MA 227, Calculus - III. Midterm test - I Monday, October 6, 2003.
Student's Name
(Please, print)
GIVE REASONS FOR YOUR ANSWERS!

TEST 1:
HW:

The Final Grade for TEST 1:

I. (15\%) A helix is described by the equation

$$
\vec{r}(t)=(4 \sin t, 4 \cos t, 3 t) .
$$

a) Find $\vec{r}^{\prime}(t)$ and $\vec{r}^{\prime \prime}(t)$.
b) Find the length of the curve when $0 \leq t \leq \pi$.
c) Find the curvature at the point $t=0$.
II. (15\%) A helix is described by the equation

$$
\vec{r}(t)=(4 \sin t, 4 \cos t, 3 t) .
$$

a) Find the tangent vector \vec{T} at the point $t=0$.
b) Find the normal vector \vec{N} at the point $t=0$.
c) Find the binormal vector \vec{B} at the point $t=0$.
III. (15\%) A helix is described by the equation

$$
\vec{r}(t)=(4 \sin t, 4 \cos t, 3 t) .
$$

a) Find the equation of the normal plane at $t=0$.
b) Find the equation of the osculating plane at the point $t=0$.
c) Find the angle between the helix and the line $\vec{r}(s)=(s, s+4,-s)$ at the point $(0,4,0)$.
IV. (15 \%) The motion of the particle is described by the equation

$$
\vec{r}(t)=(4 \sin t, 4 \cos t, 3 t) .
$$

a) Find the velocity and the acceleration as functions of time.
b) Find the speed at $t=0$.
c) Find the tangential and normal component of acceleration at $t=0$.
V. (10%) Find the integral $\int_{0}^{1}\left(5 \vec{i}-2 t \vec{j}+t^{2} \vec{k}\right) d t$.
VI. (10\%) Let $f(x, y)=x^{2}+3 y x^{3}$. Find $f_{x} f_{y}, f_{x x}, f_{y y}, f_{x y}$.

VII (20\%). Let $f(x, y)=x^{2}+y^{2}$.
a) Find the equation of the tangent plane to the surface $z=x^{2}+y^{2}$ at the point $(2,1)$.
b) Find the linearization of the function $f(x, y)=x^{2}+y^{2}$ at the point $(2,1)$.
c) Use the linearization to find an approximate value of the function at the point (2.2, 1.3).
d) Find the formula for $d z$ at the point (2.1).

