MA227, Calculus III : Final Exam

April 22, 2015

Name and section: \qquad

1. Do not open this exam until you are told to do so.
2. This exam has 15 pages including this cover. There are 14 questions, for a total of 112 points. 100 (or more) points is equivalent to 100% for the exam.
3. Note that the problems are not of equal difficulty, so you may want to skip over and return to a problem on which you are stuck.
4. Partial credit is awarded where appropriate. Show all working; your solution must include enough detail to justify any conclusions you reach in answering the question.

Do not write in the table below.

Question	Points	Score
1	8	
2	8	
3	8	
4	8	
5	8	
6	8	
7	8	
8	8	
9	8	
10	8	
11	8	
12	8	
13	8	
14	8	
Total:	112	

1. [8 points] Find the equation of the plane containing the points $(1,3,2),(2,0,-1)$, and $(3,-1,1)$.
2. [8 points] Find the directional derivative of the function $f(x, y, z)=y^{2} z-e^{x} z^{2}$ at $P(0,2,1)$ in the direction of vector $\langle 3,0,4\rangle$.
3. [8 points] Let $z=x^{3}-x y^{2}$. Find the equation of the tangent plane at the point $(-1,2)$.
4. [8 points] Find the local maximum, minimum, and saddle points (if any) of the function

$$
f(x, y)=x^{2}-x y+y^{2}+2 x-y+3
$$

5. [8 points] Find the linear approximation for the function

$$
f(x, y)=e^{2 x} \ln y-x y^{2}
$$

near the point $(0,1)$.
6. [8 points] Evaluate

$$
\iint_{D} 1 d A
$$

where D is the triangular region with vertices $(0,0),(1,1)$, and $\left(1, \frac{1}{2}\right)$.
7. [8 points] Find the mass of the lamina that lies within the region $x^{2}+y^{2} \leq 1, y \geq 0$, if the lamina has density $\rho(x, y)=x^{2}+y^{2}$.
8. [8 points] Find the unit tangent vector at the point on the curve $\mathbf{r}(t)=<\ln t, e^{2 t-2}, t^{2}>$ corresponding to $t=1$.
9. [8 points] Find the maximum rate of change of $f(x, y)=2 \sqrt{x}-x^{2} y^{2}$ at the point $(1,1)$. In which direction does it occur?
10. [8 points] Find the equation of the tangent plane to the surface $x e^{z}+y z+y=2$ at the point ($1,1,0$).
11. [8 points] Find the absolute maximum and absolute minimum of the function $f(x, y)=$ $x^{2}+y^{2}-2 x+1$ on the region $0 \leq x \leq 2$ and $-1 \leq y \leq 1$. (Be sure to provide coordinates of the points and the values of absolute maximum and minimum.)
12. [8 points] Switch the order of integration in the iterated integral

$$
\int_{0}^{1}\left[\int_{x^{3}}^{\sqrt{x}} f(x, y) d y\right] d x
$$

13. [8 points] Use spherical coordinates evaluate

$$
\iiint_{E} x^{2}+y^{2}+z^{2} d V
$$

where E is upper half unit ball $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$.
14. [8 points] Calculate the integral

$$
\iint_{D} e^{x-y} d A
$$

where the region D is bounded by the lines $x-y=0, x-y=1,2 x-y=1$, and $2 x-y=2$. Use the change of variables $u=x-y, v=2 x-y$.

