations. Journal of the
ACM, 15(2), 265-271.

Zhang, S., Gu, N., & Li, S. (2004, April 5-7). Grid workflow based on dynamic modeling
and scheduling. Paper presented at the International Conference on Information
Technology: Coding and Computing (ITCC2004), Las Vegas, Nevada.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

APPENDIX A

GRAMMAR OF GRID-FLOW DESCRIPTION LANGUAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

Reserved Keywords:
Set, While, Until, When, Register, Data, Program, As, Input, Output, End, Text, Ta-
ble, GridFlow, Internal Program, OS_Program, %,

Syntax:
process :: = sentence; | sentence; ... |
sentence .. = sel_Sentence
| register_data_sentence
| register_program_sentence
| input_sentence
| output_sentence
| end_sentence
set_sentence :: = Set expression_set [While | Until | When expression_set]
fegister_data_sentence :: = Register Data data_name As Text | Table
register _program_sentence :: =Register Program program name As GridFlow | In-
ternal_Program | OS_Program
input_sentence :: = Input input_parameters_list
output_sentence :: = Output output_parameters_list
end_sentence :: =End
expression_set :: = expression [* | % expression ... |
expression :: = [variable =]
variable |
constant |
program
program :: = program_name(parameters)
parameters . = ¢ | expression [, expression ... |
input _parametérs__list :: =variable [, variable ...]
output_parameters_list :: = variable [, variable ...]
data_name :: = variable
program_name :. = variable

variable :: = A-Z |a-z[0-9 | A-Z |a-z ...]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179
constant = A-Z |a-z[0-9|A-Z|a-z ...]

Explanation
GridFlow Description Language follows the Boyce-Codd Normal Form (BCNF)

(Ramakrishnan & Gehrke, 2003). The syntax of GridFlow Description Language is ex-
plained as follows:

Italics represent meta-variables. Bold represent reserved keywords. And roman
font represents terminal symbols. Particularly, € means empty.

“~’ means logic And. “%” means logic Or.

“[]” signifies that the language elements between the square brackets can option-
ally appear, but are not required. Note that these brackets are not part of the code and
must not appear in the GridFlow process.

The “or” (|) symbol signifies that you may use only one of the code elements or
values from the possible choices. Note that the “or” symbol is not part of the code and
must not appear in the GridFlow process{\.

“...” symbol signifies that the code elements prior to it can repeat more than once.

Note that the “...” symbol is not part of the code and must not appear in the GridFlow

process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

APPENDIX B

WEBRUN SYSTEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

B.1 WebRun System Architecture

WebRun is a unified platform supporting Grid computing (Berman et al., 2003)
environments. It provides users with both a web interface and a programmatic interface to
non-interactive programs located on remote computing resources. The web interface, a
browser and servlet implementation in WebRun, supports the finding, starting, control-
ling, and utilization of non-interactive application programs. The programmatic interface
enabled by the web service’s (Systinet) client/service model provides a Java interface for
accessing the programs stored on the remote resources that are otherwise inaccessible.
WebRun adopts a hierarchical architecture including three main components, the Pro-
gram server, the Web Service server, and the Web server, as shown in Figure 62.

Program servers are distributed among all the hosts that contain programs partici-
pating in the WebRun system. Each program server will maintain a program repository,
which resides on the server and represents all available computing resources within that
hosting environment. For each submitted job, the program server will be responsible for
the maintenance of its running environment created in terms of its accompanying Re-
source Specification Language (RSL) (The Globus Resource Specification Language RSL
v1.0).

The WebRun middleware is initially centralized on one machine. It maintains a
program description store, which holds the property file for each program joining the
program participation. Each program profile is accessed as response to a client request,
which in turn may be used to construct a job-submission form or an RSL (The Globus
Resource Specification Language RSL v1.0) associated with a given job. In essence, for

each program description, Grid services are correspondingly generated and registered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

with the OGSA services container. The Grid services in turn provide programmatic inter-

face for servlets/JSP (Java Server Pages) or programmatic users.

=)
=

o

g

=

e

ﬁridDeploy \
g
=
2
=
2
p :
\ : Output j

=}

=

m
4

(53

3

m

Figure 62. WebRun Architecture.

Based on the Grid service interfaces, dynamic web pages may be developed via
servlets/JSP, which are in turn accessible by users via browsers. This approach facilitates
remote job submission and monitoring for a chosen program. Since OGSA (Foster et al.,
2002) was still under development during the implementation of this dissertation work,
the implementation of WebRun creates Grid services using Java CoG-based (Laszewski

et al., 2001) Grid functionalities instead of exploiting OGS A-based Grid services directly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

The work now is under way to map these services directly onto OGSA-based Grid ser-
vices.

The WebRun system maintains a program repository that records all the programs
available with the current users’ credentials. The Grid-Flow engine, as a web service cli-
ent, utilizes the functionality of each program provided by the WebRun system. Thus, the
Grid-Flow engine can access any program through a unified web services interface. To
facilitate the creation of the web service and the usage of the Globus Toolkit 3.2 (GT3.2)
(Foster & Kesselman, 1999), the domain experts are provided with a graphical modeling

environment for automated generation of web services (Hernandez, 2004).

