Time available: 110 min
Your name (print):
Your signature:
Please always explain your answer, at least by including your calculations. You should work on this sheet. A right answer without calculation brings you no credit!

1. At what point(s) does the curve

$$
\vec{r}(t)=\left\langle t-2,11 t^{2}-11 t+14,3 t\right\rangle
$$

intersect the paraboloid $y=3 x^{2}+z^{2}$?
10 points
2. Find a parametric equation for the tangent line to the previous curve at the point $P(0,36,6)$.
3. Find the curvature of the curve $\vec{r}(t)=\cos t \vec{i}+\cos t \vec{j}-3 \sin t \vec{k}$ at the point $P(1,1,0)$.

20 points
4. Find the vectors T, N, and B for the curve of problem 3 at the given point.

20 points
5. Find the tangential and normal components of the acceleration vector for the curve $\vec{r}(t)=t \vec{i}+2 t \vec{j}+t^{2} \vec{k}$ at the generic point $\vec{r}(t)$.

10 points
6. The motion $\vec{r}(t)$ takes place for positive time (always $t>0$), $\vec{a}(t)=6 t \vec{i}+\frac{1}{t^{2}} \vec{j}+6 t \vec{k}$, $\vec{v}(1)=3 \vec{i}-\vec{j}+3 \vec{k}, \vec{r}(1)=\vec{i}+\vec{k}$. Compute $\vec{r}(t)$.
7. Find the vectors $\vec{T}(t), \vec{N}(t)$, and $\vec{B}(t)$ for the curve

$$
\vec{r}(t)=\langle 3 t, 4 \cos t, 4 \sin t\rangle
$$

10 points
8. Find the velocity, acceleration, and speed of a particle with the position function

$$
\vec{r}(t)=\langle t, t \sin t,-t \cos t\rangle .
$$

10 points
9. Find the curvature of the space curve

$$
\vec{r}(t)=t \vec{i}+t \vec{j}-t^{2} \vec{k}
$$

at any point.
10 points
10. Let $r(t)=\left\langle t, 3 t, t^{2}\right\rangle$. Find the tangential and normal components of the acceleration, i. e. find a_{T} and a_{N}.

