Exam IV, Fall 2006

Name \qquad
Signature:
Show all your work and give reasons for your answers. Good luck!
Part I All problems in part I are worth 15 points each.
(1) Find the angle between the vectors $\langle 1,2,3\rangle$ and $\langle-1,0,1\rangle$. Also find the area of the parallelogram spanned by these vectors.
(2) Find the equation of the plane which goes through the point $(1,3,-2)$ and is is perpendicular to the line

$$
\left\{\begin{array}{l}
x=1+t \\
y=-1-t \\
z=2-3 t
\end{array}\right.
$$

(3) Find the volume of the slanted box spanned by the vectors $\langle 1,1,1\rangle,\langle-1,0,1\rangle$ and $\langle 0,2,1\rangle$. Do these vectors lie in a common plane?
(4) Find the intersection of the line

$$
\left\{\begin{array}{l}
x=1-t \\
y=-1+2 t \\
z=2-3 t
\end{array}\right.
$$

and the plane $2 x+y-z=5$.
(5) Find the line of intersection of the planes $x-y+z=1$ and $-2 x+y+3 z=2$.

Part II The problem in Part II is worth 25 points.
(6) Let

$$
\ell_{1}=\left\{\begin{array}{l}
x=1+2 t \\
y=-1+4 t \\
z=2-3 t
\end{array}\right.
$$

and

$$
\ell_{2}=\left\{\begin{array}{l}
x=3 s \\
y=4-2 s \\
z=2+5 s
\end{array}\right.
$$

be two lines.
(a) If the lines ℓ_{1} and ℓ_{2} intersect, find the point of intersection. Otherwise find the distance between them.
(b) Are the lines ℓ_{1} and ℓ_{2} skew?
(Use the back of the page to work this problem.)

