MA 227: Calculus III

Final Test, December 11, 2003

Timing: 10:45—1:15
Your name:
Your signature:

1. Let $u=x y+y z+z x, x=s t, y=e^{s t}, z=t^{2}$. Calculate $\partial u / \partial s$ and $\partial u / \partial t$ when $s=1, t=1$.

10 points
2. Find the maximum rate of change of the function $f(x, y, z)=x^{2} y^{3} z^{4}$ at the point $(-1,-1,-1)$ and the direction in which it occurs. (The direction should be characterized by the unit vector having that direction.)

10 points
3. Find the absolute maximum and minimum values of $f(x, y)=x y^{2}$ on the unit disk of radius 2 centered at the origin.

10 points
4. Find the maximum and minimum values of $f(x, y, z)=3 x-y-3 z$ subject to the constraints $x+y-z=0$ and $x^{2}+2 z^{2}=1$.
5. Find the volume of the solid bounded by the elliptic paraboloid $z=(x-1)^{2}+4 y^{2}$, the planes $x=3$ and $y=3$, and the coordinate planes.

10 points
6. Find the double integral of the function $f(x, y)=y e^{x}$ on the triangular region with vertices $(0,0),(3,0)$, and $(1,1)$.
7. Find the volume of the solid that is inside the cylinder $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+4 y^{2}+\frac{z^{2}}{4}=64$.

10 points
8. A lamina is defined by the inequalities $x^{2}+y^{2} \leq 4, x \geq 0, y \geq 0$. The mass density is $\rho(x, y)=x^{2}+y^{2}$. Find the moments of inertia I_{x}, I_{y}, I_{0}.

10 points
9. Evaluate

$$
\iiint_{E}(x+3 y) d V
$$

where E is bounded by the parabolic cylinder $y=x^{2}$, and the planes $x=z, x=y$, $z=0$.

10 points
10. Evaluate

$$
\iiint_{E} x e^{\left(x^{2}+y^{2}+z^{2}\right)^{2}} d V
$$

where E is the solid that lies between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=9$ in the first octant.

10 points

