MA 227, Calculus - III.	Midterm test - I	Monday, October 6, 2003.			
Student's Name					
		(Please, print)			

GIVE REASONS FOR YOUR ANSWERS!

TEST 1:		
HW:		

The Final Grade for TEST 1:

I. (15%) A helix is described by the equation

$$\vec{r}(t) = (4\sin t, 4\cos t, 3t).$$

- a) Find $\vec{r}'(t)$ and $\vec{r}''(t)$.
- b) Find the length of the curve when $0 \le t \le \pi$. c) Find the curvature at the point t = 0.

II. (15%) A helix is described by the equation

$$\vec{r}(t) = (4\sin t, 4\cos t, 3t).$$

- a) Find the tangent vector \vec{T} at the point t=0. b) Find the normal vector \vec{N} at the point t=0. c) Find the binormal vector \vec{B} at the point t=0.

III. (15%) A helix is described by the equation

$$\vec{r}(t) = (4\sin t, 4\cos t, 3t).$$

- a) Find the equation of the normal plane at t=0.
- b) Find the equation of the osculating plane at the point t = 0.
- c) Find the angle between the helix and the line $\vec{r}(s) = (s, s+4, -s)$ at the point (0, 4, 0).

IV. (15 %) The motion of the particle is described by the equation

$$\vec{r}(t) = (4\sin t, 4\cos t, 3t).$$

- a) Find the velocity and the acceleration as functions of time.
- b) Find the speed at t = 0.
- c) Find the tangential and normal component of acceleration at t=0.

V. (10%) Find the integral $\int_0^1 (5\vec{i} - 2t\vec{j} + t^2\vec{k})dt$.

VI. (10%) Let $f(x,y) = x^2 + 3yx^3$. Find $f_x f_y$, f_{xx} , f_{yy} , f_{xy} .

- VII (20%). Let $f(x,y)=x^2+y^2$. a) Find the equation of the tangent plane to the surface $z=x^2+y^2$ at the point (2,1).
- b) Find the linearization of the function $f(x,y) = x^2 + y^2$ at the point (2,1). c) Use the linearization to find an approximate value of the function at the point (2.2, 1.3).
- d) Find the formula for dz at the point (2.1).