
UTILITY DRIVEN GRID SCHEDULING FRAMEWORK 

 
 
 
 

by 

ENIS AFGAN 

 

 

PURUSHOTHAM BANGALORE, COMMITTEE CHAIR 
BRANDON EAMES  

ELLIOT LEFKOWITZ 
ANTHONY SKJELLUM 

ALAN SPRAGUE 
 

 

 

 

 

 

A DISSERTATION 

Submitted to graduate faculty of the University of Alabama at Birmingham,  
in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy 

BIRMINGHAM, ALABAMA 

2009 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Copyright by 
Enis Afgan 

2009 



 
 

iii 
 

UTILIY DRIVEN GRID SCHEDULING FRAMEWORK 

ENIS AFGAN 

COMPUTER AND INFORMATION SCIENCES  

ABSTRACT  

The grid computing paradigm enables access to geographically and administratively 

distributed networked resources, and delivers functionality of those resources to 

individual users. Stemming from the core composition and aggregation of individual 

resources, the grid is primarily characterized by the heterogeneity it offers. Although such 

heterogeneity is often considered a feature, it also presents an obstacle in terms of 

application execution patterns and expectations (in terms of job runtime, resource 

utilization, and/or user Quality of Service (QoS)). Typical users have little or no 

knowledge about the concrete requirements their application imposes on such resources 

and thus have to stumble through a sea of options and uncertainties when submitting a 

job, leading to inefficient use of available resources. 

In order to alleviate the user from having to understand existing dependencies and 

make low-level decisions, a grid metascheduling framework has been devised that 

enables automated application- and user-oriented job metascheduling. In order to enable 

application-oriented metascheduling, a set of core grid services, Application Information 

Services (AIS), were designed and developed to provide application metaschedulers with 

relevant information regarding each application's execution requirements and 

preferences. With such information, a metascheduler is capable of automatically realizing 

more job-to-resource mappings. In order to enable user-oriented metascheduling, a novel 

mode of user-scheduler interaction has been devised that builds on top of AIS. The model 



 
 

iv 
 

is realized in terms of two-way communication between a user and the scheduler 

enabling strict focus on an individual user and their current job. Overall, this dissertation 

makes contributions regarding efficiency of use and ease of access for grid resources. 

Results of grid job metaschedulers implementing the devised framework are shown 

as capable of consuming application-specific data in a manner that leverages existing 

heterogeneity and, in turn, automatically deliver effective application-to-resource 

mappings. Results achieved are two-fold: (1) behavior of application jobs across grid 

resources has been significantly improved in terms of job execution control, capable of 

increasing resource utilization and achieving significant runtime reduction (up to 50%), 

and (2) each job submission is being tailored specifically to an individual user and their 

respective job, delivering significantly higher QoS to the user. 

 

 

Keywords: grid, application-oriented job scheduling, Application Information Services, 

job execution space, user-scheduler interaction 

 

 

 

 

 

 

 

 



 
 

v 
 

 

 

DEDICATION 

 

 

 

Za mamu i tatu 

  



 
 

vi 
 

 

 

ACKNOWLEDGEMENTS 

First of all, a sincere thank you to my mom and dad who have, year after year, 

supported my endeavors and decisions. You have provided me with unprecedented 

encouragement and love that I have cherished and carried with me anywhere I would go. 

Maći, Maći, Maći – I guess I need to thank you too for all the pictures you have uploaded 

and the nights I kept you awake and on the phone! I am thankful to have a brother like 

you. To Steve and Lavonne, without whom I would probably not have remained in the 

US and gotten to where I am now – thank you. Thank you for your love, mindful support 

and opening your arms to your Croatian son. Finally, there is Ula, thank you for bringing 

unconditional happiness and inspiration into my daily routine. It is my greatest pleasure 

to be part of your life. 

I would like to express my sincere gratitude to my advisor, Dr. Purushotham 

Bangalore. Thank you for letting me swim but also thank you for providing a helpful 

hand when I was on my way down or headed in the wrong direction. Your openness and 

willingness to help has been not only of tremendous value but it has also been an 

inspiration to follow as people are starting to turn to me for help. Also, thank you for 

letting me keep both monitors on my desk.  

I would like to thank to my Ph.D. committee for their valuable insight and guiding 

comments. Specifically, I thank to Dr. Brandon Eames for the approachable attitude and 

openness. I value and strive to develop such attitude toward professorship. I would like to 

thank Dr. Elliot Lefkowitz for directing this document into its current format, thus 



 
 

vii 
 

making it considerably more comprehensible and contained. I would like to express a big 

thank you to Dr. Anthony Skjellum for the continuous input during my Ph.D. studies. I 

look up to Dr. Skjellum regarding comprehensible knowledge and ability to immediately 

understand just about any topic. Dr. Alan Sprague, thank you for the mindful and 

deliberate discussion regarding the mathematical portions of my work. 

I would like to thank Vijay Velusamy and Zhije Guan for your initial patience with 

showing me how to use various systems or applications and the developed friendship. To 

this day, I am not sure how would all of this have developed without your help. Leonard 

Jowers, Vertia Byrd, and Billy Jones – you were the best Level I study group one could 

wish for. As much pain as it was to learn all that material, I truly enjoyed the time we got 

to spend together. I furthermore enjoyed and cherished all of the subsequent lunches and 

associated discussions that we have had. It is a pleasure to be your friend. To Francisco 

Hernandez, thank you for your willingness to help as well as the times we have spent 

discussing my work. Thank you for staying in touch and being a friend. I would like to 

thank John-Paul Robinson for the insightful discussions and, most importantly, the 

enthusiasm and dedication you have toward computers and science in general. These 

admirable traits have not only inspired me but have also affected my approach to life. 

I would like to thank Igor Nikolić for his friendship as well as his helpful and 

generous hand. I continuously remind myself of your ‘do-until-perfect’ approach 

regarding any task undertaken; it is part of that methodology that has led to completion of 

this dissertation. I would like to thank Bill Pierce and UAB Outdoor Pursuits for getting 

me outside the lab and for significantly changing my outlook toward the wilderness 

world and life directions. 



 
 

viii 
 

Lastly, I would like to thank the Department of Computer and Information Sciences 

that has provided me with support during this endeavor. 

  



 
 

ix 
 

 

 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... iii 

DEDICATION .................................................................................................................... v 

ACKNOWLEDGEMENTS ............................................................................................... vi 

LIST OF TABLES ........................................................................................................... xiii 

LIST OF FIGURES ......................................................................................................... xiv 

1. Introduction ................................................................................................................. 1 

1.1. Grid and Applications .......................................................................................... 2 

1.1.1. Resource Influence........................................................................................ 3 

1.1.2. Parameters' Influence .................................................................................... 4 

1.1.3. Data Influence ............................................................................................... 6 

1.1.4. Grid Access ................................................................................................... 8 

1.2. Problems with Current Grid Access Model ......................................................... 8 

1.3. Research Objectives ............................................................................................. 9 

1.3.1. Approach Overview .................................................................................... 10 

1.3.2. Contributions............................................................................................... 14 

1.4. Broader Impact ................................................................................................... 16 

1.5. Overview ............................................................................................................ 17 
2. Background and Motivation ...................................................................................... 20 

2.1. Glossary of Frequently Used Terms................................................................... 20 

2.2. Grid Computing.................................................................................................. 23 

2.3. Grid Applications ............................................................................................... 29 

2.3.1. Grid Application Classification .................................................................. 33 

2.4. Grid Languages and Technologies ..................................................................... 35 

2.4.1. Resource Specification Language (RSL) .................................................... 35 

2.4.2. Job Submission Description Language (JSDL) .......................................... 36 

2.4.3. Resource Description Language (RDL) ...................................................... 38 

2.5. Scheduling Background ..................................................................................... 41 

2.5.1. Local Resource Managers ........................................................................... 42 

2.5.2. Grid Metaschedulers ................................................................................... 43 

2.5.3. Types of Metascheduling ............................................................................ 46 

2.6. Grid Scheduler Approaches and Implementations ............................................. 47 



 
 

x 
 

2.6.1. Community Scheduler Framework (CSF) .................................................. 48 

2.6.2. AppLeS Project ........................................................................................... 48 

2.6.3. GrADS Project ............................................................................................ 50 

2.6.4. Condor-G .................................................................................................... 52 

2.6.5. Nimrod/G .................................................................................................... 54 

2.6.6. Gridbus Broker............................................................................................ 55 

2.6.7. Michigan Advanced Resource Scheduler (MARS) .................................... 56 

2.6.8. GridWay ...................................................................................................... 57 

2.6.9. Workflows and Multi-objective Scheduling ............................................... 60 

2.6.10. Critique ....................................................................................................... 62 

2.7. Application Performance Modeling and Monitoring ......................................... 65 

2.7.1. Using Historical Information to Predict Application Run Times ............... 65 

2.7.2. Prophesy Performance Database ................................................................. 67 

2.7.3. GridBench ................................................................................................... 69 

2.7.4. GrapBench .................................................................................................. 71 

2.7.5. BioPerf ........................................................................................................ 71 

2.7.6. STAPL ........................................................................................................ 72 

2.7.7. Application Skeletons ................................................................................. 74 

2.7.8. Critique ....................................................................................................... 75 

2.8. Embarrassingly Parallel (EP) Application Domain ........................................... 78 

2.8.1. Selection of the EP Application Domain .................................................... 79 

2.8.2. EP Applications .......................................................................................... 80 

2.8.3. EP Application Metascheduling Considerations ........................................ 81 

2.9. Other Related Work ........................................................................................... 88 

2.9.1. Bioinformatics Application Domain ........................................................... 88 

2.9.2. Statistical Genomics Domain ...................................................................... 91 

2.9.3. Simulating Grid Resources ......................................................................... 93 

2.9.4. Automating Service Descriptions ............................................................... 95 

2.9.5. Cloud Computing ........................................................................................ 96 
3. Approach ................................................................................................................... 98 

3.1. Complexity of Grid Job Metascheduling ........................................................... 98 

3.2. Rationale............................................................................................................. 99 

3.3. Approach Overview ......................................................................................... 101 

3.4. Requirements for Described Approach ............................................................ 109 

3.5. Application-oriented Metascheduling .............................................................. 113 

3.5.1. Application Specification Language (ASL).............................................. 117 

3.5.2. Historical Application Performance Database (AppDB) .......................... 122 

3.5.3. GridAtlas ................................................................................................... 126 

3.5.4. Security Considerations in AIS ................................................................. 129 

3.5.5. Composition of Services ........................................................................... 130 



 
 

xi 
 

3.5.6. AIS Implementation .................................................................................. 131 

3.5.7. AIS Usage Scenario .................................................................................. 131 

3.6. User-oriented Metascheduling ......................................................................... 137 

3.6.1. Interacting with a User .............................................................................. 137 

3.7. Realizing Described Approach......................................................................... 140 
4. Performance Analysis and Modeling ...................................................................... 142 

4.1. EP Application Metascheduling ....................................................................... 142 

4.1.1. EP Application Taxonomy ........................................................................ 143 

4.1.2. EP Application Execution Model ............................................................. 146 

4.1.3. EP Application Scheduling Framework.................................................... 151 

4.2. Performance Analysis ...................................................................................... 154 

4.2.1. Task Input Data Influence ......................................................................... 154 

4.2.2. Task Execution Resource Influence.......................................................... 157 

4.2.3. Task Parameters Influence ........................................................................ 159 

4.2.4. Job  Parameterization ................................................................................ 162 

4.2.5. Performance Analysis Observations ......................................................... 165 

4.3. Metascheduling Models ................................................................................... 166 

4.3.1. Homogeneous Resources Model............................................................... 167 

4.3.2. Heterogeneous Resources Model .............................................................. 169 

4.4. Reflections on the Approach ............................................................................ 172 
5. Realizing Application- and User-oriented Metascheduling .................................... 175 

5.1. Bioinformatics Application .............................................................................. 175 

5.1.1. Dynamic BLAST Architecture ................................................................. 178 

5.1.2. Dynamic BLAST Performance Results .................................................... 182 

5.2. Statistical Genetics Domain ............................................................................. 188 

5.3. Realizing User-oriented Metascheduling ......................................................... 193 

5.3.1. OptionView Architecture .......................................................................... 194 

5.3.2. The Controller ........................................................................................... 196 

5.3.3. Metascheduling Algorithm ....................................................................... 200 

5.3.4. User Interaction Module ........................................................................... 202 

5.3.5. Experimental Validation of OptionView through Simulation .................. 205 

5.3.6. Experimental Validation of OptionView on Real-World Resources ........ 209 
6. Summary and Conclusions ...................................................................................... 213 

6.1. Selected Highlights .......................................................................................... 213 

6.1.1. Contributions............................................................................................. 213 

6.1.2. Validation .................................................................................................. 216 

6.1.3. Future Directions ...................................................................................... 217 

6.2. Vision ............................................................................................................... 217 
7. Future Work............................................................................................................. 219 



 
 

xii 
 

7.1. Extensions ........................................................................................................ 219 

7.1.1. Automating the Process ............................................................................ 219 

7.1.2. Metascheduler Pool ................................................................................... 220 

7.1.3. Workflow Applications ............................................................................. 221 

7.1.4. Extensions Beyond EP Applications ........................................................ 222 

7.2. Moving into the Clouds .................................................................................... 223 

7.3. Metascheduling-as-a-Service (MaaS) .............................................................. 227 

LIST OF REFERENCES ................................................................................................ 228 

GRID USER CATEGORY CLASSIFICATION ........................................................... 246 

APPLICATION SPECIFICATION LANGUAGE ........................................................ 251 

TECHNICAL RESOURCE DETAILS .......................................................................... 272 

 

  



 
 

xiii 
 

 

 

LIST OF TABLES 

Table                        page 

1 Steps required to run a job on the grid. ................................................................... 8 

2 Availability of resources used during experimentation. ..................................... 154 

3 Availability of resources used during experiments with Dynamic 
BLAST and AIS. ................................................................................................. 184 

4 Technical details of resources used during experimentation with R 
code. .................................................................................................................... 189 

5 Resource details used during experiments. PS refers to Processing 
Slot or a node. PE refers to a Processing Element or a core. MIPS 
stands for Millions Instructions per Second of a single PE and is a 
resource performance metric employed by GridSim toolkit. PE 
MIPS were derived based from normalized application-specific 
performance benchmarks for given resource. ..................................................... 207 

6 Statistics of differences between generated and simulated job 
execution options. Numbers indicate difference in respective units 
and the corresponding percentage of simulated results when 
compared to the estimated values. ...................................................................... 209 

7 Statistical analysis of runtime accuracy across all executed job 
execution options ................................................................................................ 211 

 

  



 
 

xiv 
 

 

 

LIST OF FIGURES 

Figure                             page 

1 Runtime of sample BLAST searches on specified architectures 
using 1.1 GB nr database and a 10 query input file randomly 
generated ................................................................................................................. 4 

2 Comparison of execution times of mpiBLAST and qsBLAST 
algorithms on different architectures (Olympus=3.2 GHz Intel 
Xeon with 4GB RAM, Everest=1.6 GHz AMD Opteron with 2 GB 
RAM) using 1.1 GB nr database and a 10,000 input query file on 
specified number of CPUs. qsBLAST refers to query splitting 
BLAST that enabled streamlined distribution of input data across 
resource nodes. ........................................................................................................ 6 

