FALL 2008 - MA 227- 7B — TEST 1

Name: \qquad

1. Part I

There are 6 problems in Part 1, each worth 4 points. Place your answer on the line to the right of the question. Only your answer on the answer line will be graded.
(1) Find the cross product of the vectors $\langle 2,2,1\rangle$ and $\langle 1,0,1\rangle$.
(2) Find the dot product of the vectors $\langle 2,-2,4\rangle$ and $\langle 2,1,-1\rangle$.
(3) Find the vector equation that represents the curve of intersection of the cylinder $x^{2}+z^{2}=1$ and the plane $y=2$.
(4) Find the length of the arc with vector equation $r(t)=\langle\cos t, \sin t\rangle$ from the point $(1,0)$ to the point $(-1,0)$.
(5) Find a vector function representing the line (a parametrization of the line) passing through the points $P(0,0,0)$ and $Q(0,3,2)$.
(6) Find an equation of the plane with normal $\mathbf{i}+\mathbf{j}+\mathbf{k}$ which contains the point $P(0,0,0)$.

2. Part II

There are 3 problems in Part 2, each worth 12 points. On Part 2 problems partial credit is awarded where appropriate. Your solution must include enough detail to justify any conclusions you reach in answering the question.
(1) A ball is thrown at an angle of 45 degrees to the ground. It lands $4 / 5 \mathrm{~m}$ away.
(a) Find the initial speed.
(b) Find the maximum height reached.
(c) Find the speed at impact.

Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(2) At what points does the curve $r(t)=t \mathbf{i}+4 \mathbf{j}+\left(4 t+3 t^{2}\right) \mathbf{k}$ intersect the paraboloid $z=x^{2}+y^{2}$.
(3) Find an equation of the plane passing through $A(1,1,-1), B(0,1,3)$, and $C(3,2,0)$. What is the angle between this plane and the $x z$-plane?