B.2 Program Description File

The Program Description File (PDF) uses XML to describe the various input ar-
guments to the program. The various tags used are <optional>, <input>, <output> and
<value>. The <optional> tag is used to specify that the argument is optional. Suppose one
has a value that is associated with the argument, the <value> tag is used to mark the start-
ing and ending limits for the value. The <input> tag is used to indicate that an input file is
required for executing the program. The <output> tag indicates that an output file speci-
fied by the entry will be generated by the program. The PDF will be modified to support
the Job Description Language (Forum, 2004), and other tags would be added in the fu-
ture.

Two examples for PDF using XML are provided as the following.

Figure 63 shows possible XML tags with associated entries for ProgramA. Pro-
gamA takes in a mandatory value as input and an output file that can be specified with

the —1 option, followed by any optional input file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

Format: ProgramA <value> [-1] <outfile> [input]
Program Description:

<value>value</value>

<optional>1</optional>

<output>outfile</output>

<optional><input></input></optional>

Figure 63. ProgramA - Program Description.

Figure 64 shows the XML tags associated with ProgramB. ProgramB takes in an

optional input filename.

Format: ProgramB [filename]
Program Description:
<optional><value>filename</value></optional>

Figure 64. ProgramB - Program Description.

B.3 Wrapper Generation

The WebRun middleware provides users with programmatic access to programs
distributed on heterogeneous hosting environments. To adopt programs in various envi-
ronments, WebRun employs Grid services as a uniform access interface to the programs.
Grid services hide the execution details of different programs; manage the execution of
programs on the back end computing platforms, and transfer input and output of the pro-
gram between the users and the computing resources. Whenever a user invokes a pro-

gram through the WebRun middleware, the program is executed in a specific running en-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

vironment created by the Grid service. All of the communication between the user and
the running program is handled by the corresponding Grid services. Grid services act just
like a wrapper that packs the program and its running environment into an independent
tunnel between users and computing servers, without any interaction with the execution
of other programs. Since different programs have different configuration for execution,
various kinds of Grid services should be designed and implemented to facilitate users’
invocation of programs. Two different deployment strategies are used to design Grid ser-

vices according to different configuration of programs, as described below.

B.3.1 Application-Specific Grid service

Application-specific Grid services are designed for programs that have already
been deployed on back end program servers. Those programs usually have complex con-
figurations, so expertise is needed to install and tune them on the back end computing
resources. These kinds of programs can be easily found in a broad applied area, from the
genetic analyses over huge amount of DNA data, to the large-scale parallel simulation
projects on compute farms.

The strategy of deploying this kind of application with WebRun middleware is
depicted in Figure 65. In this architecture, the front-end is the user’s application that in-
vokes the program via Grid services. The back end is a group of servers that provide
computing power for the execution of programs. Each program server has a program re-
pository working as a container of programs and their running environments.

WebRun middleware is composed of a Program Description Store, a WebRun
factory and some WebRun Utilities. Before being deployed, each program on the pro-

gram servers needs to be registered with the Program Description Store. This registration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

process generates a record in PDF format for the registered program and stores the record

into the Program Description Store.

WebRun Middleware

Program
Desc.
Store

WebRun
Utilities

WebRun Factory,

Figure 65. WebRun: Application Specific Deployment.

The deployment process is described as follows: When an application requests the
Grid services for a program execution, the WebRun Utilities accept the request and query
the Program Description Store. Once a match between the request and the records are
found, WebRun Utilities determine the name and address of the corresponding program
repository. By querying the program repository, WebRun Utilities fetch the PDF of the
target program. Two aspects of information about the program are obtained by parsing

the PDF. One is a complete list of all possible program arguments, including argument

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

name and argument property (mandatory/optional). The other aspect of information is
about the execution environment, such as the name and IP address of the hosting server,
and the physical path of the program in the file system. All these information are trans-
ferred to the WebRun Factory, which builds up a specific Grid service for the target pro-
gram, and redirects the user application’s request to this Grid service. After the execution
of the program, the specific Grid service is cleaned up automatically by the WebRun
Utilities.

Several Grid services are developed to facilitate the deployment of application-
specific Grid services. Théy are as follows:
1. ProgramMatchPort, which matches user application request to the records in the Pro-

gram Description Store;

2. ProgramListPort, which queries the program repository on the computing server and

returns the PDF of the target program;

3. PDFParsing, which parses the PDF and generates the corresponding descriptions of

the program; and
4. WebRunFactory, which generates the Grid services and redirect users’ application.