3 Difference in job runtime, load balance and cost between a naïve 
job submission and an optimized job submission of a BLAST job. 
Jobs performed the search against the 1.6 GB nr database using 
4,096 query input file. Technical resource details are available in 
Appendix C. ............................................................................................................ 7 

4 A new classification of possible topics and paths into which 
general metascheduling can be decomposed. Topics and paths 
explored in this dissertation are highlighted. ........................................................ 11 

5 A high-level architecture and control flow of the devised grid 
metascheduling framework utilizing application-specific 
metascheduling and delivering two-way interaction between a user 
and the metascheduler Highlighted boxes indicate contribution of 
this work................................................................................................................ 13 

6 Visual chapter layout and content summary ......................................................... 19 

7 Layered structure of grid computing..................................................................... 29 

8 Sample RSL document for an MPI type job ......................................................... 36 

9 Sample JSDL document describing a BLAST job ............................................... 37 

10 Relationship between end users, WSRF, RSL and JSDL at the 
basic level showing user’s need to directly interact with the low-
level infrastructure components (i.e., RSL & JSDL). ........................................... 41 

11 Interactions and relationship between an end users, a grid 
metascheduler and grid resources ......................................................................... 44 



 
 

xv 
 

12 a) Balanced structure workflow, and b) unbalanced structure 
workflow ............................................................................................................... 60 

13 Execution model for embarrassingly parallel applications ................................... 80 

14 Runtimes of tasks distributed across three resources when using a 
job plan (left most three bars - colored in red) and when using first-
come-first-serve approach with 120 tasks (remainder of bars). 
Overall, job planning leads to 30% shorter turnaround time. Jobs 
executed 1,024 query BLAST search against the 1.6 GB nr 
database. ................................................................................................................ 83 

15 Significance of task-level parameterization - improperly 
parameterized task can result in a resource behaving poorly. 
Parameter set 1 used basic invocation of BLAST where only a 
single thread was instantiated to process the input. Parameter set 2 
matched the number of threads to the number of cores available on 
the resource. .......................................................................................................... 84 

16 Variation in runtimes of a set of BLAST tasks caused by load 
imbalance between the tasks. Tasks performed a search against the 
1.6 GB nr database using 4,096 query input file. Load imbalance 
was caused by disproportionate workload assignment to individual 
nodes in terms of query lengths. ........................................................................... 85 

17 Difference in job runtime, load balance and cost between a naïve 
job submission and an optimized job submission of a BLAST job. 
Jobs performed the search against the 1.6 GB nr database using 
4,096 query input file. ........................................................................................... 87 

18 Two models for parallelizing BLAST: (a) query splitting and (b) 
database splitting ................................................................................................... 90 

19 Computational model for statistical SSG analysis code indicating 
viable levels of parallelism for application execution. ......................................... 92 

20 Value for completed job from user's perspective and associated 
change through a typical day .............................................................................. 101 

21 A representation of job execution space allowing the user to 
choose among available job execution options after having 
considered associated tradeoffs. Each dot represents a job 
execution option (i.e., fully parameterized job plan) mapped onto 
the two objectives. .............................................................................................. 107 

22 Architecture (showing individual components and interactions 
between those) for a metascheduler supporting contributions 
devised as part of this dissertation. ..................................................................... 108 



 
 

xvi 
 

23 A high-level architecture of Application Information Services 
(AIS) deployed at the level of a VO with only major 
communication links shown. .............................................................................. 116 

24 Fourth pillar of grid computing........................................................................... 117 

25 High-level architecture of AppDB ...................................................................... 125 

26 Snapshot of AppDB web interface showing a list of jobs and task 
details for one job................................................................................................ 126 

27 Architecture and interaction modes of GridAtlas ............................................... 129 

28 An event diagram for registration or update of data incorporating 
data propagation from GAD to GAA.................................................................. 133 

29 Sample job specification provided by a user at the time of job 
submission to AIS-integrated metascheduler...................................................... 134 

30 An event diagram for GridAtlas wrapper on top of GridWay 
metascheduler. User job submission is streamlined by extracting 
application- and resource-specific information automatically on 
user’s behalf from GridAtlas service. ................................................................. 135 

31 Integration of AIS into the application execution control flow. ......................... 136 

32 A general model of support mechanisms for delivering application- 
and user-oriented metascheduling solutions that can range in level 
and type of user support. ..................................................................................... 141 

33 Heterogeneity of task runtimes for a job that is executed across 
heterogeneous resources. Tasks assigned to individual resources 
exhibit comparable runtimes but runtimes of tasks assigned to 
different resources vary significantly indicating the impact a 
resource can have on task’s (and in turn, job’s) runtime. ................................... 148 

34 Illustration of the job parameterization process aiming at 
minimizing load imbalance ................................................................................. 149 

35 Devised two-step EP application metascheduling framework ............................ 152 

36 Impact of number of queries used as input for a BLAST task on 
task’s runtime ...................................................................................................... 155 

37 Physical characteristics of two input files used to test impact of 
query length on BLAST application runtime: (a) one file has a 
large number of short queries while the other has a small number 
of long queries and (b) runtime of tasks parameterized with 
corresponding input files..................................................................................... 156 

38 Comparison of BLAST execution times across resources. 
Architectural details of machines used are provided in Appendix C 



 
 

xvii 
 

with resource availability listed in Table 2. Presented experiments 
searched 32 queries randomly selected from the VBRC database 
against the nr database (1.6GB in size). .............................................................. 159 

39 Effect on BLAST task runtime characteristics when varying 
number of threads option across resources. Application scales 
efficiently to the point where number of threads matches the 
number of processing cores on a given resource. ............................................... 160 

40 Runtimes of two parameterizations of the same BLAST task on 
one node. Tasks used 128 queries as input and searched against the 
1.6 GB nr database (note that the y-axis in the figure

 
 does not start 

at zero). ............................................................................................................... 161

41 Runtimes of a BLAST job using 1,024-query input file against the 
nr database (1.6GB) when the workload is divided into specified 
number of tasks across multiple nodes. The same job was executed 
on three resources to analyze variation in performance across 
resource architectures. Each task initiated two execution threads. ..................... 163 

42 BLAST job execution efficiency across two resources differing in 
their architectures. Efficiency of Everest (AMD based) resource 
dips faster but remains constant longer while the Coosa (Intel 
based) resource shows continuous decrease in job efficiency. ........................... 165 

43 High-level diagram of interactions between grid components and 
Dynamic BLAST ................................................................................................ 177 

44 Internal dataflow for Dynamic BLAST .............................................................. 180 

45 Runtime characteristics of a set of BLAST jobs ranging from plain 
query splitting BLAST parallelization to Dynamic BLAST. 
Different data distributions indicate the restructuring of the data 
assigned to individual resources and assignment of data amount to 
individual resources that is proportional to resources’ capability. 
Experiments were performed against the 1.6 GB nr database using 
4,096 query input file. ......................................................................................... 185 

46 Difference in query distribution between (a) simple query splitting 
model and  (b) BLAST-specific data distribution model. Dotted 
boxes indicate the amount of data assigned to individual resources 
while solid boxes indicate data portions assigned to individual 
nodes (i.e., tasks) on any one resource. Consistent distribution of 
queries results in consistent node and resource performance 
reducing load imbalance. .................................................................................... 187 

47 Different data distributions across resources based on (1) resource 
size only, and (2) resource performance. ............................................................ 188 



 
 

xviii 
 

48 Runtime characteristics of a set of R jobs highlighting importance 
and effects of applying derived data distributions and utilizing 
publicized resource allocation policies. More specifically, jobs 
executed a single parameter set for 10,000 iterations and multiple 
processes were started on each node to correspond to the total 
number of processing cores available per resource node. ................................... 190 

49 Two data distributions  across resources based on (1) resource size 
only, and  (2) application-specific resource performance. Values 
indicate number of iterations to be performed against the parameter 
set under analysis. ............................................................................................... 191 

50 (a) Initial irregularity among runtimes of individual tasks within 
one resource (i.e., Olympus), and (b) restricted irregularity leading 
to more controlled load balancing. Control was achieved through 
heterogeneous assignment of iterations to individual nodes............................... 192 

51 High-level OptionView architecture with numbers indicating 
general progress flow. Following user initiated job submission, the 
scheduling algorithm is repeatedly invoked to generate the job 
execution space. After presenting the job execution space to the 
user, the user selects desired job execution option. ............................................ 195 

52 A sample two job execution options. Based on maximum resource 
availability, different configurations of resource availability are 
artificially constrained by the Controller and used to invoke the 
Scheduler, which automatically generates job execution option. 
Repeated invocations of the Scheduler lead to generation of job 
execution space. .................................................................................................. 197 

53 A snapshot of the OptionView GUI module presenting a job 
execution space to the user ................................................................................. 205 

54 Job option execution space as (a) generated by OptionView, and  
(b) simulated through GridSim. Each individual point shown 
represents a single job execution option, namely all the details 
required to submit a job in an application-oriented fashion (e.g., 
resource(s) selected for execution, data distribution under resource 
capability constraints, and individual task parameterizations). .......................... 208 

55 Experimental runtime data for real-world resources for selected job 
execution options. Circles represent job execution option runtime 
estimation generated by OptionView while x’s represent observed 
runtime characteristics after job’s execution on real-world 
resources as per instructions of the job plan generated by 
OptionView. ........................................................................................................ 211 

56 A sample of task-level workflow optimization ................................................... 221 

 



 
 

1 
 

1. INTRODUCTION 

One of the key purposes of computer science, among many goals and challenges 

(e.g., [1]), is the facilitation of the scientific process. From the idea and experiment stages 

of a project down to data analysis and observations, computer science seeks to enable, 

enhance, and speed up this never-ending process. In order to achieve set goals, 

continuous research and improvements to the existing technologies must be made to keep 

up with the demand imposed by the scientific community. Improvements range from 

changes and updates with individual hardware components all the way to computer 

interfaces and overall capabilities presented to the users. One of these technologies 

fostering development is grid computing. Grid computing [2] can be seen as a 

culmination of distributed computing [3] and high-performance computing [4]; it 

integrates networking, communication, computation and information to provide a virtual 

platform for unlimited computing power and data management [5]. Overall, grid 

computing can be defined as a hardware and software infrastructure composed of 

multiple resources that do not belong to single administrative domain, use standard and 

general purpose protocols and interfaces for communication, and deliver non-trivial 

Quality of Service (QoS) [6]. Virtual Organizations (VO) [7] established atop a grid 

computing paradigm represent aggregations of communities that may span national and 

international boundaries but share common objectives.  



 
 

2 
 

1.1. Grid and Applications 

The size of individual grids can vary greatly; a grid may include only a few machines 

in a department or it may include multiple machines spanning several organizations from 

around the world (e.g., [8, 9]). Reasons for establishing a grid infrastructure can also 

differ greatly. An organization may decide to deploy a grid infrastructure in order to 

unify and simplify management of available resources, even if alternative technologies 

such as web services, parallel programming methods, RMI (Remote Method Invocation) 

enable similar overall functionality (e.g., [4, 10]). Alternatively, deploying a grid 

infrastructure may bridge gaps between available technology to realize otherwise 

unattainable goals, such as access and management of otherwise independently 

administered and geographically distributed resources [11]. Obviously, there are multiple 

degrees of grid adoption in between these two extremes.  

In order for a technology to become accepted there must be a viable use for it; 

irrespective of the grid size, applications that make use of available resources are the key 

component contributing to the acceptance of the grid [12]. Because the grid provides a 

novel paradigm for application execution and resource sharing, adjustments to 

applications are likely to be required. Such adjustments may include modifications to the 

application source code, creation of custom application wrappers that adopt execution 

patterns of an existing application to the grid paradigm, or use of the initially available 

application in a manner that is compatible with the grid paradigm [13].  

Regardless of the method employed, applications impose requirements on the 

underlying resources [14]. Meeting those requirements as closely as possible can be seen 

as the ultimate goal of grid computing. The grid, with a wide range of available 



 
 

3 
 

resources, offers the optimal platform for meeting such requirements. Nevertheless, 

recognizing and meeting such requirements is a non-trivial task. 

1.1.1. Resource Influence 

Accompanied with the growth in infrastructure size there is an increasing number of 

choices regarding which of the available resources to choose for application job 

execution. This is further complicated with the heterogeneity such resources offer [14]. 

For example, consider runtimes of a set of executions of the Basic Local Alignment 

Search Tool (BLAST) application [15] across several resources found on UABgrid and 

SURAgrid [8] (see Figure 1). BLAST is a commonly used bioinformatics sequence 

analysis tool that performs similarity searches between a short query sequence and a 

database of infrequently changing information such as DNA and amino acid sequences 

[15]. Because of the inherent heterogeneity of grid resources (in terms of hardware and 

available software characteristics), the application’s performance differs because it is 

executed on various resources or different invocation parameters are used [14, 16, 17].  

Figure 1 depicts a small sample of a performance variance for a set of BLAST jobs 

on varying hardware architectures. From the perspective of a typical user or a domain 

scientist, all these resources might appear equivalent, inherent differences would not be 

recognized, and the selection of which resource they run the job on might be random or 

based on previous experiences. Once a routine has been established, even though the 

input data, algorithms, or even the applications change, the user may always choose the 

same resource [18]. As can be seen in Figure 1, differences in the execution times of the 

application jobs can vary greatly across available machines. For instance, comparing the 

3.2 GHz Intel Xeon versus the E450 Sun Sparc, the runtime of the entire job varies as 



 
 

4 
 

much as 1,200%. Yet, the given example depicts the variance in execution times of two 

single CPU machines executing the same algorithm without inter-task communication.  

 
Figure 1. Runtime of sample BLAST searches on specified architectures using 1.1 GB nr 

database and a 10 query input file randomly generated 

1.1.2. Parameters' Influence 

Beyond executing a job on a single workstation with a single processing core, if 

multiple CPU machine or a cluster is considered, the choices for invoking an application 

grow significantly. Initially, one is faced with the same problem as earlier of choosing the 

appropriate architecture; but now there is the choice of additional application invocation 

parameters such as the number of CPUs to request or minimum amount of available main 

memory. Furthermore, continuing with the BLAST example, there are numerous versions 

of the algorithm performing sequence alignment (e.g., FASTA [19], SSEARCH [20], 

HMMer [21]), including tightly parallel implementations (e.g., mpiBLAST [22]). This is 

important to note because different resources may have different versions of the same 

application installed. Furthermore, individual resources may have different versions of 

0

500

1000

1500

2000

2500

Intel Xeon 
(2.66 GHz, 2 
GB RAM)

Intel Xeon (3.2 
GHz, 2 GB 

RAM)

AMD Opteron 
(1.6 GHz, 2 
GB RAM)

Macintosh G5 
(2.5 GHz, 2 
GB RAM)

Sun Sparc 
E450 (400 
MHz, 4 GB 

RAM)

Sun Sparc 
V880 (750 
MHz, 8 GB 

RAM)

R
un

tim
e 

(s
ec

on
ds

)



 
 

5 
 

the same application available, and it has been shown that those applications often have 

differing runtime characteristics [17].  

