Calculus II, Exam II, Spring 2007

Name: \qquad
Student signature:
Show all your work and give reasons for your answers. Good luck!
Part I. All problems in part I are worth 9 points each.
(1) Find the area bounded by the graphs of the functions $y=x^{2}$ and $y=2-x$.
(2) Find the volume of the solid of revolution obtained by rotating the area under the graph of $y=\sqrt{x}$, above the x-axis and between the line $x=1$ and $x=2$ about the x-axis.
(3) Set up an integral for the volume of revolution obtained by rotating the area bounded by the graphs of $y=f(x)=\sin (x), y=x+3, x=0$ and $x=2 \pi$ about the line $y=-5$.
(4) Use a Riemann sum with $n=3$ terms, with the midpoint rule, to approximate the value of $\int_{1}^{2} \cos \left(x^{2}\right) d x$. [You do not need to simplify or compute the sum.]
(5) How many terms would you have to use (at least) to ensure that the error in Problem ?? is less than 10^{-6} (you do not need to simplify the number).
(6) Find the work done in pumping water out of a swimming pool with dimensions $30 m \times 100 \mathrm{~m}$ and a depth of 10 m . [You can use the fact that water has a density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $g \approx 10 \mathrm{~m} / \mathrm{sec}^{2}$.] Like always, you must justify your answer!
(7) Evaluate the following integral, or state it is divergent (you must justify your answer): $\int_{0}^{\infty} \frac{1}{x^{2}+1} d x$.

Part II. All problems in Part II are worth 13 points.
(8) Find the volume of the solid whose cross sections with planes perpendicular to the x-axis are squares one side of which stretch from the graph of $y=x^{3}$ to the graph of $y=-x^{2}$ for $0 \leq x \leq 1$.
(9) Find the arc length of the graph of $y=x^{3 / 2}$ between the points $(1,1)$ and $\left(2, \sqrt{2^{3}}\right)$.
(10) Find the work done in pumping water out of a full container which is the lower half of a sphere of radius 12 m .

