EGR 265, Math Tools for Engineering Problem Solving October 14, 2009, 50 minutes

Name: ..
TEST II

Problem 1 (20 points)

Solve the initial value problem

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad y(0)=2, \quad y^{\prime}(0)=-2 .
$$

Problem 2 (20 points)

Find the general solution of

$$
y^{\prime \prime}-2 y^{\prime}+5 y=2 x .
$$

Problem 3 (20 points)

Find the general solution of

$$
y^{\prime \prime}-y^{\prime}-2 y=-10 \sin (2 x)
$$

A mass of 3 kilograms stretches an undamped spring by 98 centimeters.
(a) Find the value of the spring constant k. Include the correct unit of k (using the mkssystem).
(b) Find the frequency $\frac{\omega}{2 \pi}$ of free oscillations of the spring/mass-system.
(c) Find the equation of motion if the mass is released from rest at a position 50 centimeters below the equilibrium. Assume here that the positive x-direction is oriented downwards.
(d) Find the first positive time at which the mass passes through the equilibrium position. (Note: In the example considered here, there is a simpler way to answer this then the method used in class.)

Problem 5 (10 points)

Suppose that a damping force is added to the spring/mass system in Problem 4 which is proportional to the instantaneous velocity with damping coefficient $\beta=15 \mathrm{~kg} / \mathrm{sec}$. Does the resulting system become underdamped, critically damped, or overdamped? Justify your answer.

Problem 6 (10 points)

Find the largest interval containing $x=1$ for which the IVP

$$
y^{\prime \prime}-\frac{1}{x^{2}-4 x} y=\sqrt{3-x}, \quad y(1)=-1, \quad y^{\prime}(1)=3
$$

has a unique solution.