Figure 2 presents an example of executing only two different algorithms across two 

resources of different architectures. In Figure 2, query splitting BLAST (qsBLAST) 

refers to the standard implementation of BLAST available from the National Center for 

Biotechnology Information (NCBI)1

5.1.2

 with the input file evenly divided across available 

resources. qsBLAST represents a locally developed Perl script that automates the process 

of input file splitting and task submission. Optimized version of qsBLAST refers to the 

same software version but where the input data was distributed across the nodes in a 

uniform fashion regarding query lengths (Section  provides a detailed example). 

From this figure, it is apparent that runtime differences between the two BLAST 

algorithms are significant. From the data on optimized jobs, it can be concluded that the 

characteristics of input parameters fed to the job can also have significant impact on job 

runtime.  

Even though provided data presents a significant advantage of qsBLAST over 

mpiBLAST, such results do not necessarily represent the constant behavior of the two 

algorithms because mpiBLAST was designed to allow for efficient searching of 

databases that do not fit into main memory of a computer [23]. Because the database size 

for shown examples was smaller than the amount of memory available on individual 

nodes, the inter-task communication used by mpiBLAST caused unnecessary runtime 

overhead resulting in slower job turnaround time. Overall, depending on the 

characteristics of a machine and requirements of a job, one algorithm may be preferable 

over another, resulting in an additional variable to include during grid job submission.  
                                                      
1 http://www.ncbi.nlm.nih.gov/ 



 
 

6 
 

 
Figure 2. Comparison of execution times of mpiBLAST and qsBLAST algorithms on 

different architectures (Olympus=3.2 GHz Intel Xeon with 4GB RAM, Everest=1.6 GHz 
AMD Opteron with 2 GB RAM) using 1.1 GB nr database and a 10,000 input query file 

on specified number of CPUs. qsBLAST refers to query splitting BLAST that enabled 
streamlined distribution of input data across resource nodes. 

1.1.3. Data Influence 

As the complexity of user environment grows toward a large scale grid, the user is 

faced with choices regarding all the parameters that affect job performance 

characteristics, namely individual resource selection, available application installation 

versions, and job input parameters. Furthermore, grid enables user’s jobs to be divided 

into multiple tasks that can be executed across multiple resources simultaneously. Within 

such execution model, there is a benefit in coordinating execution of individual tasks to 

minimize load imbalance across the resources [24]. Coordinating the load imbalance in 

such an environment is dependent on all the mentioned factors but also the size of input 

data assigned to individual tasks. In such a case, there is a need to coordinate submission 

of tasks between faster or larger resources to process larger data segments while weaker 

or smaller resources process smaller data segments. The goal is that by the time the job 

finishes, it did so in a shorter amount of time than it would have on any single resource 

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000
40,000

Ev
er

es
t

O
ly

m
pu

s

Ev
er

es
t

O
ly

m
pu

s

Ev
er

es
t

O
ly

m
pu

s

Ev
er

es
t

O
ly

m
pu

s

2 4 8 16

R
un

tim
e 

(s
ec

on
ds

)

Resource used/number CPUs

mpiBLAST
qsBLAST
qs BLAST (optimized)



 
 

7 
 

(or it realized a higher value for an alternative utility such as accuracy or cost), but also 

no individual resource caused excessive load imbalance.  

An example of the effects input data distribution may have on overall BLAST job 

runtime when a job is executed across multiple resources is shown in Figure 3. The three 

cases shown represent the outcome of manipulating the internal characteristics of the 

input data files and the distribution size of data chunks that were passed to individual 

resources (for more details on techniques used see [14]). As can be seen from the figure, 

the runtime reduction is on the order of 50%.  

 

Figure 3. Difference in job runtime, load balance and cost between a naïve job 
submission and an optimized job submission of a BLAST job. Jobs performed the search 
against the 1.6 GB nr database using 4,096 query input file. Technical resource details 

are available in Appendix C. 

In an economic model where users pay for utilized resources, it is not only beneficial 

but necessary to allocate jobs to resources in an efficient manner to prevent excessive 

costs. Figure 3 also depicts the effects of an excessive job runtime on the job cost caused 

by a load imbalance across individual resources. Dependant on the employed cost polices 

of the individual resources, the job cost can be reduced proportionally to the job runtime. 

Figure 3 also points out that careful manipulation of job parameters has a positive effect 

on user's experience; namely, runtime for the "Adjusted" case is approximately 10% 

$0

$2

$4

$6

$8

$10

0

300

600

900

1200

1500

Initial Adjusted Optimized

Jo
b 

co
st

R
un

tim
e 

(s
ec

on
ds

)

Ferrum Cheaha 2 Olympus Cost



 
 

8 
 

longer than the runtime for the "Optimized" case. However, the cost remains constant 

across both cases allowing the user of the "Optimized" case to enjoy a higher utility (in 

terms of runtime when compared against cost). 

1.1.4. Grid Access 

Typical access to grid resources is realized through direct use of grid middleware 

requiring the user to manually perform all the steps required for job submission and, at 

the same time, incorporate all of the factors influencing and affecting the execution 

characteristics of user’s job. This may require a significant amount of knowledge, as can 

be seen in Table 1 where a simple use case scenario involving job submission of a grid 

application is presented: 

Table 1. Steps required to run a job on the grid. 

1. Find the desired application in the grid  
2. Obtain requirements/instructions on how to invoke the application 
3. Select a resource to use for application execution and provide appropriate job 

parameters, by matching application requirements/capabilities (e.g., CPU speed, 
memory, storage requirements) against the list of available resources (e.g., 
obtained from Grid Information Services (GIS) [25]) 

4. Transfer all the required files to the remote resource, this may include executable 
as well as any input and/or parameter files 

5. Invoke the application (through a command line interface, API, or a portal) 
6. Wait for the application to complete, possibly monitor application status 
7. Obtain any output files by copying result files back to the user machine using 

grid file copy tools 

1.2. Problems with Current Grid Access Model 

Each of the steps in Table 1 requires a high-level of expertise, which can be seen as a 

major obstacle in attracting grid users. Users have established protocols and routines they 

are familiar with, which usually involves using their home institution's resources. They 

are less likely to venture into new areas such as grid computing to adopt an entirely new 



 
 

9 
 

model for their daily business - unless the obstacles are realized, worked on, and finally 

overcome.  

When a user wants to submit a job to the grid and achieve a desired level of utility, 

as illustrated by above scenarios, the user first needs to learn the submission protocol (as 

outlined in Table 1). Next, the user needs to understand and coordinate characteristics 

and dependencies between an application, available resources, resource configurations, 

and input data. Understanding this process enables them to achieve load balance across 

started tasks and realize desirable job performances, like job runtime, cost, accuracy or a 

combination of those. Such factors, combined with the dynamic state and number of 

resources in the grid, are all seen as barriers and should be handled with new mechanisms 

and technologies. Alleviating the need for individual users to operate with the grid at this 

level while realizing user’s goals would lead toward a broader acceptance of the 

infrastructure. By realizing user’s goals not only would available resources be used more 

effectively, but users could focus on their work as opposed to dealing with the 

infrastructure operating details. In general, the grid can be seen as an ecosystem 

comprised of several user categories (discussed in Appendix A), applications, and the 

underlying resources; in order for this ecosystem to prosper, balance between those needs 

to be established and finely tuned.  

1.3. Research Objectives 

Several projects developed throughout the world (presented and discussed in Chapter 

2) have recognized the aforementioned scenario as a problem and attempted to solve it 

from different angles. The major aspect unifying all of the discussed projects, including 

the major topic of this dissertation, deals with abstracting users from the complexities 



 
 

10 
 

introduced by grid computing and involved in a typical job submission. As long as grid 

resources are viewed as individual machines, instruments, algorithms, software packages, 

or data storage locations, the final goal of the grid has not been reached. Mapping 

between resources and users needs to be hidden where resource discovery, requirements, 

acquisition, and reliability are part of a larger package, which a user can easily access 

when participating in the grid ecosystem.  

The aim of this work is to deliver a unified view of the grid to a user in terms that are 

relevant to them directly, while hiding all the low-level details not directly pertinent to 

the user. This is in contrast to the popular notion of requiring the user to adopt and learn 

how a technology operates and what it means. Results of this work can thus be seen as an 

increase in the level of abstraction required for the user to interact with the grid in such as 

way that the low-level operating details are not only automatically handled but are also 

customized for an individual user. 

1.3.1. Approach Overview 

Work presented in this document focuses on metascheduling of individual user jobs 

across grid resources accompanied with effective interaction between the metascheduler 

and the user. These goals are achieved by understanding and coordinating the parameters 

influencing execution characteristics of the job and by automating the application 

metascheduling process (i.e., developing notion of application-oriented metascheduling). 

Benefits of application-oriented metascheduling are then manipulated to enable focus on 

an individual user and an individual job enabling notion of user-oriented metascheduling. 

Figure 4 captures a classification of the field of metascheduling resulting from study 

and work done as part of this dissertation (for complete discussion of this figure, see 



 
 

11 
 

Section 2.5.3). Topics and paths traversed within this dissertation are highlighted in dark 

and are connected with solid arrows. Within the application-oriented domain, the focus of 

this dissertation is on single objective minimization problem with job runtime as the main 

objective (Section 5.1 and Section 5.2). Within the user-oriented metascheduling domain, 

the tradeoff problem with cost and runtime as main objectives is explored (Section 5.3). 

These objectives were selected based on their potential merit to the wider community and 

because of the general interest across the field of metascheduling. Some of the paths not 

traversed have been explored previously (as described throughout Chapter 2), while some 

paths have been left for future work including extensions to work presented here. 

Metascheduling

Application-oriented 
metascheduling

System-oriented 
metascheduling

User-oriented 
metascheduling

Single 
objective 

optimization

Multi  
objective 

optimization

Single 
objective 

optimization

Multi
objective 

optimization

Multi
objective 

optimization 
w/ input

Tradeoff 
presentation

Maximize utilization

Minimize runtime 

...

Minimize cost & 
Minimize runtime
Minimize runtime & 
Maximize accuracy

...

Cost vs. runtime

Runtime vs. 
accuracy

...
 

Figure 4. A new classification of possible topics and paths into which general 
metascheduling can be decomposed. Topics and paths explored in this dissertation are 

highlighted. 

In order to realize application-specific and effective metascheduling of user jobs, a 

framework for collecting application- and resource-specific information has been 

devised. This framework enables collection of relevant application and resource 



 
 

12 
 

information, which enables its interpretation and use by the metascheduler. The 

metascheduler is then capable of combining resource availability with application 

suitability for those resources to generate application- and resource-specific job execution 

plan that enables customization of the job submission process by the user. This leads to 

achieving required user utility, which is defined as a measure of value delivered to the 

user as a function of job execution time. Finally, the overall approach aims at redefining 

the interaction mode of the scheduler and a user by focusing on an individual user and 

introducing two-way communication between a user and the scheduler.  

During a typical job submission, a user submits a job request to a scheduler upon 

which the scheduler acts. In the presented work, the focus is instead put on an individual 

user and their individual job. With such a narrow focus, and combined with the 

application-specific metascheduling, it is possible to automatically derive and analyze 

characteristics of multiple job plans (i.e., job execution alternatives) for each job 

submission and deliver those to the user prior to job’s submission. The analysis of 

possible alternatives, as composed by the metascheduler, then enables mapping of those 

alternative job executions onto conflicting objectives (e.g., cost vs. runtime, accuracy vs. 

runtime) and delivering them to the user (i.e., job execution space). Subsequently, the 

user can easily and effectively consider possible tradeoffs regarding their job submission. 

Upon the user making the decision on which alternative to execute, user’s job is passed to 

a job submission manager for execution. The scenario and the overall approach just 

described are depicted in Figure 5 where the major contributions of this dissertation are 

colored in orange. Metascheduler component (pattern colored) indicates that although the 

concept of metascheduler is not a key contribution of this work, a specific metascheduler 



 
 

13 
 

instance has been devised and developed that enables realization of the other two 

contributions. 

 

Figure 5. A high-level architecture and control flow of the devised grid metascheduling 
framework utilizing application-specific metascheduling and delivering two-way 

interaction between a user and the metascheduler Highlighted boxes indicate 
contribution of this work. 

By adopting the described approach, the user experiences a job-specific presentation 

of available job execution alternatives mapped onto relevant objectives. Composition of 

such alternatives discloses relevant job execution space to the user. Furthermore, each of 

the job execution alternatives is an application- and resource-specific job plan aimed at 

maximizing performance under selected constraints (i.e., by minimizing load imbalance 

across tasks). Through such an approach, the user is not only completely abstracted from 



 
 

14 
 

the low-level details of grid computing infrastructure, but is also presented with a range 

of job execution options allowing them to selectively choose the most suitable alternative 

for their current situation.  

1.3.2. Contributions 

Based on the established observations and methodologies relating performance of an 

individual job to characteristics of the application and a resource (e.g., [14, 26, 27]), this 

dissertation builds on such observations with the goal of enabling and automating the job 

allocation process in grid environments (i.e., focusing on and enabling application-

oriented metascheduling). Furthermore, it attempts to significantly alter the interaction 

model between a user and the grid infrastructure by empowering the user with the 

potential of grid resources (i.e., focusing on and enabling user-oriented metascheduling). 

These contributions can be realized with a focus on two aspects of grid job execution, as 

follows:  

1. Enable application-oriented scheduling in the grid to realize effective 

allocation of application jobs across grid resources. Metascheduling, or 

allocation of user jobs to available resources, is an area covered by many projects 

(discussed in Chapter 2). Nevertheless, only a select few (i.e., AppLeS [28] and 

GRADS [29]) have approached this problem strictly from the application’s 

perspective, aiming at supporting individual applications in the context of a 

heterogeneous, distributed environment. Building on the foundations established 

by those projects, this dissertation advances the field of application-oriented 

scheduling by delivering a generic solution for capturing and retrieving necessary 

application- and resource-specific information in grid environments. More 



 
 

15 
 

specifically, a core set of grid services, namely Application Information 

Services (AIS) was devised and developed that enables storage and retrieval of 

application-specific information. Such information enables an application-

independent but information-aware metascheduler to access and process 

application-specific information on as needed basis and interpret such information 

to deliver application- and resource-specific metascheduling functionality for any 

application. Enabling such functionality permits application requirements to be 

more appropriately matched with the resource capabilities, generally delivering 

higher resource utilization. 

