EGR 265, Math Tools for Engineering Problem Solving

 May 1, 2009, 1:30pm to $4: 00 \mathrm{pm}$Name (Print last name first):
Student ID Number:
\qquad

Final Exam

Problem 1 (8 points)

Find an explicit solution of the initial value problem

$$
\frac{d y}{d x}=\frac{2 x}{y}, \quad y(1)=2 .
$$

Problem 2 (8 points)

A population of bacteria grows proportional to the number of bacteria present at time t. Suppose that the initial population is 100 and that the population after 2 hours has grown to 150 .
(a) Find the growth rate k of the population.
(b) How long does it take the population to double in size?

Note: Write your answers in terms of natural logarithms, which do not need to be evaluated.

Problem 3 (14 points)

Consider the second order differential equation

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-2 y=\cos x+\sin x \tag{1}
\end{equation*}
$$

(a) Find the general solution of the homogeneous equation corresponding to (1).
(b) Find a particular solution of the inhomogeneous equation (1).
(c) Solve the initial value problem given by (1) and initial conditions $y(0)=0, y^{\prime}(0)=0$.

Problem 4 (12 points)

A mass of 4 kg stretches a spring by 40 cm .
(a) Find the spring constant k, assuming that $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(b) Find the equation of motion of the mass if it is released 10 cm above the equilibrium position at a downward velocity of $2 \mathrm{~m} / \mathrm{s}$.
(c) What is the amplitude at which the mass oscillates?
(d) How many full oscillations will the mass have completed in 4π seconds?

Problem 5 (10 points)

(a) Find the gradient of $f(x, y)=\frac{x+y}{x-y}$.
(b) Evaluate the directional derivative of $f(x, y)$ at the point $(2,1)$ in the direction of the vector $\mathbf{i}-\mathbf{j}$.
(c) Find a unit vector in the direction of steepest increase of $f(x, y)$ at the point $(2,1)$. Also find the rate of increase in this direction.

Problem 6 (8 points)

Determine the equation of the tangent plane to the level surface $\ln x+\cos y+x z^{3}=8$ at the point $(1, \pi / 2,2)$.

Problem 7 (8 points)

Find the line integral

$$
\int_{C} \sqrt{1+4 y^{2}} d s
$$

where C is the curve parameterized by $x=\ln t, y=t^{2} / 2,1 \leq t \leq 2$.

Problem 8 (12 points)
(a) Show that the force field $F(x, y)=e^{y} \mathbf{i}+x e^{y} \mathbf{j}$ is conservative and find a potential function $\phi(x, y)$ for it.
(b) Find the work done by the force field F from part (a) along the curve $x(t)=\cos t$, $y=\sin t, 0 \leq t \leq \pi / 2$.

Problem 9 (10 points)

A lamina of constant density $\rho(x, y)=1$ lies between the lines $y=0, x=0$ and $y=2-2 x$.
(a) Find the lamina's mass without doing an integration.
(b) Find the center of mass of the lamina.
$\underline{\text { Problem } 10 \text { (10 points) }}$

Find the double integral of the function $f(x, y)=e^{x^{2}+y^{2}}$ over the region in the $x y$-plane which is bounded by the circles $r=1$ and $r=2$ and lies above the x-axis.

Problem 11 (6 points Bonus)

Find the volume of the infinite solid above the $x y$-plane and under the two-dimensional bell curve $f(x, y)=e^{-x^{2}-y^{2}}$. Do this by evaluating the "double improper integral"

$$
\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A
$$

using the following steps:
(a) Find the double integral of $e^{-x^{2}-y^{2}}$ over a disk of radius R.
(b) In the result from part (a) take the limit $R \rightarrow \infty$.

