Name: Signature:

Exam IV

Calculus I; Fall 2009

Part I

Part I consists of 10 questions, each worth 5 points. Clearly show your work for each of the problems listed.
(1) Let $f(x)=4 x^{3}-12 x+2$. Find all local max $/ \min$ of $f(x)$. State both x and y coordinates.
Answer: local max at $(-1,10)$ and local min at $(1,-6)$.
(2) Find the absolute max/min of $f(x)=10-x^{2}$ on the interval $[-1,2]$. Give both x and y-coordinates and justify your answer. Answer: absolute max at $(0,10)$ and absolute min at $(2,-6)$.

(3) Find two positive numbers whose product is 100 and whose sum is minimal. (You must justify your answer.)
Answer: 10 and 10.
(4) Let $f^{\prime}(x)=(x-2)^{2}(x-1)(x+1)$. Note that you are already given the derivative $\mathbf{f}^{\prime}(\mathbf{x})$. Find all critical points, where $f(x)$ is increasing and decreasing, and also find the x coordinate(s) of all local max/min.
Answer: increasing on $(-\infty,-1)$ and $(1, \infty)$, decreasing on $(-1,1)$. Local min at $x=1$, local max at $x=-1$.
(5) If $f^{\prime \prime}(x)=(x-1)^{2}(x+3)$ find where $f(x)$ is concave up and where it is concave down. Also find all points of inflection. Note that you are given $\mathrm{f}^{\prime \prime}(\mathrm{x})$!
Answer: concave up on $(-3, \infty)$, concave down on $(-\infty,-3)$, inflection point at $x=-3$.
(6) Find the most general anti-derivative of $\frac{3-x+4 \sqrt{x}}{x^{3}}$.

Answer: $-\frac{3}{2} x^{-2}+x^{-1}-\frac{8}{3} x^{-3 / 2}+C$.
(7) Find the most general anti-derivative of $\cos (x)-\frac{1}{x}$.

Answer: $\sin x-\ln |x|+C$.
(8) Find all asymptotes of the function $\frac{x^{3}+5}{x(x-2)(x+1)}$.

Answer: vertical: $x=0, x=2, x=-1$ and horizontal $y=1$.
(9) If the acceleration is given by $a(t)=6 t, v(0)=2$ and $s(0)=1$, find an expression for the position $s(t)$.
Answer: $s(t)=t^{3}+2 t+1$.
(10) If $f(x)=x^{3}$ find the number c that satisfies the conclusion of the mean value theorem on the interval $[0,2]$.
Answer: $c=2 / \sqrt{3}$.

Part II

Part II consists of 3 problems; the number of points for each part are indicated by [x pts]. You must show the relevant steps (as we did in class) and justify your answer to earn credit. Simplify your answer when possible.
(1) [15 pts] Find the absolute max/min of the function $f(x)=$ $\left(x^{2}-1\right)^{3}$ on the interval $[-2,3]$.
Answer: absolute $\min (0,-1)$, absolute $\max (3,512)$.
(2) Given the function $f(x)=\frac{x^{2}-9}{x^{2}-1}$,
(a) [$\mathbf{2} \mathbf{~ p t s}]$ Find the x and y intercepts of the function. Answer: $x= \pm 3$ and $y=9$.
(b) $[3 \mathrm{pts}]$ Find all asymptotes. Answer: vertical $x=1$ and $x=-1$, horizontal $y=1$.
(c) [4 pts] Find the open intervals where $f(x)$ is increasing and the open intervals where $f(x)$ is decreasing, Answer: increasing on $(0,1)$ and $(1, \infty)$, decreasing on $(-\infty,-1)$ and $(-1,0)$.
(d) $[2 \mathbf{p t s}]$ Find the local maximum and local minimum value(s) of $f(x)$. (Be sure to give the x and y coordinate of each of them).
Answer: local min at $(0,9)$, no local max.
(e) [$\mathbf{2} \mathbf{~ p t s}]$ Find all open intervals where the graph of $f(x)$ is concave up and all open intervals where the graph is concave down.
Answer: concave up on $(-1,1)$, concave down on $(-\infty,-1)$ and $(1, \infty)$.
(f) $[\mathbf{2} \mathbf{~ p t s}]$ Find all points of inflection (be sure to give the x and y coordinate of each point).
Answer: $x=1$ and $x=1$.
Correct answer: no inflection points.
(g) [6 pts] Use the above information to graph the function on the next page. Indicate all relevant information in the graph.

Put the graph of Problem 2 on this page.
(3) $[\mathbf{1 4} \mathbf{~ p t s}]$ A drilling rig in the ocean is 10 mi of shore. A refinery is located along the coast 15 mi away from the point on the shore closest to the rig. If under water pipe lines cost $\$ 5$ per mi and land-based pipe costs $\$ 4$ per mi, what is the least expensive way to run the line.

Partial answer: The total cost of the pipe is

$$
f(x)=4(15-x)+5 \sqrt{10^{2}+x^{2}}
$$

you need to find x where this function is a minimum.