2. Focus on individual user by enabling two-way interaction between a user and 

the scheduler to realize desired utility for the user. With user adoption of a 

technology encompassing as much diversity as grid computing does, it does not 

take long to realize that a user alone will not be able to effectively harness 

technology's true potential [18].  To remedy arising difficulties, the user typically 

turns to a specific tool for help. However, if the selected tool is not aware of or 

does not explore and show the user possible opportunities, the user is hardly any 

better off. At that point, the user is still controlled by the technology. In order to 

empower the user in such a way that the technology can be customized to user's 

needs and desires, the user needs to be offered and presented with the true 

potential of the technology. By enabling application- and resource-specific 

information collection, delivery, and metascheduling, a user can be served on a 

case-by-case basis; each individual job submitted by a user can be automatically 

analyzed with a significant level of information about relevant requirements and 



 
 

16 
 

capabilities to deliver a highly rated match between the two. Furthermore, rather 

than assuming all the users are after the same utility, and thus acting in a fully 

automated fashion, by communicating with individual users, their needs are likely 

to be more closely matched. Therefore, rather than assuming absolute 

minimization of an objective (e.g., runtime, cost) is the only goal any and all users 

are ever interested in [30], by enabling two-way communication between a user 

and the technology (i.e., the metascheduler), custom, situation-by-situation based 

scenarios can be realized. By allowing such direct communication between the 

two entities, further customizations are possible that fit not only the current 

situation but are also pertinent to the participants (as opposed to creating a one-

fits-all solution). In the end, such an approach offers the benefit of guiding the 

user through a sea of otherwise complex options. Overall, by enabling the two-

way communication, the system is capable of providing valuable insight to the 

user regarding their job submission that the user is likely not even be aware of. 

1.4. Broader Impact 

In principle, this dissertation focuses on metascheduling application-level user jobs 

within grid environments. However, methodologies and conclusions derived surpass the 

domain where this work has been applied thus far and enable a much broader spectrum of 

functionality and principles to be developed upon now established realizations. In the 

context of metascheduling and grid environments, examples of such functionality 

include: focusing on application-oriented metascheduling alone to improve allocation of 

jobs across heterogeneous resources, estimation and prediction or job runtime or job wait 

time in a queue, or support for cost-benefit analysis.  



 
 

17 
 

Beyond grid compute environments alone, transitioning toward the realm of cloud 

computing [31], derivations of this work can enable system wide optimizations that 

transcend computation resources to include network and storage systems. With such 

developments, a true notion of Software-as-a-Service (SaaS) and Infrastructure-as-a-

Service (IaaS) paradigms can be realized where an individual user can interact with the 

infrastructure in terms relevant to the user and the applied domain as opposed to the 

infrastructure terms. Such shift enables true focus on the applications, the true driver of 

science and overall progress, as opposed to the focus on infrastructure and the 

requirement to adapt the application to the rigidity imposed by the infrastructure. 

Once the understanding, automation and, ultimately, control of not only individual 

but also cumulative resources has been realized, a viable and flexible grid economic 

model can be developed. Development of an economic model would further enable 

composition and realization of various grid and cloud computing marketplaces that 

support notions such as transparent resource sharing, offloading, provisioning and 

migration. Concrete ideas being development of automated computation and storage 

bidders that can be relied upon, realizing apples-to-apples comparison of individual 

clouds, all leading toward semantic provisioning of services based on context (e.g., 

spatial or temporal locality). 

1.5. Overview 

The remainder of this dissertation is structured as follows: Chapter 2 presents details 

about grid computing and grid scheduling approaches. More specifically, the first part of 

the chapter describes grid computing, associated middleware, grid applications and basic 

concepts behind grid schedulers. The second part focuses on more specific examples and 



 
 

18 
 

instances of work related to the work presented in this dissertation. Current state and 

developments in the area of grid schedulers is presented. Additionally, some lower level 

concepts dealing with collection of application-level information and application 

benchmarking are presented. Chapter 2 concludes with a critique of the currently 

available tools and technologies and compares those to the hypothesis presented in this 

dissertation. 

Chapter 3 presents the overall approach of this work, dealing with improving user’s 

experience when executing jobs across the grid. The problems with current approaches 

are summarized and a rationale for the proposed model is presented. The complete 

architectural overview is presented, illustrating the proposed approach. 

Chapter 4 focuses on enabling the first contribution of this dissertation, namely 

application-oriented metascheduling that is decoupled from the metascheduler itself. The 

chapter presents a general framework for realizing application-oriented metascheduling 

accompanied with the analysis and modeling of application performance to realize sought 

goals. 

Chapter 5 presents individual case studies that implement and realize general 

framework presented and described in Chapter 4. Two different applications are studied 

and performance results presented, showing direct benefit of the proposed approach. The 

later part of this chapter focuses on the second contribution of this dissertation, realizing 

user-oriented metascheduling; it presents real-world examples and an analysis study of 

how the devised approach can help in alleviating a grid end user from having to deal with 

low-level infrastructure details and instead effectively realize and utilize application-

oriented metascheduling approach presented earlier.  



 
 

19 
 

Chapter 6 summarizes and concludes the work, highlighting major contributions. 

Finally, Chapter 5 provides insights into some future extensions and future potential of 

presented work. Figure 6 provides a visual overview of the individual chapters 

summarizing each individual chapter’s topic and provides a brief content summary. 

- General introduction
- Background discussion
- Problem motivation
- Approach statement

Chapter 1
INTRODUCTION

- Grid computing overview
- Today’s metaschedulers
- Discussion of contributions

Chapter 2
RELEVANT 

BACKGROUND 
OVERVIEW

- Problem description
- Approach overview
- 1st Contribution presented
- 2nd Contribution presented

Chapter 3
APPROACH

- A metascheduling framework
- Application performance analysis
- General metascheduling model

Chapter 4
ENABLING 

PRESENTED 
APPROACH

- Bioinformatics domain
- Statistics domain
- Realizing user-oriented 
  metascheduling

Chapter 5
IMPLEMENTING 

AND 
VALIDATING 
PRESENTED 
APPROACH

- Summary and conclusionsChapter 6
CONCLUSIONS

- Beyond EP and the grid, moving 
  into the cloudsChapter 7

FUTURE WORK
 

Figure 6. Visual chapter layout and content summary 



 
 

20 
 

2. BACKGROUND AND MOTIVATION 

This chapter presents general background information regarding the field of grid 

computing followed by a comprehensive overview of previous work related to the topics 

of this dissertation. Existing projects in the fields of grid job scheduling and application 

performance adjustments are analyzed and compared to the work presented herein.  

2.1. Glossary of Frequently Used Terms 

In order to establish clear understanding of terms most frequently used in this 

document, a glossary of terms and their corresponding definition is provided in this 

section. This glossary is organized in a logical order.  

• Grid - refers to a hardware and software infrastructure composed of multiple 

resources that do not belong to single administrative domain, use standard and 

general purpose protocols and interfaces, and deliver non-trivial QoS [6]. Note 

that terms grid and grid environment are used interchangeably. 

• Cloud - style of computing in which dynamically scalable and often virtualized 

resources are provided as a service over the Internet 

• Utility - a measure of value delivered to the user as a function of job execution 

time 

• Resource - although a resource can represent any (physical or logical) entity that 

exists as part of the grid ecosystem (e.g., compute resource, software application, 

instrument) [7], in this dissertation a resource refers to a physical compute 

machine that can deliver meaningful computation 



 
 

21 
 

• Cluster - collection of individual but connected computers  

• Node - a portion of a resource or a cluster 

• CPU or processor - are used interchangeably and represent a physical central 

processing unit (CPU) on a node that can execute a computer program 

• Core - represents a single computer processing unit. A CPU may contain multiple, 

independent cores that are managed by a local operating system 

• Grid application - computer application that, when provided with input data, 

performs necessary computation and delivers sought results (general discussion of 

grid applications is presented in Section 2.3) 

• Job - an instance of a grid application associated with input data  

• Task - a job can be decomposed into multiple tasks. Individual tasks operate on 

portion of the job input but are still associated with the same grid application 

• Job-level information  - information stored at level of a job (i.e., resources a job 

consumed, performance of job components across those resources) 

• Task-level information - the same as job information but at the level of a task 

• Job parameterization - understanding and selection of job parameters (i.e., user 

controllable and application dependent options that can be changed when 

submitting a job, such as number of processors employed, algorithm used, and 

data distribution) that are algorithm, input data, and resource dependent 

• Task parameterization - understanding and selection of task parameters (i.e., user 

controllable and application dependent options that can be changed when 

submitting a task, such as number of threads employed or algorithm used) that are 

algorithm, input data, and resource dependent 



 
 

22 
 

• Job execution option - a single parameterization of the job 

• Job plan – a defined instance of job parameterization 

• Process - represents an execution instance of a grid application bound to a 

specific resource. A process is further associated with all the standard operating 

system details [32] 

• Thread - represents a light weight process as defined in the scope of operating 

systems [32] 

• Embarrassingly parallel application - an application whose input data can be 

divided into smaller segments so that individual segments can be processes by the 

application as a set of independent, coarsely grained, and indivisible tasks 

• Embarrassingly parallel job - an instance of an embarrassingly parallel 

application 

• Job Manager - a computer program that coordinates submission and instantiation 

of jobs on a resource 

• Scheduler - a computer program controlling submission and management of jobs 

to individual nodes of a cluster 

• Metascheduler - a scheduler that submits jobs across different resources in a grid. 

Also known as a super scheduler or a resource broker.  

• Load Balance - technique of distributing tasks (i.e., workload) of one job across 

multiple resources in such a fashion that runtime characteristics of any one task 

are not different from runtime characteristics of any other task by more than some 

small delta 



 
 

23 
 

• Load imbalance - converse of load balance. Runtime characteristics of at least one 

task are greater than the delta  

• User or end user - a person using grid resources or grid applications (additional 

details and user categories are provided in Appendix A) 

• Heterogeneity - refers to structural and behavioral variations found across grid 

resources. Structural and behavioral variations refer to physical and logical 

differences that exist between individual resources 

• Fail-safe capability - capability of an application or job submission tool to 

migrate application execution when preset threshold is exceeded and acceptable 

operation is resumed 

• Excess capacity - a situation where  actual resource capabilities is less then what 

is achievable or needed for application execution optimum 

• Partial failure - failure of one or more tasks comprising a job 

2.2. Grid Computing 

Since the inception of computer science, excluding the few individuals who truly 

enjoy fiddling with the low-level details required to obtain useful computation from a 

machine, the majority of people are primarily interested in abstracting details required to 

operate a computational device to the level where it operates in their familiar domain 

(e.g., operating systems, compilers, high-level programming languages, Web 2.0). As a 

step in that direction, grid computing is a technology and an approach that abstracts and 

hides complexities required to operate a set of resources in a geographically and 

administratively distributed environments [2]. Often, an analogy of the electric grid is 

used to describe grid computing [33]. Similar to the power plugs implemented in every 



 
 

24 
 

household or office, allowing any compatible appliance to come to life without regard to 

where the power is coming from or how it is being managed, one would be interested in 

simply connecting to a world-wide network and in turn gain access to any compute or 

data demand imaginable. In such scenario, the user should not be concerned with where 

the demanded resources are located or how are they managed; the user is simply 

interested in satisfying their utility with as little knowledge as possible. Although such a 

vision is still somewhat farfetched, the first step toward such a goal is unification and 

virtualization of available resources. In order for a resource to be capable of joining the 

grid, and thus being abstracted and brought together under a unified interface, it only 

needs to possess an interface to the world that enables it to communicate with other such 

resources [12]. Consequently, grid resources can include an expansive range of devices 

ranging from a typical personal computer or a supercomputer, a sensor, a satellite, a 

microscope, an automobile, down to even a single hard drive. These devices may span 

various geographical and administrative domains, each of which can be independently 

administered and maintained. Aggregation of available resources that span physical, 

political, and organizational boundaries enables creation of Virtual Organizations (VO) 

[2]. Examples of VOs include: researchers at multiple national labs and universities 

collaborating on a single project to deliver a new medicine, analysts collecting data after 

a plane crash trying to reconstruct the event, company with multiple branches around the 

world wanting to maximize utilization of available compute resources by balancing 

cumulative workloads across individual branches as they experience low loads. As 

depicted by these examples, VO’s can, depending on the needs of the participants, vary 

greatly in their scope, size, structure, purpose, and duration. One common principle that 



 
 

25 
 

all VOs share is that they are created with a desire to bring together people with similar 

goals in mind and thus enable more effective collaboration of individuals trying to reach 

a common goal. Major benefits resulting from the creation of such organizations is an 

ability to transparently share knowledge and technology that might otherwise exist but 

not be interoperable. Overall, goals behind individual VOs are best understood and 

summarized through the well-known saying originating from Aristotle’s Metaphysica: 

“the whole is greater than the sum of its parts.” 

Existence of the grid in general, and thus the above-mentioned VOs, is enabled by 

middleware. Middleware enables ubiquitous access to distributed resources that are 

shared between multiple organizations through virtualization and aggregation. 

Middleware is typically implemented in the form of standards allowing general 

interoperability among participants. In other words, implementing open standards ensures 

that participants can take advantage of any and all resources that are made available, thus 

creating and supporting notions of a unified environment.  

With such a wide spectrum of functionality that the grid aims to cover, it is necessary 

and important to develop standards in a range of areas, including security, scheduling, 

accounting, job management, specific application categories, and so on. Currently, the 

standards body defining such standards in the area of grid computing is the Open Grid 

Form (OGF) [34].  

The Globus Toolkit (GT) [35] is currently the most accepted middleware framework 

for enabling the existence of grid infrastructure and the creation of grid applications, 

although alternative implementations exist, such as UNICORE [36], gLITE [37], 

Alchemi [38], and Legion [39]. GT offers all the basic technologies required when setting 



 
 

26 
 

up a grid environment: Grid Security Infrastructure (GSI) [40] used for user 

authentication in the system, the Global Resource Allocation Manager (GRAM) [41] 

used for remote resource job management, Grid Information Services (GIS) [25] used for 

information discovery and state of resources, and GridFTP [42] used for providing file 

transfer capabilities in the grid environment. Use of these technologies enables support 

for users and their jobs. In the context of a computational grid, a job is defined as an 

instance of an application that is ready for execution or is being executed on chosen 

resources. Because of middleware technologies, individual resources can be abstracted 

into a unified entity capable of being accessed through a defined interface [2]. For 

example, individual resources belonging to administratively independent organizations, 

but joined through a common VO, can publicize their availability. Grid middleware 

services enable access to and control over those resources' availability and use policies 

for grid jobs. These policies are primarily imposed and controlled by local administrative 

guidelines, permitting entire resources to continuously be made available for sharing 

among VO participants, only portions of one resource be made available, or even to 

impose preference for local jobs over grid jobs. Resource availability can be publicized as 

a service through standard protocols and aggregated at a well-known location (i.e., GIS). 

Higher level tools, such as resource brokers [43] or job submission managers [44], can 

contact this service to obtain the resource availability information. Subsequently, jobs can 

be scheduled and executed on those resources. With adoption of a grid computing, a 

single job instance may span traditional boundaries imposed by any individual machine 

and thus simultaneously and seamlessly execute across multiple grid resources. Such 

functionality is made possible through standardization of communication protocols and 



 
 

27 
 

existence of mentioned core grid services, leading towards a global and open 

infrastructure built on top of otherwise heterogeneous foundations. 

Building on top of the grid middleware and core grid services that enable 

interoperability of independent and heterogeneous resources in a standardized way, 

higher level service, tools and applications can be developed. A layered diagram 

representing the overall grid computing infrastructure is shown in Figure 7. In this figure, 

the bottom layer represents hardware resources and connectivity fabric. The goal of the 

grid is to provide a ubiquitous access to the functionality offered by those resources. 

