MA 225 VT, HONORS CALCULUS I

October 14, 2015
Name (Print last name first):

Show all your work and justify your answer!
No partial credit will be given for the answer only!
PART I
You must simplify your answer when possible.
All problems in Part I are 10 points each.

1. Find the derivative of the function $y=f(x)=\cos \left(x^{3}\right)$.
2. Find the derivative of $f(x)=\left(x^{2}+x\right)^{8}$.
3. Find the absolute maximum and minimum of the function $y=f(x)=(2 x-3)^{2}(x+1)^{5}$ on the interval $[0,1]$.
4. Find the linearization of the function $f(x)=x \tan (x)$ at the point $a=\pi / 4$ and use it to estimate the value $f(.8)$.
5. Find two positive numbers so that their sum is 200 and their product is maximal. [As always you must justify your answer!]
6. Suppose that the derivative of a function $y=f(x)$ is given:
$f^{\prime}(x)=(x+2)(3-x)$.
(a) Find the x-coordinates of all local max/min of the function $y=f(x)$.
(b) At which x value is the function $y=f(x)$ most rapidly increasing?

PART II

7. [15 points] You work for a soup company. In order to maximize visibility of the product on the shelve your boss asks you to design a soup can of volume $1 \mathrm{dm}{ }^{3}$ and maximal surface area. Either specify the dimensions of such a can or show that such a can does not exist.

You may use that the volume of a can of radius r and height h is $V=\pi r^{2} h$ while the surface are of the side is $2 \pi r h$ and of the top (and bottom) is πr^{2}.
8. [20 points] Use calculus to graph the function $y=f(x)=\frac{x}{x^{2}+1}$. Indicate

- x and y intercepts,
- vertical and horizontal asymptotes (if any),
- in/de-creasing; local/absolute max/min (if any).

You must show work to justify your graph and conclusions. You can use decimal numbers to plot points (but mark them with exact values).

9. [5 points] Find the equation of the tangent line to the graph of $x^{2}+y^{3}=2 x y$ at the point $(1,1)$.