To explain the operation of WebRun, consider an executable HelloWorld that
takes in an optional addressee. The format for executing the program on command line
and the corresponding XML Program Description are given in Figure 66. Application-
specific Grid services can be applied to deploy the HelloWorld program as a Grid ser-
vice. Prior to deployment, the HelloWorld program should first choose a hosting back
end server and register itself with the server’s program repository. A PDF is generated

during the registration and saved in the repository. Whenever a user application tries to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

invoke the HelloWorld program, the PDF file will be transferred to WebRun Utilities and
parsed to enable the WebRunFactory Grid service to generate the specific Grid service.
This specific Grid service for the HelloWorld program is called the HelloWorldService,

as shown in Figure 67.

Format: HelloWorld [-to addressee]
Program Description:
<optional>to<value>addressee</value></optional>

Figure 66. HelloWorld - Program Description.

public interface HelloWorldService {
java.lang.String hello () ;
java.lang.String hello(java.lang.String message);

Figure 67. Grid Service for HelloWorld.

The user application which invokes this Grid service may appear as in Figure 68.
For initial demonstration purposes, WASP (Systinet) is used as the web services server to

serve as the corresponding registry service.

B.3.2 General Grid Service for Application Invocation

A general grid service for application invocation is designed for programs that are
only temporarily executed on back-end program servers. Those programs are usually pro-
vided directly by the end-users, executed several times by the same users, and cleaned up

by the servers immediately after their execution. To build up application-specific Grid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

services for each of these programs may be an inefficient approach. For example, a user
may only want to execute his’her own program in a Grid environment once, then the
overhead of creating a Grid service to deploy the program may be too costly compared to
program execution itself. Moreover, the license and security issues of software may also
prevent users to establish the Grid services and publish them permanently. Users expect a
unified platform that can let them stage their executables, invoke the programs, and trans-
fer the input/output between back end servers and front-end applications. Thus, an agile,
general-purpose strategy for invocation of programs in a Grid environment is developed

to accommodate users’ requirements.

import org.systinet.wasp.webservice.Registry;

public class HelloWorldClient {
public static void main(String[] args) throws Excep-
tion {
String serverURL = args[0];

// lookup of HelloService
HelloWorldService helloWorldService =

(HelloWorldSer-
vice)Registry.lookup (serverURL,HelloWorldService.class);

// call HelloWorldService and print out a re-
sporise message
System.out.println(helloWorldService.hello());
System.out.println(helloWorldService.hello("-to
World")):;
}

)

Figure 68. User Application Invoking HelloWorldService.

The architecture of general Grid services for application invocation is shown in

Figure 69. The basic idea of this strategy is to execute the user-provided program in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

temporary running environment, aided by a set of Grid services. When a user submits a
request for program execution, WebRun Utilities first accepts the request and tries to find
an appropriate computing resource for the execution. Once a program server is chosen, it
is asked to construct an independent, temporary execution environment to accommodate
user’s program. With such an environment established, executable and input files will be
staged to the program server by WebRun utilities using GridFTP. With the help of We-
bRun utilities, users can invoke, monitor, and manage their programs via various Grid
services. After obtaining the output of their programs, users call Grid services to destroy

the temporary execution environment and end the communication.

WebRun Middleware

s

Utilities

Program k
Executable
+ Inputs

Temporary
Execution
Environment

Figure 69. WebRun: General Application Invocation.

To enable the application invocation of general programs, the following Grid ser-

vices are designed and implemented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

1. SetCredential and DestroyCredential, which setups and terminates users’ certification.
2. SubmitJob, which invokes the programs on the back end server side.
3. GetlobStatus, which checks the status of the program execution.
4. WaitUntilDone, which executes null operations until programs finish.
5. SetFTP and StopFTP, which sets up and terminates GridFTP transformation.
6. UploadFile, which transfer files from user side to server side.
7. DownloadFile, which transfers files from server side back to user side.

With the help of these Grid services, the WebRun is able to provide the user a
demonstration program, by which users can learn how to use the Grid services. This
demo program, using Java Cog infrastructure (Laszewski et al., 2001), indicates what

Grid services should be used, and in which order.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GRADUATE SCHOOL
UNIVERSITY OF ALABAMA AT BIRMINGHAM
DISSERTATION APPROVAL FORM
DOCTOR OF PHILOSOPHY

Name of Candidate Zhijie Guan

Graduate Program Computer Information Systems

Title of Dissertation Grid Flow: A Grid-Enabled Scientific Workflow System

With a Petri Net-Based Interface

I certify that I have read this document and examined the student regarding its
content. In my opinion, this dissertation conforms to acceptable standards of
scholarly presentation and is adequate in scope and quality, and the attainments of
this student are such that he may be recommended for the degree of Doctor of
Philosophy.

Dissertation Committee:

Name Signature

Anthony Skjellum , Chair /A\Y/YHW\/\%&@
Purushotham V. Bangalore 4}%\3{%@
/ ‘ .

Jeffrey G. Gray

Tracy P. Hamilton

Elliot J. Lefkowitz

—

Director of Graduate Program

Dean, UAB Graduate School (\J ;\E /U\%l(%/\ N & o W

Date JUN 1 6 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

