MA 126-6A Spring 2003 Final Examination
Name \qquad

1. Consider

$$
\int_{2}^{4}\left(2 x-3 x^{2}\right) d x
$$

(a) Write a Riemann sum for this integral.
(b) Evaluate this integral by taking a limit of Riemann sums.

Reference: The following formulas may be useful:

$$
\begin{gathered}
\sum_{j=1}^{n} j=\frac{1}{2} n(n+1), \sum_{j=1}^{n} j^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
\sum_{j=1}^{n} j^{3}=\frac{1}{4} n^{2}(n+1)^{2}
\end{gathered}
$$

2. Evaluate each of the following integrals.
(a)

$$
\int e^{-2 x} \sin (3 x) d x
$$

(b)

$$
\int_{-\pi / 4}^{\pi / 4} \cos (t) \ln (\sin (t)) d t
$$

3. Let R be the region bounded by the graphs of $y=x^{2}$ and $x=y^{2}$.
(a) Find the volume of the solid formed by revolving R about the x - axis.
(b) Find the volume of the solid formed by revolving R about the y - axis.
4. For each of the following series, give a reason why the series converges, or a reason why it diverges.
(a)

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{1 / 4}}
$$

(b)

$$
\sum_{n=0}^{\infty} \frac{n^{4}}{5^{n}}
$$

(c)

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}
$$

5. Let

$$
f(x)=\frac{3}{6+9 x}
$$

(a) Find the power series expansion of $f(x)$ about -5 .
(b) Find the radius of convergence of the power series expansion of $f(x)$ about -5 .
(c) Find the interval of convergence of the power series expansion of $f(x)$ about -5 .
6. Let

$$
f(x)=x^{2} e^{-x}
$$

(a) Find the power series expansion of $f(x)$ about 0 .
(b) Determine $T_{4}(x)$, the fourth Taylor polynomial of $f(x)$ about 0 .
(c) Determine a bound on the error if $f(x)$ is approximated by $T_{4}(x)$ for $-1 / 3 \leq x \leq 1 / 3$.

