MA 125 CT, CALCULUS I

Test 4, April 14, 2016
Name (Print last name first): \qquad

Show all your work and justify your answer!
No partial credit will be given for the answer only!
PART I
You must simplify your answer when possible.
All problems in Part I are 9 points each.

1. If $f(x)=\ln \left(x^{3}+x\right)$, find the derivative $f^{\prime}(x)$.
2. Find the derivative of $f(x)=e^{4 x+1}$.
3. Evaluate $\int x e^{x^{2}} d x$
4. Solve $e^{2 x+3}=2$.
5. Solve $\ln (2 x+1)=-1$.
6. Use Newton's method to approximate the value of $\sqrt{25.3}$. Start with $x_{1}=5$ and only compute the second approximate value x_{2}. Hint: solve $x^{2}-25.3=0$.
7. Given $f(x)=x^{3}+2 x+1$ show first that $f(x)$ is one-to-one and next compute the derivative $\left(f^{-1}\right)^{\prime}(4)$

PART II

1. [10 points] Evaluate
$\int_{1 / 2}^{2} \frac{1}{x} d x$. Show your work and do NOT give a decimal number as your answer (i.e., give an expression involving \ln as your answer).
2. [12 points] Given the graph of $y=\ln (x)$ below read off:
(1) the value $y=\ln (3)$
(2) the value of $x=e^{0.5}$ (Hint:recall that $\ln (x)$ and e^{x} are inverse functions so that if $f(x)=\ln (x)$, then $e^{0.5}=f^{-1}(0.5)$
(3) Estimate the derivative of e^{x} at $x=0.5$ (Hint: draw the appropriate tangent line and estimate its slope).
Indicate in the graph how you found your values; do NOT use your calculator to find these values!

3. [15 points] Graph the function $f(x)=x \ln (x)$ for $x>0$. Indicate in the graph:
(a) x - and y-intercepts (if any)
(b) Horizontal and Vertical asymptotes (if any). [Do $\lim _{x \rightarrow 0^{+}} x \ln (x)$ numerically by computing values at $x=\frac{1}{10}$ and $x=\frac{1}{100}$.]
(c) Find critical points and where $f(x)$ is increasing/decreasing.
(d) Local/Absolute Max/Min of $f(x)$, if any.

Scratch paper

