Mathematics 125 **FINAL EXAMINATION**April 29, 2004

- \bullet Calculators are allowed only for numerical calculations, that is you may not graph functions on your calculator.
- ullet There are a sheet of scratch paper attached at the end of the exam. Use it but do not tear them off the exam.
- Show your work; clearly write down each step in your calculations/reasonings. *No credit* is given to a correct numerical answer *without* any justification.

1. (20 pts) Differentiate the following functions. a)

$$\mathbf{a}$$

$$\frac{1+x^2}{1+x}$$

$$\mathbf{c})$$

$$\frac{1}{(1+x^3)^{10}}$$

Hint: $10 = e^{\ln 10}$.

$$10^{x^2}$$

2. (10 pts) Find values of the following limits a)

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - x - 2}$$

$$\lim_{x \to 0^-} \frac{|x|}{x}$$

3. (10 pts) Evaluate the following definite integrals.

$$\int_{1}^{4} \frac{1}{\sqrt{x}} dx$$

$$\int_0^{2\pi} \cos x \, dx$$

4. (10 pts) A function f is defined as follows,

$$f(x) = \begin{cases} \frac{x^3 - 2x^2}{x - 2} & \text{if } x \neq 2\\ A & \text{if } x = 2 \end{cases}$$

for some number A. a) Write down the **definiton** that f is continuous at x=2.

b) Choose a suitable value of A so that f becomes continuous at x=2.

5. (10 pts) The table shows the population of Nepal (in millions) as of June 30 of the given year. Use a linear approximation to estimate the population at midyear in 1989.

t	1980	1985	1990	1995		
P(t)	15.0	17.0	19.3	22.0		

6.	20	pts)	Consider	f(x)	$= x^4$	$-6x^{2}$
	ι – υ	~~~	0 0 01 01 0-	., (~	,	

a) Find the intervals on which f is increasing and the intervals where f is decreasing.

b) Find the intervals where the graph of the function is concave up and the intervals where the graph of f is cocave down.

${f c}$) Uning the information obtained above, sketch a graph of f .
d) Find the local maximum and mimimum values of f . Are they the absolute maximum or minimum?

7. (15 pts) A box with a square base and open top must have a volume of $32cm^3$. Find the dimension of the box (i.e. the height and the side length of the square) that minimizes the amount/area of the material to make the box.

8. (15 pts) A manufacturer produces a fabric with a fixed width. The quantity q of this fabric (measured in yards) that is sold is a function of the selling price p (in dollars per yard), which we write as q = f(p). (For example f(15) = 15,000 means if the price is set \$15 per yard, then the munufacturer sells 15,000 yards of the fabric.) a) Suppose we know f(20) = 10,000 and f'(20) = -350. Find an approximate value of f(21).

b) Note that the total revenue earned with selling price p is $R(p) = p \cdot f(p)$. Find the value of R'(20) and interpret your answer. In particular, as far as increasing the revenue, is raising the price from 20 a good move?

9. (10 pts) The velocity function $v(t)$ of a car making a round-trip from Birmingham to Atlanta is given as below.	
a) Estimate the distance between Birmingham and Atlanta using the graph of the velocity function.	

$\mathbf{b})$ Anniston is back ?	50 miles	away	from	Birmingham.	When	does	the car	pass by	Anniston	on	the	w