Name:

Student Number:

Show all your work and give reasons for your answers. Good luck! $\ensuremath{\textbf{Part I}}$

In part I essentially no partial credit is awarded. Hence work these problems carefully. Each problem in part I is 9 points. In 1-6, evaluate the integrals:

(1) $\int \frac{x^7 - x}{\sqrt[3]{x}} dx$

(2) $\int x \sin(x) dx$

(3) $\int x^3 (2x^4 + 1)^{30} dx$

(4) $\int \frac{1}{x^2 - 1} dx$

(5) $\int_0^1 \arctan(x) dx$

(6) $\int \sin^3(x) \cos^7(x) dx$

(7) Use a Riemann sum with n = 3 terms and the mid-point rule to estimate the value of $\int_3^4 \sin(x^3) dx$. (You do not need to evaluate the sine of a number and can leave your answer as a sum.)

(8) Given $F(x) = \int_1^{x^2} \sqrt{1+t^2} \, dt$, find F'(x).

In part II you can receive partial credit. Each problem in Part II counts for 14 points.

Evaluate the following integrals:

(9) $\int \frac{1}{x^3 - 2x^2 + x} dx$

(10) $\int \cos^4(x) dx$

Bonus problem

(11) $\int \frac{x}{\sqrt{x}(x+1)} dx$

Student Number:

Show all your work and give reasons for your answers. Good luck! $$\mathbf{Part}\ I$$

In part I essentially no partial credit is awarded. Hence work these problems carefully. Each problem in part I is 9 points.

(1) $\int \sqrt[3]{x}(x^5+1) dx$

(2) $\int x e^x dx$

(3) $\int \frac{x^4}{(3x^5+6)^{30}} dx$

(4) $\int \frac{1}{(x+1)(x-2)} dx$

(5)
$$\int_0^{1/2} \arcsin(x) dx$$

(6) $\int \sin^7(x) \cos^3(x) \, dx$

(7) Use a Riemann sum with n = 3 terms and the mid-point rule to estimate the value of $\int_5^6 \tan(x^4) dx$. (You do not need to evaluate the tangent of a number and you can leave your answer as a sum.)

(8) Given $F(x) = \int_2^{x^4} \sin(1+t^2) dt$, find F'(x).

In part II you can receive partial credit. Each problem in Part II counts for 14 points.

Evaluate the following integrals:

(9) $\int \frac{1}{x^3+x} dx$

(10) $\int \sin^4(x) \, dx$

Bonus Problem

(11) $\int \sin(\sqrt{x}) dx$