Those resources are networked machines: heterogeneous, geographically distributed, and 

offer variable performance, usability, and availability policies. It is obvious that such 

resources can support a wide spectrum of functionality. However, in order to support 

basic interoperability among participant and yet impose minimal requirements on those, 

from the perspective of grid architecture, fabric resources only need to support two 

mechanisms: enquiry and resource management. Enquiry mechanisms enables discovery 

of the resource, its functionality and state, while resource management enables some 

level of control over the resource (e.g., job submission, job monitoring). Nonetheless, 

because these resources are controlled by individuals or independent organizations, the 

resources are free to offer any services as deems beneficial by their owners. Applications 

installed on those resources, their characteristics, access and control policies are all in the 

hands of the owner to control and manage.  

The next layer up in the grid infrastructure is a layer of software and standards that 

enables virtualization of individual resources and thus provides ability for more targeted 



 
 

28 
 

applications and services to be developed on top of it. This is the middleware discussed in 

the previous paragraph.  

Above the middleware, the next layer up provides needed interfaces and services to 

abstractly deal with low-level details enabled by the grid middleware. Rather than 

operating at the level of an individual resource or an individual service, this layer 

operates at the level of aggregating and coordinating multiple resources. This layer can be 

seen as a set of tools and services that are capable of and are in charge of simplifying 

actions such as authentication, resource selection (i.e., job managers, metaschedulers), 

user and job access options, etc. As opposed to the generality of the lower layers where 

simplicity was a key virtue, at this layer, tools can provide specialized, complex and 

targeted functionality.  

The top most layer is representative of applications and users. This layer offers the 

widest range of the functionalities, but it is also dependent on ability of lower level 

details to deliver and sustain needed services. Grid applications are discussed in detail in 

the next section, so only some general thoughts are provided here. Although the core idea 

of grid computing fits into the earlier described analogy of the power grid, there are some 

differences too. In regard to the power grid, only compatible appliances can be connected 

to the available plugs. So, for example, one cannot plug a 220V shaver brought from 

Europe into the standard 110V plug in the United States. Similarly, some applications 

will not benefit from the availability offered by the grid. As can be observed from the 

layered diagram presented in Figure 7, there are multiple levels of indirection between an 

application and the actual physical resource. Therefore, there is considerable overhead 

involved with executing an application on the grid and the cost associated with this 



 

 

29 

 

overhead may prove to be unacceptable for a specific purpose. For example, a calculator 

application that adds two integers would hardly benefit from sending and performing 

needed calculation on a grid resource as opposed to the machine it is being invoked on. 

Although not all computations are well suited for the grid, there are numerous ones that 

are and some may even be a result of the current situation. An example can be found in 

an overloaded local resource. As opposed to waiting for ongoing computations to 

complete, farming out available work to otherwise idle resources may prove beneficial 

even though, in case of local resource's immediate availability, involved computation 

would not warrant such a decision. 

 

Figure 7. Layered structure of grid computing 

2.3. Grid Applications 

The top most layer of grid computing infrastructure is composed of grid applications. 

These applications are built on top of the abstractions and generalizations provided by the 

lower level layers of the grid environment and they aim at solving specialized problems. 

Aim of grid applications is to make extensive use of underlying infrastructure layers with 

the goal of improving given application’s performance, availability, utilization, accuracy, 



 
 

30 
 

etc.  Available applications can be perceived from users as services capable of performing 

a specific task and delivering needed results without user’s need to immerse themselves 

into the intricacies of grid computing environments. Availability of an infrastructure such 

as the grid enables existence and delivery of applications to its users that were not 

necessarily available beforehand. Even if such services were available, grid simplifies 

associated requirements and thus broadens availability of sought entities (regardless of 

whether those entities are computation power, access to specialized equipment, or data 

availability and persistency). 

From a high-level, stemming from the primary reasons for using the grid, grid 

applications can be grouped as follows [45]: 

• Community centric: these are applications organized around VOs by joining 

people together for purposes of collaboration in solving a specific problem or 

working on a specific project.  

• Data-centric: applications are grid applications that utilize grid resources to store, 

transfer and deliver necessary data. The reasons and benefits of using the grid for 

this type of applications can range from the inability of any one system to store 

generated data (e.g., Large Hadron Collider project [46]) to ubiquitous access to 

one's data and applications (e.g., online operating system [47]). From the 

perspective of Web 2.0 and beyond [48], this type of applications are likely to 

become the most popular way of delivering grid computing functionality to 

individuals.  

• Computation-centric: contain the traditional high-performance computing (HPC) 

applications that can benefit from the additional compute power brought about 



 
 

31 
 

through adoption of grid computing. These applications can range from generic 

Monte Carlo simulations to specific protein analyses. Depending on the 

application, the way they make use of newly available resources differs and can 

thus range from simply gaining access to larger numbers of resources to execute 

across or by executing on exotic hardware without which the computation would 

initially not even be feasible.  

• Interaction-centric: are the applications requiring or being enhanced by real-time 

interaction with a user. Primary example of this class of applications would be a 

visualization application that uses grid computing resources to render a complex 

image and displays it on a large screen for the user to manipulate. Realizing 

support for this type of applications requires a well-defined communication stack, 

standards and protocols so that the real-time aspects can be delivered. 

Despite the many benefits of grid computing, mentioned applications, and 

application categories, the grid itself does not provide a novel programming paradigm for 

developing new applications (some efforts have emerged recently to support such ideas 

[49]). Additionally, no formal methodology exists for porting existing legacy applications 

to the grid. Grid applications can be constructed by calling on any of the services defined 

in the lower layers and integrating functionality of those services or building on top of 

them to deliver higher level services [7]. Nevertheless, most of the applications 

developed for the grid are based on traditional HPC or distributed computing principles 

(e.g., [4]). HPC applications are typically developed using a specific programming 

language and a parallel programming paradigm (e.g., compiler directive-based, threads, 

message-passing, combination of threads and message-passing) and often times the 



 
 

32 
 

programming paradigm chosen decides the application deployment platform. If the 

application uses a shared-memory programming paradigm then the application can be 

only deployed on a shared memory system whereas an application developed using the 

message-passing paradigm can be deployed on both distributed memory and shared 

memory systems. Furthermore, applications might require specific processor architecture, 

amount of memory, disk space, etc. to deliver desired performance and scalability.  

Following the development process, the application deployment is the process of 

installing the application on a set of resources. Because of the requirements and even 

preferences the development process imposed, the deployment process is a non-trivial 

task. Even if the deployment process is automated, it is necessary to first determine what 

resources are available and then decide which one is most suitable resource for that 

particular application. If the process is not automated, deploying an application on the 

grid requires additional steps that involve user intervention, great insight into the internal 

structure of the application, and familiarity with the various grid computing technologies 

and toolkits [13].  

Beyond the deployment process, the progressive steps of application execution and 

job submission may involve many additional steps required from the end user, not 

necessarily found in a typical application (e.g., execution resource selection, input data 

locality, load balancing across heterogeneous resources). In order to address this inherent 

complexity and difficulty of using the grid, several approaches have attempted to 

simplify grid deployment and configuration by developing technologies such as web 

portals [50], workflow systems [51], and component assembly [52]. The ultimate goal of 

such efforts is to enable the adoption of grid technologies and applications to a wider 



 
 

33 
 

group of end users who are not familiar with programming languages and the lower level 

grid infrastructure. The potential impact for improving grid accessibility to such users is 

significant because such users are typically the ones with the largest problems (e.g., 

applied science researchers, distributed organizations, and organizations with variable 

computational requirements). 

2.3.1. Grid Application Classification 

Because different classes of applications impose different requirements onto a 

metascheduler (as outlined in Section 1.1 and further discussed in Section 2.8.3), the 

metascheduler (discussed in Section 2.5) needs to support functionality specific to an 

application. In order for a metascheduler to transcend any single application, individual 

applications must be classified into application categories; such classification enables a 

metascheduler to immediately address multiple applications and yet realize desired 

objectives. Based on the communication pattern implemented by applications, the 

following grid application categories have been defined [53]: 

1. Sequential applications – Traditional applications developed to execute on a 

single node resource. For the applications that require larger resources (e.g., more 

memory, disk, or faster CPUs), the grid also provides redundancy, fail-safe 

capability, and excess capacity. 

2. Parametric sweeps - Multiple copies of sequential jobs using different input 

datasets or parameters. These applications are often submitted independently by a 

single user in an effort to reduce overall task execution time. Benefits of using the 

grid are the same as sequential applications with the addition of multiple instance 

coordination performed by grid tools and middleware. 



 
 

34 
 

3. Master-Worker applications – Master-worker or the bag-of-tasks model [4], 

where a master process distributes work (either statically or dynamically) to a set 

of worker processes and aggregates the results at the end. Many financial and 

bioinformatics applications fall into this category, each in constant need of surplus 

compute resources. The main differences between parametric sweeps and master-

worker applications is that the individual tasks do not have to be executing the 

same code, but a workflow system can be in place with the master-worker model 

possibly delivering a more complex application functionality by structuring 

execution of different codes into a meaningful unit. The master process must 

handle the coordination and task assignment between worker nodes. 

4. All-Worker applications – Similar to the master-worker model, except that each 

process involved, including the master, share the workload equally and data is 

exchanged between individual processes in some pattern (point-to-point or group 

communication). This class of applications is also known as task parallel. 

5. Loosely coupled parallel applications – Parallel applications (e.g., coupled fluid 

flow and wave models) that exchange data occasionally through files during 

execution (e.g., beginning and ending of an outer iteration). This class of 

applications is also known as data and/or task parallel. 

6. Tightly coupled parallel applications – A single Message Passing Interface (MPI) 

[54] application distributed across multiple systems sharing data during the 

execution, possibly at frequent intervals, through explicit messages. It requires 

interoperability between different MPI libraries or an MPI library such as 

MPICH-G2 [55]. 



 
 

35 
 

7. Workflow applications – A model connecting many individual applications 

executing at different geographically distributed locations, which are chained 

together to perform a complex simulation. For an application to be classified as 

workflow application additional information is needed to identify dependencies 

with other applications in terms of input and output data streams (also see Section 

2.6.9). 

2.4. Grid Languages and Technologies 

Interaction between users and applications in the grid is done through a set of open 

standards (i.e., languages), some of which are custom to the field of grid computing that 

were inherited from existing technologies (e.g., XML, SOAP). In this section, we look at 

grid languages relevant to presented work. Necessary background and interaction among 

languages is discusses along with appropriate mappings to grid user categories as defined 

in Appendix A.  

2.4.1. Resource Specification Language (RSL) 

Developed as part of the Globus Project, Resource Specification Language (RSL) 

[56] provides a common interchange language to describe resources and jobs to run on 

them. RSL is represented by various <name, value> pairs and is used by GRAM [41] to 

perform complex resource descriptions in cooperation with other grid components. RSL 

represents a resource from the job instance point of view; each of the name-value pairs 

represents one or more components in resource management system, as can be seen in 

Figure 8: 



 
 

36 
 

1. &(rsl_substitution = (TOPDIR "/home/afgane") 
2. (DATADIR $(TOPDIR)"/data")  
3. (EXECDIR $(TOPDIR)/bin) ) 
4. (STDDIR $(TOPDIR)/std) ) 
5. (executable=$(EXECDIR)/xhpl) 
6. (arguments=$(DATADIR)/HPL.dat) 
7. (directory=$(TOPDIR)) 
8. (count=4) 
9. (jobType=mpi) 
10. (stdout=$(STDDIR)/hpl-output) 
11. (stderr=$(STDDIR)/hpl-error) 

Figure 8. Sample RSL document for an MPI type job 

The above RSL document specifies the executable and data directories along with 

the respective files. It declares the job is an MPI type job and should be executed on four 

nodes. Finally, it specifies the names of standard out and standard error files. As an 

evolved version of the above RSL, with the advent of GT4, the RSL2 was formed. It is 

based on XML schema and is used when submitting jobs in service oriented paradigm. 

2.4.2. Job Submission Description Language (JSDL) 

Built on the same principles as RSL, the Job Submission Description Language 

(JSDL) [57] is a specification of an abstract and independent language used for 

describing requirements of computational jobs in grid environments. JSDL is a standard 

defined by the OGF [34] and the Job Submission Description Language Working Group 

[58]. It contains a vocabulary and normative XML schema, thus accommodating for 

interoperability among a variety of job management systems and alleviating some of the 

problems related to the grid heterogeneity. It focuses on providing interfaces to a subset 

of all available functionalities found in resource management systems. By having a 

standard language available, a job submission description can enable diverse job 

management systems to easily communicate and thus complement job description at 

different stages in the course of the job submission process.  



 
 

37 
 

Figure 9 depicts a sample JSDL document used for submitting a BLAST job. It 

provides a job name and corresponding description along with application and executable 

used, input and output files, and the required hardware requirements in terms of the 

number of CPUs, and amount of main memory required to execute the job. 

1. <?xml version="1.0" encoding="UTF-8"?> 
2. <jsdl:JobDefinition xmlns="http://www.example.org/"  
3.   xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"  
4.   xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"  
5.  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
6.  <jsdl:JobDescription> 
7.   <jsdl:JobIdentification> 
8.  <jsdl:JobName>My BLAST invocation</jsdl:JobName> 
9.      <jsdl:Description>Sample BLAST invocation.</jsdl:Description> 
10. </jsdl:JobIdentification> 
11.   <jsdl:Application> 
12.  <jsdl:ApplicationName>BLAST</jsdl:ApplicationName> 
13.  <jsdl-posix:POSIXApplication> 
14.    <jsdl-posix:Executable>/usr/local/bin/blastall</jsdl- 
15.       posix:Executable> 
16.    <jsdl-posix:Argument>-p blastp -a2 –d nr</jsdl- 
17.       posix:Argument> 
18.    <jsdl-posix:Input>input.fas</jsdl-posix:Input> 
19.    <jsdl-posix:Output>output1.txt</jsdl-posix:Output> 
20.  </jsdl-posix:POSIXApplication> 
21.   </jsdl:Application> 
22.   <jsdl:Resources> 
23.    <jsdl:IndividualPhysicalMemory> 
24.    <jsdl:LowerBoundedRange>2097152.0</jsdl:LowerBoundedRange> 
25.  </jsdl:IndividualPhysicalMemory> 
26.  <jsdl:TotalCPUCount> 
27.   <jsdl:Exact>1.0</jsdl:Exact> 
28.  </jsdl:TotalCPUCount> 
29.   </jsdl:Resources> 
30.  </jsdl:JobDescription> 
31. </jsdl:JobDefinition> 

Figure 9. Sample JSDL document describing a BLAST job 

Both, RSL and JSDL are seen as end user tools enabling individual jobs to be 

described. These languages allow job parameters, ranging from input file names to 

resource preference, to be defined prior to their submission to a job management tool. 

The main difference between RSL and JSDL is that JSDL is a generalization of RSL and 



 
 

38 
 

has been accepted as a global standard by OGF, while RSL is middleware specific 

implementation supported by the GT community. 

