SPRING 2013 — MA 227 — FINAL EXAM SATURDAY, MAY 4, 2013

NAME: _

There are 14 questions, each worth 8 points; 100 (or more) points is equivalent to 100% for the exam. Partial credit is awarded where appropriate. Show all working; your solution must include enough detail to justify any conclusions you reach in answering the question.

1. Let $\mathbf{r}(t) = (t, t^2, t^3)$. Find normal plane at point t = 2.

SPRING 2013 — MA 227 — FINAL EXAM SATURDAY, MAY 4, 2013

2. Find the equation of the plane containing the points (1, 1, 1), (1, 1, -1) and (-1, 2, 2).

3. Find the area of the parallelogram generated by the vectors (2, 1, -1) and (-1, 1, 2).

5. Find local maximum, minimum and saddle points (if any) of the function $f(x,y) = x^2 - 2xy - y^2 + 4x - 1.$

6. Let $z = e^x y + \frac{1}{y}$. Find equation of the tangent plane at point (0, 1).

7. Find the maximum rate of change of $f(x, y) = x^3 - \sqrt{xy}$ at the point (1, 1). In which direction does it occur?

8. Find the area of the region D bounded by $x = y^4$ and y = x/8.

9. Sketch the region of integration and change the order of integration:

$$\int_0^1 \int_x^{x^2+1} f(x,y) dy dx.$$

10. Find the volume under the surface z = x + y + 2 and above the disc $x^2 + y^2 \le 1$ in the xy plane. Use polar coordinates.

11. Acceleration of the particle is given by $\mathbf{a} = (-1, 0, 1)$. Find velocity and position of the particle as functions of time if at time t = 0 we have $\mathbf{v}(0) = (1, 0, 0)$ and $\mathbf{r}(0) = (1, 1, 1)$.

 ${\rm SPRING}~2013-{\rm MA}~227-{\rm FINAL}~{\rm EXAM}$

12. Find the absolute maximum and absolute minimum of the function $f(x, y) = x^2 - y^2 - 2x + 1$ on the region $0 \le x \le 2$, $0 \le y \le 1$. Be sure to provide coordinates of the points and the values of absolute maximum and minimum.

13. Using spherical coordinates, calculate the integral $\int \int \int_V z^2 dx dy dz$, where the region V is the half-ball: $\{x^2 + y^2 + z^2 \le 4, x \ge 0\}$.

14. Calculate the integral

$$\int \int_D (x+y) \, dA,$$

where the region D is bounded by the lines x+y=1, x+y=2, x-y=0, x-y=2. Use the change of variables u=x+y, v=x-y.