Name:

Student Number: \qquad

Show all your work and give reasons for your answers. Good luck! Part I

In part I essentially no partial credit is awarded. Hence work these problems carefully. Each problem in part I is 9 points.
In 1-6, evaluate the integrals:
(1) $\int \frac{x^{7}-x}{\sqrt[3]{x}} d x$
(2) $\int x \sin (x) d x$
(3) $\int x^{3}\left(2 x^{4}+1\right)^{30} d x$
(4) $\int \frac{1}{x^{2}-1} d x$
(5) $\int_{0}^{1} \arctan (x) d x$
(6) $\int \sin ^{3}(x) \cos ^{7}(x) d x$
(7) Use a Riemann sum with $n=3$ terms and the mid-point rule to estimate the value of $\int_{3}^{4} \sin \left(x^{3}\right) d x$. (You do not need to evaluate the sine of a number and can leave your answer as a sum.)
(8) Given $F(x)=\int_{1}^{x^{2}} \sqrt{1+t^{2}} d t$, find $F^{\prime}(x)$.

Part II

In part II you can receive partial credit. Each problem in Part II counts for 14 points.

Evaluate the following integrals:
(9) $\int \frac{1}{x^{3}-2 x^{2}+x} d x$
(10) $\int \cos ^{4}(x) d x$

Bonus problem
(11) $\int \frac{x}{\sqrt{x}(x+1)} d x$

Name:

Student Number: \qquad

Show all your work and give reasons for your answers. Good luck! Part I

In part I essentially no partial credit is awarded. Hence work these problems carefully. Each problem in part I is 9 points.
(1) $\int \sqrt[3]{x}\left(x^{5}+1\right) d x$
(2) $\int x e^{x} d x$
(3) $\int \frac{x^{4}}{\left(3 x^{5}+6\right)^{30}} d x$
(4) $\int \frac{1}{(x+1)(x-2)} d x$
(5) $\int_{0}^{1 / 2} \arcsin (x) d x$
(6) $\int \sin ^{7}(x) \cos ^{3}(x) d x$
(7) Use a Riemann sum with $n=3$ terms and the mid-point rule to estimate the value of $\int_{5}^{6} \tan \left(x^{4}\right) d x$. (You do not need to evaluate the tangent of a number and you can leave your answer as a sum.)
(8) Given $F(x)=\int_{2}^{x^{4}} \sin \left(1+t^{2}\right) d t$, find $F^{\prime}(x)$.

Part II

In part II you can receive partial credit. Each problem in Part II counts for 14 points.

Evaluate the following integrals:
(9) $\int \frac{1}{x^{3}+x} d x$
(10) $\int \sin ^{4}(x) d x$

Bonus Problem
(11) $\int \sin (\sqrt{x}) d x$