2.4.3. Resource Description Language (RDL) 

Because, theoretically, any device with network connectivity is able to join the pool 

of grid resources and thus offer its functionality to grid users through grid tools and 

services, those grid tools, such as job submission engines and metaschedulers, need 

access to data describing resources they operate on. Metadata describing available 

resources would include information about the functionality, the status of a resource, 

usability and access policies, VO information, usage preferences, as well as any 

additional data that may be resource specific. Because many applications in grid 

environment could use such data, it would be beneficial in terms of standardization, 

overlap, maintainability and evolution for such data to be made available and 

standardized. Without such data, grid application programmers must create ad-hoc 

methods to support needed functionality. This may ultimately lead to many data 

representations requiring numerous conversions and transformations between the 

formats, automatically reducing interoperability, and decreasing performance.  

Currently, there is no such standard available in the area of grid computing, even 

though discussion regarding the topic has existed. Initially, a standard called Resource 

Description Framework (RDF) [59] has been developed as part of W3C community. RDF 

is an XML language used to represent resources in World Wide Web including 

authorship, licensing, and schedule of a shared resource. Although more specific to web 

community, goal of RDF was to support notions such as the Semantic Web [60]. 

Requirement for a language similar to RDF, but targeted specifically at grid resources, 



 
 

39 
 

has been stated by two working groups in Open Grid Forum (OGF) [34]. Namely, Job 

Submission Description Language Working Group (JSDL-WG) has stated in the scope of 

JSLD a need for a language that describes grid resources. Mentioned language is referred 

to as Resource Requirements Language (RRL) [57] and is described as a language 

capable of capturing resource specific information enabling matching of JSDL 

information against RRL information. The other working group within OGF that has 

expressed interest in a resource description language is Grid Resource Allocation 

Agreement Protocol Working Group (GRAAP-WG). Although both working groups have 

stated requirements and desires for a language able to describe grid resources neither 

have incorporated it into their respective standard, stating that scope of such language is 

too large to be incorporated into another language and that it should thus be considered as 

a standalone specification.  

Although no specific standard exists today, tools have been adopted to accomplish 

the task. Grid resources are in need of communicating and negotiating among themselves 

automatically without human intervention. Web Service (WS) [61] is the technology that 

proved itself in this context as the platform and language independent technology that 

works. WS is a distributed technology that allows creation of loosely coupled 

client/server applications and the technology is thus  appropriate to be used as a building 

block for grid applications. However, one mayor requirement not currently supported by 

the standard WS is the need to keep state, which means that separate invocations of the 

same service need to be able to tell how were they manipulated previously. Web Service 

Resource Specification (WSRF) [62] specifies how to create stateful services. WSRF is 

built on top of the existing WS standard. The specification and implementation of WSRF 



 
 

40 
 

does not make individual WS keep state, but rather WSRF introduces idea of a WS-

Resource [63] which provides  separates service implementation from the state. For a 

client to access state, it is necessary to specify the resource and also the service. Once the 

service implementation receives the request, it retrieves information from desired 

resource and performs the operation on it, thus updating the state. Specifications closely 

related and implied by the WSRF specification are the WS-Notification [64] and WS-

Addressing [65] supporting subscription to the change of state of a service and an 

effective mechanism to specify given WS and the corresponding resource. Adding 

notification to the existing model simplifies functionality and usability of the grid 

infrastructure significantly since tracking status of individual resources can otherwise 

become a complicated problem. 

In the context of grid resources, although not developed with this goal in mind, 

WSRF can be seen as a tool to implement and publish needed information about grid 

resources by resource owners so provided information can be accessed in an automated 

way. Through this model, resources can be described in similar terms as used by end 

users user JSDL to describe their job requirements, thus allowing necessary matching to 

be, at least partially, standardized and automated.  

Figure 10 depicts interactions between described technologies and user categories 

(described in Appendix A). An observation about user roles can be made from this figure: 

currently, user categories are clustered and users are forced to use the same technologies 

and adopt them to fit their individual and independent needs. Later (Section 3.5.1), it will 

be shown how this is no longer necessary with adoption of technologies and tools 

presented as part of this dissertation.  



 
 

41 
 

Interface

RSL & 
JSDL WSRF

Application 
deployer

Resource Owner & 
Application Developer  

Figure 10. Relationship between end users, WSRF, RSL and JSDL at the basic level 
showing user’s need to directly interact with the low-level infrastructure components 

(i.e., RSL & JSDL). 

2.5. Scheduling Background 

Over the years, scheduling has typically been associated with assignment of goods to 

available resources. Much research has been in the past on scheduling algorithms such as 

the Job-Shop Scheduling and the Transportation Problem [66]. In the context of parallel 

compute  environments and supercomputers however, scheduling typically refers to 

selection of jobs in the ready queue for execution and assignment of those to available 

compute nodes [67]. In the context of the grid, scheduling (often and interchangeably 

referred to as metascheduling or resource brokering) is defined as the process of making a 

decision on which resources to execute submitted jobs [68]. This decision process 

involves searching multiple administrative domains and multiple resources to match 

requirements imposed by a job to the capabilities offered by available resources. The 

requirements imposed by the application and corresponding job may require the 

metascheduler to schedule the job on a single machine or allow scheduling across 

multiple grid resources. Because of the multitude of possibilities and intermixed with the 

lack of local resource control metaschedulers must deal with (further elaborate on in 



 
 

42 
 

Section 2.5.2), the scheduling process offers a potential for great variation in terms of job 

execution characteristics but also great difficulty in terms of achieving an optimal 

solution [14].  Overall, because the grid provides access to a heterogeneous pool of 

resources, a large potential lies behind grid application scheduling and the associated 

service it provides to the end user. Therefore, grid job scheduling can be seen as residing 

at the heart of the grid and thus influencing overall success of the infrastructure. As of 

writing of this dissertation, infrastructure management (i.e., metascheduling) is still 

characterized as being not only difficult but also inadequately handled [69]. Before 

delving into the general approach and solutions provided by this dissertation, the 

remainder of this section looks at the major components and differences between local 

resource schedulers and metaschedulers, paving the path for comprehending the 

remainder of the document. 

2.5.1. Local Resource Managers 

In order to hide complexities of resource usage alongside simplifying maintenance, 

larger resources (i.e., computer clusters) often employ Local Resource Managers (LRM), 

which control user access and job submission. These schedulers benefit from a high-level 

of system privileges and control since they reside directly on a resource, they are tightly 

coupled with the operating system, and have direct access to the operating system tools. 

Examples of such high-level control include insight into applications in the queue waiting 

to be scheduled, instant knowledge of the current system load, status of individual jobs 

and corresponding error/log messages, including accurate status of individual nodes 

within a given resource. Because of the given level of control, LRMs are capable of 

implementing an array of effective scheduling policies and are capable of handling 



 
 

43 
 

dynamic priorities, extensive reservations, fair-share capabilities, grouping of jobs and 

many more. Examples of LRMs are: Portable Batch System (PBS) [70], Sun Grid Engine 

(SGE) [71], Platform Load Sharing Facility (LSF) [72], and IBM LoadLeveler [73]. 

2.5.2. Grid Metaschedulers 

Unlike the local schedulers, metaschedulers (also referred to as grid schedulers or 

resource brokers), operate at a higher hierarchical level. They cross administrative 

boundaries and thus must deal with the heterogeneity of underlying systems, dynamic 

resource availability, lack of access and policy control, lack of available information or 

dated information on both, resources and submitted jobs, as well as application and 

resources scalability issues [68]. The efficiency of a local scheduler is mostly measured 

in terms of throughput and resource consumption; therefore, it can be seen as focusing on 

the resource owner interests by trying to keep the resource as busy as possible. In the grid 

realm, this model is modified and grid schedulers are performing their operations with the 

end user in mind. Rather than monitoring cumulative throughput, metrics such as 

turnaround time, cost and speedup are more valued [74].  The criterion for application 

metascheduling involves interpreting resource information and metascheduling from the 

application's standpoint with the aim of maximizing end user goals. Figure 11 depicts the 

general interaction diagram between users and grid metaschedulers. As can be seen in the 

figure, the end user is not in direct contact with available resources, but rather a higher 

level service is offered that abstracts individual resources and resource interactions. The 

act of metascheduling can thus be seen as a decision making process of selecting one or 

more resources across the grid environment that most closely match user request (e.g., 



 
 

44 
 

resource with three CPUs and 2 GB main memory) or more generalized requirements 

(e.g., minimize runtime).  

Grid 
Metascheduler

Grid 
Information 

Services

LSF

Linux

Intel
(Dell)

Grid Services

PBS

Linux

AMD
(HP)

Grid Services

SGE

Solaris

Sparc
(SUN)

Grid Services

LoadLeveler

AIX

PowerPC
(IBM)

Grid Services

Grid Environment  

Figure 11. Interactions and relationship between an end users, a grid metascheduler and 
grid resources 

As with any scheduling model, grid application metascheduling is based on 

information. Rather than focusing on resources alone, the criteria used for resource 

selection at the application level includes:   

• Static and dynamic information available from grid services 

• Available application and resource meta-information to improve performance 

• Use of real applications performance metrics over theoretical resource 

performance benchmarks alone 

• Restrict domain of the metascheduler 

• Use of application specific information (e.g., application preferences from 

application developers) 



 
 

45 
 

Useful and desired information needs to be collected individually and subsequently 

combined and processed into a meaningful result. Depending on the size of given 

scheduler’s control, level of granularity, and access rights, this information is available 

from several sources, the main one being Grid Information Services (GIS) [25]. GIS is a 

collection of services offering information on grid resources and available services. 

Through a set of query and subscription interfaces, GIS allows users and applications 

(schedulers) to discover and monitor individual resource belonging to a VO. Other 

options for information gathering in the grid environment include Ganglia [75], Network 

Weather Service (NWS) [76] and, partially, MonALISA [77]. Ganglia is a scalable 

distributed monitoring system used for performance monitoring of grid resources. It uses 

scalable technologies that impose minimal load on given resource while providing per-

node status of individual resources. An observation worth noting is that Ganglia does not 

use Grid Security Infrastructure (GSI) [40]. Similarly, the NWS is a performance 

forecasting application used for computation and networking resources. Through a set of 

distributed sensors and monitors, it gathers a set of readings about the current resource 

status and uses mathematical models to forecast near-future resource load and 

performance. Finally, Monitoring Agents using a Large Integrated Services Architecture 

(MonALISA), geared mainly toward Data Grids [78], is an agent-based system that, 

through a set of dynamic services, is able to perform information gathering and 

processing of tasks. It is used to monitor site resources, network and jobs currently 

executing. The information is mainly used in optimization decisions for large-scale 

distributed applications. 



 
 

46 
 

2.5.3. Types of Metascheduling 

The broad field of metascheduling can be initially categorized into three 

subcategories or types, namely system-oriented metascheduling, application-oriented 

metascheduling, and user-oriented metascheduling (see Figure 4) [67, 79]. The system-

oriented metascheduling is representative of the traditional scheduling (described earlier 

in Section 2.5) where system throughput and utilization are primary goals and metrics 

[80]. Focus on such metascheduling typically targets environments where resources are 

provisioned and managed by a single organization (e.g., cloud computing) and the 

primary goal of an organization is maximizing throughput across its resources. Chapter 5 

will present an elaboration on extensibility of current work into such environments.  

The application-oriented metascheduling (further defined in Section 3.3) deals with 

understanding and leveraging the dependency that exists between an application and a 

resource. The user-oriented metascheduling (further defined in Section 3.3) deals with 

metascheduling jobs that primarily focus on realizing user’s goals (e.g., minimize job 

runtime, maximize result accuracy). Work presented throughout this document (as 

outlined in Section 1.3.1 and further discussed in Section 3.3) explores and advances the 

application- and user-oriented types of metascheduling. These types of metascheduling 

are realized by raising QoS delivered to a user, namely realizing shorter job turnaround 

time (see Section 5.1.2 and Section 5.2), and providing detailed insight into job execution 

alternatives (see Section 5.3). As described in just mentioned sections, such goals are 

achieved through leveraging benefits of the application-oriented metascheduling.  

Each type of metascheduling may be further classified into single objective 

optimization, multi objective optimization, or tradeoff presentation. This classification is 



 
 

47 
 

based on our analysis and categorization of projects described throughout Section 2.6. 

The choice of the approach (i.e., single objective optimization, multi objective 

optimization, or tradeoff presentation) implemented by a metascheduler is based on the 

desired goal of a metascheduler and it is decided upon at the time of metascheduler 

development. Once the approach for the user-oriented metascheduling has been finalized, 

specific objectives can be realized by the metascheduler; for example, maximize 

throughput or minimize runtime and maximize accuracy. 

The categorization described and depicted in Figure 4 is only one of many (for an 

alternative, see [79]), and it focuses on encompassing the most general case, one that 

effectively enables classification of individual metaschedulers regardless of the purpose 

for which they were devised. Furthermore, the categorization can be used to serve as a 

general overview of the field of metascheduling. Figure 4 also depicts viable connections 

between individual classes.  

2.6. Grid Scheduler Approaches and Implementations 

With the main topic and contribution of this dissertation being in the area of 

metascheduling, this section focuses on presenting and analyzing relevant work. 

Presented projects represent a comprehensive survey of relevant projects, including 

projects and tools that have lead to the development of hypotheses presented in this 

document. Also, projects and tools of similar functionality are presented with analysis of 

differences and contributions provided through this dissertation when compared to those 

projects. 



 
 

48 
 

2.6.1. Community Scheduler Framework (CSF)  

As the wider community recognized the obvious need for a metascheduler [43], plus 

the inherent difficulties associated with developing one [43], a Community Scheduler 

Framework (CSF) [81, 82] was developed to leverage some of development difficulties. 

CSF is an open-source implementation of a WSRF-compliant metascheduler framework 

that supports two scheduling algorithms (first-come-first-serve and round-robin) with the 

main goal being to provide standardized interface to implement grid metaschedulers [83]. 

CSF is distributed with the GT and it provides a standardized interface and tools for the 

end users to perform job submission, advance reservation, and an option to define 

different scheduling policies. It uses GRAM protocol from the GT to provide access to 

services offered by resources. It also supports custom plug-ins in the form of Resource 

Manager Adapter Service, which bridge Grid service protocols with individual resource 

mangers such as PBS, SGE, or LSF and thus provide services not necessarily supported 

by grid middleware alone (e.g., advance reservation). 

2.6.2. AppLeS Project 

As the pioneer in the field of scheduling from the perspective of the application in 

the heterogeneous environment, Application-Level Scheduler (AppLeS) project was 

initiated [28]. The focus of the AppLeS scheduler was to reduce the turnaround time of 

parallel applications in a given heterogeneous environment by using application specific 

agents that implemented application dependent schedulers. Each application has a 

personalized AppLeS agent that used parameterizable application and system specific 

models to predict application runtime on a given set of resources [84].  



 
 

49 
 

AppLeS is composed of four major subsystems, which are controlled by a separate 

module called the ‘Coordinator’ [28]: 

• The Resource Selector: It reiterates over the set of available resources to select a 

set of viable ones according to a selection criteria (e.g., memory availability, CPU 

capability, user access rights). It also uses information available from the 

Heterogeneous Application Template (HAT) system, which provides basic 

information about the application. This information is provided by the user and it 

includes information such as input/output file requirements, type of an 

application, communication patterns as well as amount of information 

communicated. Set of resources selected by the Resource Selector is called the 

active set.  

