SPRING 2013 - MA 227 - FINAL EXAM
 SATURDAY, MAY 4, 2013

NAME: \qquad

There are 14 Questions, each worth 8 points; 100 (OR more) points is equivalent to 100% for the exam. Partial credit is awarded where appropriate. Show all working; your solution must include enough detail to justify any CONCLUSIONS YOU REACH IN ANSWERING THE QUESTION.

1. Let $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right)$. Find normal plane at point $t=2$.
2. Find the equation of the plane containing the points $(1,1,1),(1,1,-1)$ and $(-1,2,2)$.
3. Find the area of the parallelogram generated by the vectors $(2,1,-1)$ and $(-1,1,2)$.
4. Let $f(x, y)=x \cos (y)-\frac{y}{x}$. Find all second partial derivatives: $f_{x x}^{\prime \prime}, f_{x y}^{\prime \prime}, f_{y y}^{\prime \prime}$.
5. Find local maximum, minimum and saddle points (if any) of the function

$$
f(x, y)=x^{2}-2 x y-y^{2}+4 x-1
$$

6. Let $z=e^{x} y+\frac{1}{y}$. Find equation of the tangent plane at point $(0,1)$.
7. Find the maximum rate of change of $f(x, y)=x^{3}-\sqrt{x y}$ at the point $(1,1)$. In which direction does it occur?
8. Find the area of the region D bounded by $x=y^{4}$ and $y=x / 8$.
9. Sketch the region of integration and change the order of integration:

$$
\int_{0}^{1} \int_{x}^{x^{2}+1} f(x, y) d y d x
$$

10. Find the volume under the surface $z=x+y+2$ and above the disc $x^{2}+y^{2} \leq 1$ in the $x y$ plane. Use polar coordinates.
11. Acceleration of the particle is given by $\mathbf{a}=(-1,0,1)$. Find velocity and position of the particle as functions of time if at time $t=0$ we have $\mathbf{v}(0)=(1,0,0)$ and $\mathbf{r}(0)=(1,1,1)$.
12. Find the absolute maximum and absolute minimum of the function $f(x, y)=x^{2}-$ $y^{2}-2 x+1$ on the region $0 \leq x \leq 2, \quad 0 \leq y \leq 1$. Be sure to provide coordinates of the points and the values of absolute maximum and minimum.
13. Using spherical coordinates, calculate the integral $\iiint_{V} z^{2} d x d y d z$, where the region V is the half-ball: $\left\{x^{2}+y^{2}+z^{2} \leq 4, x \geq 0\right\}$.
14. Calculate the integral

$$
\iint_{D}(x+y) d A
$$

where the region D is bounded by the lines $x+y=1, x+y=2, x-y=0, x-y=2$. Use the change of variables $u=x+y, v=x-y$.

