MA 227: Calculus II

Midterm Test \#3, November 22, 2005

Time limit: 105 min .
Your name (print):
Your signature:

1. Find the average value of the function $f(x, y)=e^{x} \sqrt{y+e^{x}}$ on the rectangle $[0,1] \times[0,4]$.

10 points
2. Find

$$
\iint_{D} x y d A
$$

where D is the triangular region with vertices $(0,0),(1,2)$, and $(0,3)$.
10 points
3. Evaluate the integral

$$
\int_{0}^{1} \int_{y^{2}}^{1} y^{3} \sin \left(x^{3}\right) d x d y
$$

by reversing the order of integration.
10 points
4. Find the integral

$$
\iint_{R} x e^{y} d A
$$

by switching to polar coordinates, where R is the region in the first quadrant enclosed by the circle $x^{2}+y^{2}=4$. (Note: Mind the order of integration!)

10 points
5. A lamina occupies the region inside the circle $x^{2}+y^{2}=2 x$ but outside the circle $x^{2}+y^{2}=1$, and the mass density function is $\rho(x, y)=\left(x^{2}+y^{2}\right)^{-1 / 2}$. Find the center of mass. (Save some substantial work by being smart!)
6. Evaluate the integral

$$
\int_{0}^{1} \int_{z}^{2 z} \int_{0}^{y} 2 x y z d x d y d z
$$

10 points
7. Evaluate

$$
\iiint_{E} y d V
$$

where E is bounded by the three coordinate planes and by the plane $3 x+3 y+z=8$. 10 points

