MA 227: CALCULUS III FINAL TEST, DECEMBER 11, 2003

Timing: 10:45—1:15

Your name:

Your signature:

1. Let $u=xy+yz+zx,\, x=st,\, y=e^{st},\, z=t^2.$ Calculate $\partial u/\partial s$ and $\partial u/\partial t$ when $s=1,\, t=1.$

10 points

2. Find the maximum rate of change of the function $f(x,y,z) = x^2y^3z^4$ at the point (-1,-1,-1) and the direction in which it occurs. (The direction should be characterized by the unit vector having that direction.)

3. Find the absolute maximum and minimum values of $f(x,y) = xy^2$ on the unit disk of radius 2 centered at the origin.

10 points

4. Find the maximum and minimum values of f(x, y, z) = 3x - y - 3z subject to the constraints x + y - z = 0 and $x^2 + 2z^2 = 1$.

5. Find the volume of the solid bounded by the elliptic paraboloid $z=(x-1)^2+4y^2$, the planes x=3 and y=3, and the coordinate planes.

10 points

6. Find the double integral of the function $f(x,y) = ye^x$ on the triangular region with vertices (0,0), (3,0), and (1,1).

7. Find the volume of the solid that is inside the cylinder $x^2+y^2=4$ and the ellipsoid $4x^2+4y^2+\frac{z^2}{4}=64$.

10 points

8. A lamina is defined by the inequalities $x^2 + y^2 \le 4$, $x \ge 0$, $y \ge 0$. The mass density is $\rho(x,y) = x^2 + y^2$. Find the moments of inertia I_x , I_y , I_0 .

9. Evaluate

$$\iiint_E (x+3y)dV,$$

where E is bounded by the parabolic cylinder $y=x^2$, and the planes $x=z,\,x=y,\,z=0.$

10 points

10. Evaluate

$$\iiint_E x e^{(x^2 + y^2 + z^2)^2} dV,$$

where E is the solid that lies between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=9$ in the first octant.