SPRING 2008 — MA 227—- TEST 3 APRIL 2, 2008

Name:	
	1. Part I are 6 problems in Part 1, each worth 4 points. Place your answer on the line to the f the question. Only your answer on the answer line will be graded.
(1)	Evaluate $\int_{0}^{1} \int_{0}^{2} (2xy + 7x) dy dx$.
(2)	Evaluate $\iint_D y dA$ where D denotes the triangle with the vertices $(0,0),(0,1),(1,0)$.
(3)	Evaluate $\iint_D xdA$, where D is the region bounded by the lines $x=0$ and $y=0$ and $x^2+y^2=16$ and satisfying conditions: $x\ge 0, y\ge 0$.
(4)	Find the mass of the lamina bounded by the lines $y=x^2, x=1, y=0$ provided the density is $\rho(x,y)=2$.
(5)	Find rectangular coordinates of the point with cylindrical coordinates $r=2,\theta=\pi/6,$ and $z=3.$

(6) Sketch the domain D and change the order of integration in the iterated integral:

 $\int_0^4 \left(\int_0^{\sqrt{y}} f(x, y) \, dx \right) dy .$

2. Part II

There are 3 problems in Part 2, each worth 12 points. Partial credit is awarded where appropriate. Your solution must include enough detail to justify any conclusions you reach in answering the question.

- (1) Let D be the bounded domain which is enclosed by the curves $y=x^2$ and $y=x^3$ in the 1-st quadrant.
 - (a) Sketch the domain.
 - (b) Describe the domain with inequalities.
 - (c) Calculate the double integral $\iint_D xy \, dA$ turning it into an iterated integral.

(2) Sketch the solid E and evaluate the triple integral $\iiint_E y^2 z^3 dV$, where E is the region in the half-space $y \ge 0$ bounded by the cylinder $x^2 + y^2 = 4$ and two planes z = 0 and z = 2.

(3) Calculate the triple integral $\iiint_E z^2 dV$ using the spherical coordinates, where E is the solid inside the ball $x^2 + y^2 + z^2 = 1$ and satisfying $y \ge 0$.