• The Planner: It generates a system-independent plan of execution that optimizes 

for the user preferences. User preferences are specified by the user again in terms 

of the execution constraints (e.g., resource access constraints) and performance 

objectives (e.g., minimum execution time).  

• The Performance Estimator: It uses dynamically available information (e.g., 

NWS, GIS) to create an estimate of the application performance.  

• The Actuator: It implements the schedule derived by the planner and interacts 

with resource management systems. 

AppLeS code was designed so that the application scheduler agents were integrated 

with the application code, which made it difficult to adapt to variable applications. Each 

agent exploited application specific information and was not general-purpose. This 

limited applicability of AppLeS.  



 
 

50 
 

Based on the AppLeS scheduler, AppLeS Parameter Sweep Template (APST) 

project [85] enhanced the AppLeS project by trying to develop reusable software that was 

applicable to different classes of applications. The project continued to solve the two 

primary goals started by the AppLeS project: (1) to explore and validate the role of 

adaptive scheduling for the grid, and (2) apply those results to applications in production 

environments with the goal of improving end user experience through reduced 

turnaround times. However, the project primarily grew into solving the grid usability 

problem while using the existing AppLeS scheduler [86]. The APST focused on 

deployment of parameter sweep applications, which are mostly computationally intensive 

and have no inter-task communication requirements. Several key principles were used 

when developing APST: (1) ubiquitous deployment, which abstracts resource discovery, 

job submission and job monitoring issues for various middleware services, (2) 

opportunistic execution, which uses all the information available to improve application 

performance but requires only out-of-the-box ones (e.g., ssh, scp), (3) lightweight 

software, which implies installation requirements are necessary only on user’s local 

machine, (4) automation of user processes, which tries to conform the APST to have the 

same look and feel as the user is accustomed to when running given applications and is 

thus not required to learn new technologies, (5) simple interface, which uses XML 

technology for job specification to allows for portability, and finally, (6) resilience, which 

implements fault-detection and restart mechanism to cope with middleware instability. 

2.6.3. GrADS Project 

Because of the complexity of use for most of the grid middleware, which averts 

many potential grid users, Grid Application Development Software project (GrADS) [87] 



 
 

51 
 

tries to address nearly every step of application development and execution in the grid 

environment. The project provides advances starting with integration of grid-enabled 

libraries, application compilation, scheduling, staging of binaries and data, application 

launching, and monitoring of application execution. In this discussion, we focus on the 

scheduler developed as part of the GrADS project because it is most relevant to the topic 

of this dissertation. 

The scheduler component of GrADS project was inherited from the AppLeS project 

and was modified and extended to try to accomplish key goals of the GrADS project as a 

whole [88]. The modified scheduler uses specialized compiler and grid-enabled libraries 

derived from the GrADS project to record and retrieve application characteristics [29]. 

As stated earlier (Section 2.6.2), AppLeS code was built using poor cohesion so, as part 

of the GrADS project, the implementation was separated to support the search procedure 

and the application-specific components as independent code modules. The application 

specific component collects information about the application itself and is the only 

component that is application dependent. It consists of two modules: performance model 

(analytic metric for predicting application turnaround time on a given set of resources) 

and the mapper (performs mapping from logical names to physical resources) [88]. At the 

same time, the search procedure is completely independent and it performs initial 

resource selection based on the information available from the NWS and GIS with no 

application-specific components. It generates a pool of available resources that might be 

of interest to applications in general. At the next stage, the two modules are evaluated 

together and resource set with predicted minimum application turnaround time is 

selected.  



 
 

52 
 

This scheduler was primarily focused around scheduling loosely synchronous 

applications on resources supporting high-performance networks. It was not designed to 

use dedicated machines controlled by local schedulers and thus does not support activities 

such as advance reservation. 

2.6.4. Condor-G 

Condor [89] is a framework and a resource manager for coarse-grained, compute 

intensive applications. It provides functionalities of a typical job manager system such as 

job management mechanism, scheduling policy, priority scheme, resource monitoring, 

and resource management [90]. Rather than being yet another job manager, Condor is a 

scavenger of CPU cycles and allows for numerous individual resources to be joined into 

Condor pools, thus aggregating and provisioning otherwise idle resources. It monitors 

registered resources and combines high-throughput computing and opportunistic 

computing by scheduling jobs onto otherwise wasted CPU power. Three points 

distinguish Condor from other distributed job submission technologies (e.g., CORBA, 

RMI, Locus, Grapevine): (1) ClassAds [91, 92] used to expressively match resource 

requests to available resources, (2) job checkpointing and migration allowing certain jobs 

to move from one resource to another, thus supporting fault-tolerance, and finally (3) 

remote system calls, which builds on the idea of a sandbox and relives the user from 

having to manually transfer input and output files to and from execution resources. 

Condor-G [44] is a culmination of the technologies employed by the GT and the 

Condor project. It combines security and resource-management protocols from the GT to 

allow for cross-domain communication and resource-management methods for inter-

domain manipulation found in Condor, thus allowing distributed resources to be viewed 



 
 

53 
 

as local ones. Condor-G can be used as an interface on top of the GT and it provides the 

user with efficient insight into job queues, job lifecycle logs, failure handling, and 

management of input and output files otherwise not directly supported by the GT. 

Condor-G does not directly support selection of resources for user jobs but relies on user-

supplied information. If combined with the techniques of Gliding In [90], it can provide 

the user with the nearly full capabilities of Condor, the corresponding Matchmaker [91], 

and thus a personalized, distributed Condor pool. As a final note on Condor-G, it should 

be noted that Condor-G does not implement a metascheduler; it provides a uniform 

access to various underlying schedulers (e.g., Condor), but as a standalone application it 

only provides a standardized interface for job submission and fault tolerance.  

Many of the Condor and Condor-G techniques depend on the two components: 

ClassAds and the Matchmaker. ClassAds are a schema-free set of uniquely named 

expressions that provide a mapping from the attribute names to the given expressions. 

They are used to describe jobs and resources and then provide an effective mechanism for 

evaluating two ClassAds against each other. ClassAds are largely a Condor representation 

of RSL and JSDL. At the same time, the Matchmaker is based on the idea of ClassAds 

and is the mechanism performing the comparison and evaluation of user requirements 

and resource owner specifications. The process of matchmaking requires four steps: (1) 

through the model of classified advertisement, resources and agents advertise themselves, 

(2) matchmaking takes place next, it involves creation of pairs that satisfy requirements 

and constraints, (3) next, the matchmaker introduces the two parties satisfying the match, 

and finally, (4) the process of claiming takes place where the agent and the resource 



 
 

54 
 

establish contact and possibly exchange any further requirements and conditions before 

commencing the job. 

2.6.5. Nimrod/G 

Nimrod [93], inspired by the Condor Project, is a tool that works with large 

parametric experiment applications. Parametric experiments are applications requiring 

numerous runs with different parameter values, providing an opportunity to run the 

application in parallel. Nimrod provides a resource manager interface in a distributed 

environment for execution of such applications and thus parallelizes application 

execution. The application’s code does not need to be modified in any way with Nimrod 

providing functionality such as fault-tolerance and result aggregation for the submitted 

set of parametric values. The user is required to submit a task plan for execution using the 

format of the Nimrod-specific declarative parametric modeling language of given 

parameters and Nimrod performs the rest. 

Nimrod handles small-scale resources where they belong to the same administrative 

domain and are mostly homogeneous in terms of resource managers, CPU, user policies 

and access cost. Nimrod/G [94], on the other hand, was created to maintain functionality 

of Nimrod but in a heterogeneous and dynamic grid environment. It uses GT protocols 

and services to support remote resource discovery and job submission. Even though 

Nimrod/G is composed of several components (i.e., Client and User Station, Parametric 

Engine, Scheduler, Dispatcher, and Job-Wrapper), we focus here on Parametric Engine 

and Scheduler components as being most relevant.  

Parametric engine is an agent acting as the central component in charge of 

parameterization of the experiment, job creation, job status monitoring, interacting with 



 
 

55 
 

clients, scheduler and the dispatcher. It provides the sandbox for the user job in terms of 

interpreting the declarative task language, maintaining the state of the job as a whole and 

handing expansion and contraction of job size due to the errors and failures.  

The scheduler component is the key contribution of Nimrod/G because it introduces 

economical aspect into resource selection. Beyond only using the information available 

through GIS, it attains cost associated with resources through services similar to GIS (not 

functional yet). When evaluating resources, it uses one of the three scheduling 

algorithms: time minimization, cost minimization, and cost-time optimization [30, 95]. 

Time minimization schedules with the goal of minimizing the time but staying in the 

assigned budget limits. Cost minimization algorithm produces results by the given 

deadline, but focuses on minimizing the cost. Cost-time optimization algorithm stays 

within budget and deadline limits and tries to minimize turnaround time when possible. 

The optimization procedure is done through a system of resource cost sorting and 

exploiting all the resources with comparable cost and performance. If the deadline and/or 

cost restraints cannot be satisfactorily completed, the negotiation phase is entered where 

either the advance reservation is employed or the user is required to change the deadline 

and/or cost [96]. 

2.6.6. Gridbus Broker 

Gridbus Broker [97] steps into the realm of data grids [98] by not only trying to find 

computationally adequate resource for user’s job, but also considering the discovery of 

suitable data sources and making optimal matching between the two entities with respect 

to the data locality and capabilities of computational resources.  The broker also handles 



 
 

56 
 

the process of file staging, job submission and monitoring, as well as combining and 

presentation of the results.  

The scheduling algorithm of Gridbus broker, rooted in the event-based Round-Robin 

approach, extends the scheduler component from Nimrod/G and the economical aspects 

employed there. As just mentioned, rather than optimizing user parameters for 

computational jobs only, the broker considers the cost of accessing remote data 

repositories and tries to optimize for associated file transfers. The idea of scheduling 

computation on resources close to the resources holding the required data comes from 

[99]. It is observed that once computational economy [100] aspects are introduced into 

the scheduling of applications, there will be more tradeoffs users and resource owners 

will be willing to make because of the associated cost. Gridbus broker tries to minimize 

this. The broker also extends Nimrod/G’s parametric language by supporting dynamic 

parameters in form of regular expressions allowing the user to leave parameter evaluation 

to the runtime environment. In order to select the appropriate compute resource, the 

scheduling algorithm considers capability and performance of a given resource, 

bandwidth available from the compute resource to the data resource and the cost of the 

data transfer.  

2.6.7. Michigan Advanced Resource Scheduler (MARS) 

From the University of Michigan, as part of a the Michigan Advanced Resource 

Scheduler (MARS) project [101], comes a scheduler that supports job prioritization and 

on-demand task scheduling. Even though the software for this project is not available for 

download, it is an example of an on-demand scheduler that supports critical-priority 

resource selection and job launching. The scheduler uses resource utilization prediction 



 
 

57 
 

based on a low-pass filter [102] and passes the information to either of the two supported 

scheduling algorithms: the minimum complete time (MCT) algorithm [103, 104] or the 

evolutionary algorithm.  

The MCT algorithm is based on the idea of tasks being passed to available resources 

and estimated complete time is recorded. The scheduler selects the resource with the 

minimum execution time. The two version of the algorithm exist, the online, in which 

execution times are computed at run time, and the offline, where the execution times are 

computed a priori. Even though MARS prefers the online version of MCT, adoption of 

the offline version would allow the information to be collected over time and be provided 

as the contribution to the scheduling algorithm giving insight into actual application 

performance. This subject is further discussed in the Approach section of this document.  

The evolutionary algorithm seems to be most effective when dealing with a  large 

number of tasks. It uses a genetic algorithm (GA) to optimize resource assignment and 

order of task submission. Currently, it uses user-provided parameters dealing with 

maximum/average time to wait when evaluating resources, but it also allows users to 

specify their own fitness function and extension of supplied parameters.  

2.6.8. GridWay 

GridWay [105] is a framework that works on top of an existing GT installation and 

uses GT services for most of its operations. It is considered to be part of the grid 

ecosystem [106] because it provides a slim middleware layer on top of the GT. The goal 

of the project is to support the “submit and forget” ideology where the user is abstracted 

from the grid middleware details by supporting easier and more efficient job execution on 

the grid. GridWay allows for unattended, reliable, and efficient execution of a range of 



 
 

58 
 

applications through command line and programmable interfaces. GridWay provides 

implementation of Distributed Resource Management Application API (DRMAA) 

standard [107] and thus supports API level interaction with the given scheduler and job 

management infrastructure, significantly simplifying the process of grid application 

development [108].  

The GridWay scheduling algorithm supports dynamic and adoptive scheduling with 

migration support as well as job and resource prioritization policies [109]. Supported job 

prioritization policies include fixed, fair-share, deadline and waiting-time [110]. Fixed 

job prioritization policy allows specifying fixed priority for each job or user group and 

thus distinguishing individuals and corresponding jobs within the grid. Share policy 

allows a ratio to be established for either individual user or user group and enable job 

submitted to be submitted at a more or less frequent rate (e.g., target 2:5 ratio for job 

submissions). Waiting-time policy disables starvation of low priority jobs in linear time 

fashion. Finally, deadline policy specifies support for submission of jobs by given 

deadline through job priority increase.  

At the same time, a built-in support for resource prioritization exists that consists of 

fixed property policy, rank policy, usage policy, and failure rate policy. Fixed policy 

enables groups of resources to be assigned priority values and thus support priority 

scheduling on those resources. Rank policy allows specification of rank for individual 

resources. Usage policy is used in conjunction with historical resource execution to 

include statistics over a specified period of time and or for the last job submission 

individually. The information obtained is used to predict runtime of new user job based 



 
 

59 
 

on previous execution, transfer, and queue wait times. Failure rate policy provided 

support to prevent thrashing of resource(s) that keeps failing.  

One of the interesting contributions from GridWay, and supported by the provided 

scheduler, is the model of a grid-aware and self-adapting application. Requirements for 

converting an application into a grid-aware one require it to be aware of the dynamic 

environment it executes in. This is achieved through specification of a requirement 

expression (automatically specified at runtime as application specification requirements 

that must be met by execution resources), ranking expression (required to dynamically 

assign each resource a rank used to prioritize it), and a performance profile (used to keep 

up with application performance activity to detect performance slowdown and initiate 

migration). Once the application conforms to this model, it is able to register performance 

degradation, communicate its list of preferred resources to the scheduler and request a 

migration. Even though it is not necessary to modify application source code to use 

GridWay scheduler, by adopting the grid-application model, one is able to achieve 

significant performance gains and thus get the most out of resources [111]. 

GridWay represents the current state-of-the-art job management tool where the entire 

job submission process is automatically handled on user's behalf (i.e., resource selection, 

input data transfer, resource acquisition, job monitoring, job cleanup, and result retrieval). 

Beyond being used as a comprehensive scheduler and a job manager, GridWay can also 

be used as a job submission tool where listed job management procedures are 

automatically handled by GridWay but controlled from another tool. This is promoted 

through the support for programmatic interface (i.e., DRMAA) enabling custom-built 



 
 

60 
 

tools (e.g., metaschedulers) to reuse low-level functionality delivered by GridWay and 

focus on developing higher level logic. 

2.6.9. Workflows and Multi-objective Scheduling 

With complex analyses of various data, computations performed on the grid, and 

HPC resources in general, are often constructed as workflows [112]. A workflow can be 

seen as a formalization of the scientific analysis where individual analysis components 

that need to be executed are well structured and accompanied with the required input data 

at each step. Often times, a workflow is composed of several distinct stages where each 

stage exhibits a certain level of parallelism but then results need to be aggregated 

between such workflow stages allowing the overall workflow execution to continue. 

Depending on the formulation and dependencies that exist between individual 

components, workflows can be characterized by a balanced structure or an unbalanced 

structure. Figure 12 depicts two examples of the possible workflow structures.  

Task

 
Figure 12. a) Balanced structure workflow, and b) unbalanced structure workflow 

A typical goal of grid job scheduling is minimizing turnaround time of a job. 

However, rather than minimizing such a single objective (i.e., application runtime), it 



 
 

61 
 

may be appealing to minimize multiple such objectives (e.g., time and cost or time and 

accuracy). However, realizing such objectives often calls for conflicting actions to be 

performed. For example, minimizing runtime of a job may require acquisition of all of 

the available resources. However, such action will cause increase in job cost. Similarly, 

minimizing cost would call for using as few of the cheapest resources as possible. It is 

obvious that such decision is in conflict with the goal of minimizing job runtime. In such 

a case, neither of the objectives can be minimized as they would if they were the sole 

objective but rather a compromise needs to be reached. This is the idea behind multi-

objective scheduling [113, 114]. In multi-objective scheduling, it is not possible to find a 

single, optimal solution that maximizes/minimizes all of the included factors. Instead, a 

set of alternatives exist providing tradeoffs with respect to the multiple objectives.  

In the context of grid workflow scheduling, several projects have considered 

applying multi-objective scheduling techniques to computational workflows [115, 116, 

117]. In [115], a workflow planning method is proposed that investigates the tradeoffs 

between multiple objectives (namely, cost and time) when a workflow is scheduled 

across grid resources. The proposed solution performs workflow planning that generates 

a set of alternative tradeoff solutions within user specified budget and runtime 

constraints. Although the general idea resembles work presented in this dissertation, 

realization of the approach falls short because the work focuses on implementing and 

comparing performance of three well-known algorithms for workflow execution planning 

and many of the details (discussed in next section) required to perform fully automated 

and application-oriented scheduling are not considered nor incorporated.  



 
 

62 
 

Work performed in [116] presents a formulation of the workflow planning problem 

as sequential cooperative games. In this case, the workflow is defined as containing a 

number of homogeneous and concurrent activities whose structure should be manipulated 

in order to deliver a more optimal execution organization. Therefore, the aim of this work 

is toward structural reorganization and composition of a workflow whose mapping will 

yield a time and cost optimal solution. However, mapping of the individual workflow 

tasks to heterogeneous grid resources is not considered.  

Beyond looking at time and cost as the only two optimization objectives, work done 

by Wieczorek et al. [117] presents a solution where a choice of two objectives can easily 

be chosen immediately preceding the scheduling process. Typical multi-criteria 

scheduling approaches require the user to specify weights for either of the two 

constraints, thus imposing preference as to the optimality of the solution. On the other 

hand, work introduced by Wieczorek et al. provides a general bi-criteria scheduling 

heuristic that allows for a range of criteria and weights to be specified when planning a 

workflow execution. 

2.6.10. Critique 

Grid computing is a popular and a likely candidate to become the next-generation 

high performance distributed computing platform. However, the goal of providing 

ubiquitous access to distributed, HPC resources that are shared between multiple 

organizations through virtualization and aggregation is only as efficient as its overall 

perception by end users. This means that access to such distributed and dynamic 

infrastructure should be brought to the level where an individual user is not only 

comfortable in their environment but their demands and requirements are met. In order 



 
 

63 
 

for this to be achieved, the system should be customizable from user's perspective and 

also have a deep understanding of the existing relationships and dependencies between 

user jobs (i.e., applications) and resources across the infrastructure so that the user 

demands can be more adequately met. 

Projects focusing on scheduling of application jobs across the grid, as presented 

throughout Section 2.6, represent a thorough overview of the directions and 

accomplishments in this field. Conclusions that can be drawn from these experiences 

point in the direction that application-oriented scheduling approach [28, 88] to grid job 

scheduling delivers a higher level of performance regarding application execution 

characteristics, such as higher accuracy, reduced runtime, when compared to simpler and 

more generalized approaches [109]. Consequently, the approach adopted throughout this 

dissertation embraces the conclusions behind application-oriented scheduling and build 

on the lessons learnt. Notions such as application level scheduling [28], decoupling of the 

application and the scheduling action [88], simplicity of use [118] and economic impacts 

[119] are all considered as tools and features that have been proven as viable approaches 

and are supported throughout the design of here presented work. A major novelty of this 

work is the generality with which it incorporates and embraces relevant features, in turn 

enabling the concepts behind application-oriented scheduling to be realized. In order to 

enable such functionality, the presented work does not employ any single functionality, 

or a set of functionalities, but rather undertakes a meta-approach enabling a variable 

number of features to be incorporated on as needed basis (details are provided and 

elaborated on in the Chapter 3 where overall Approach is described). As a result, existing 

and upcoming technologies and tools that generate data pertinent to application-oriented 



 
 

64 
 

scheduling can be effectively incorporated into the overall architecture enabling the 

proposed work to transcend current trends. 

In spite of many attempts (as discussed in preceding sections) that have been made at 

solving the infrastructure management and access problem (i.e., scheduling), to date, 

there is still an existing and a recognized barrier between the core infrastructure and the 

users [69]. This is not to say such projects have failed; on the contrary, much progress has 

been made but, as the case often is with software and intangible tools in general, the 

demand and requirements imposed by users tend to surpass available functionality [120]. 

In particular, when it comes to the grid job scheduling and user perception, current 

projects tend to focus on automating much of the process for the user with the goal of 

absolutely simplifying or abstracting the use of the underlying infrastructure (e.g., assume 

runtime minimization is the only objective for all users). While overall such an approach 

is welcomed, it implies reduction in the control a user has over their environment. In 

order to improve existing behavior and the approach to the grid job scheduling, the aim 

would be to automate the tedious and demanding tasks, which a user does not care about 

or cannot perform effectively because of the problem scope. At the same time, no 

assumptions of user's intentions should be made (e.g., minimize job runtime). Instead, the 

user should be guided through the process of job submission in terms applicable to the 

user. Such an approach combines the advances of automation a computer is capable of, 

but it also permits the user to influence the direction and final destination of the process. 

In other words, it allows for user-level customization of the default system behavior. 

Adoption of such an approach permits a high-level of flexibility for the user and can thus 

satisfy more of the individualistic demands imposed by various users. At that point, the 



 
 

65 
 

system becomes flexible, as opposed to being predetermined or rigid, and can thus evolve 

with the evolution of the principles guiding the general progress. 

The approach presented differs significantly from the existing approaches in that 

application-oriented scheduling is supported from the ‘outside’ (i.e., results from other 

tools can be readily used to guide the scheduling process) and that a user-level 

customization is not only supported but encouraged. In order to make these goals 

feasible, rather than providing a concrete implementation and a solution, presented 

approach offers a higher level architecture that, when implemented, automatically 

enabled desired functionality.  

2.7. Application Performance Modeling and Monitoring 

Because a significant part of the work discussed in this dissertation is devoted to 

application specific parameters and trying to collect and interrelate that information, this 

section explains current projects that deal with these topics and how such information can 

be leveraged to improve application performance characteristics in grid environments. 

2.7.1. Using Historical Information to Predict Application Run Times 

Because of the limited amount of information available to schedulers in the grid, 

additional tools are needed to complement already existing resource selection tools. A 

prominent approach seems to come from the area of tracking historical application 

information and applying it to predict future runtimes of the same and similar 

applications. Downey [121] and Gibbons [122] both used the idea of applying templates 

to individual jobs to classify corresponding applications as similar. Templates can be 

seen as application descriptors from the scheduler's perspective and can include 

information such as username submitting the job, time of job submission, number of 



 
 

66 
 

CPUs requested for execution, queue selection and so on. Downey used prediction 

modeling to predict how long will the job request wait in the queue before starting its 

execution, while Gibbons explored the capabilities of improving scheduling algorithms 

by predicting application runtimes. Although both approaches seemed promising, the 

results did not show beneficial because the prediction times often exceeded job execution 

times. Through a new study, which was built on similar concepts, Smith [123] managed 

to achieve desired results of predicting application execution times by using more 

carefully selected set of templates. While developing the templates, Smith manipulated 

choice of application characteristics incorporated into creating the set of templates and 

added a choice of analysis and selection algorithms used to find the best template set.  

Some of the major contributions found in Smith’s work, seen as modifications from 

the previous approaches, include answers to two major questions: (1) what defines 

similar applications, and (2) how are the predictions generated? Answer to the first 

question is found in the extension of the previous idea of creating categories and thus 

templates to which an application is assigned. The idea is extended through the notion of 

a continuous parameter for job options, such as the number of requested nodes, rather 

than exclusively using discrete parameters. The set of pieces composing a template is a 

variable number that is obtained by executing one of the two algorithms (greedy 

algorithm or a genetic algorithm search). These algorithms are each fed existing resource 

workloads and they proceed to consider varying template sets while keeping only 

template sets selected by either mean or linear regression methods. The mean approach 

considers the mean time of all applications in a given category while the linear 

regression approach considers additional parameters, such as the number of nodes, and 



 
 

67 
 

tries to compute coefficients a and b for the equation R = aN + b (where R is the runtime 

and N is the number of nodes). Regardless of the method employed, the template set is 

selected as valid only if the prediction falls within 90 percent of the confidence interval 

(confidence interval is an interval centered on the run-time prediction within which the 

actual run-time is expected to appear some percentage of time). 

The above described approach has produced results with prediction errors in the 50 

percent range, which is a significant improvement over previous approaches, and 

confirms the point that historical application run-time information can be effectively used 

to predict future execution times.  

2.7.2. Prophesy Performance Database 

Based on the idea and an observation that resources used to execute given jobs 

influence the performance of the application for the given run, a Prophesy project [124] 

was started with a goal of capturing such information and provide insight into application 

and resource dependencies. Prophesy infrastructure is based on a relational database used 

to record application performance data that is later used to develop models for application 

execution on available resources. Derived models can be used to discover most efficient 

implementation of individual functions for a given system, to relate input data to 

application performance, or to choose the most appropriate resource for execution. 

Information collection is based on community effort and is supported at the API level and 

through a web-based interface [125].  

There are three major components making up Prophesy infrastructure, namely data 

collection, data analysis, and relational databases. Databases employed consist of 

template database, used to store application templates and identify appropriate model 



 
 

68 
 

optimization technique, performance database, used to store performance information 

dictated by user selected granularity level, and systems database, focusing on application 

execution parameter in terms of inputs, runtime, resources and instructions on generating 

the executable [126]. Data collection component’s goal is automatic code instrumentation 

at the low level of blocks, functions, and procedures and automatic storage of this data in 

performance database. Granularity of code instrumentation can be adjusted by end user. 

Once collected, the data is analyzed through data analysis component aimed at 

developing prediction models for different sets of resources allowing users to investigate 

other options and possibilities within their application, such as performance on varying 

kernels, interactions with different applications and across differing resources. Models 

are developed from historical application data and resource information by applying one 

of two primary optimization methods: curve fitting and parameterization method. In order 

to generate the model, curve fitting uses one of optimization techniques available in 

Matlab, such as least squares, and uses application computational complexity information 

and historical application runtime data as available in the Prophesy database.  Limitations 

of curve fitting model limit the applicability of the generated model to application 

scalability vs. resource configuration comparison. While curve fitting is a fully automated 

technique, parameterization method requires a combination of manual analysis and 

resource performance statistics. With assumption that only small, function critical code 

segments need to be analyzed, analytical equations are developed where generated 

equations, and thus the model, are a function of input variables. This, combined with 

resource information available in the Prophesy database, allows an application to be 

modeled across different resource configurations [127].  



 
 

69 
 

Contributions and applicability of Prophesy infrastructure have been verified through 

an array of examples and test cases with real-world applications (e.g., Parallel Multiblock 

Lattice Boltzmann Application [128], 3D Parallel Volume Rendering Application [129]). 

In conclusion, the key objective of the Prophesy infrastructure is identification of the best 

implementation of individual functions for a given resource. This is accomplished using 

historical, unprocessed data to generate application models and analysis for variable 

resource configurations to establish speedup, scalability, communication requirements as 

well as application coherency. 

2.7.3. GridBench 

Somewhat similar to the Prophesy infrastructure, GridBench [16, 26] is another 

project dealing with matching of resources and applications through application 

performance monitoring. Unlike Prophesy, which focuses on applications and uses 

historical application performance data to predict and process various application 

configurations, GridBench focuses on providing a core set of benchmarks that 

characterize grid resources. Use of such benchmarks, as is commonly done in comparison 

of individual resources even without grid concepts, allows prediction of performance and 

scalability of compositions of applications on desired systems. The proposed framework 

supports collecting, archiving, and publishing of collected data. The goal of GridBench is 

to provide a collection of kernels representative of applications and application categories 

that can be used to benchmark and characterize components that affect performance of 

applications and resources, allowing comparisons to be made.  

GridBench framework provides five scenarios where it can be applied: 

benchmarking of grid resources in isolation and capturing elements such as CPU speed or 



 
 

70 
 

communication speeds; benchmarking of VOs that encompass multiple grid resources; 

benchmarking performance of middleware; benchmarking of resources by a 

representative application, or a subset of one, where given resource can be characterized 

using more application-specific details; and finally, as a test tool for developing tools to 

validate assumptions made during the development. These benchmarking functionalities 

are realized through creation of three levels of benchmarks: micro-benchmarks (capture 

basic performance such as CPU performance, I/O speed, memory), micro-kernels 

(mathematically well understood synthetic based codes developed to stress test individual 

aspects of grid performance), and application benchmarks (derived from applications 

deployed on the grid consisting of many micro-kernels composed into a workflow 

representative of a given application). 

Implementation of GridBench framework is a composition of the following 

components: RSL compiler, which creates job submission documents from benchmarks; 

orchestrator, which manages all other components; benchmark components or benchmark 

executables; monitoring component in charge of information collection; archive database; 

information provider for information publishing; benchmark definition and benchmark 

browser in charge of submission and retrieval of benchmarks, respectively. Such layered 

implementation allows partial components not only to be developed independently, but 

also supports modular deployment and addition of outside components. GridBench is a 

promising tool whose applicability is obvious in the community dealing with application 

performance storage and modeling.  



 
 

71 
 

2.7.4. GrapBench 

Positioned between the Prophesy benchmark suite and GridBench, GrapBench [130] 

is a tool that focuses on application benchmarks while incorporating the problem size and 

the resource size into the benchmark results. Through an XML based definition of a 

desired benchmark, which includes executable specification, set of problem sizes, pre-

execution requirements, and a set of available resources, GrapBench enables targeted and 

controlled execution of application benchmarks. Beyond only executing the benchmarks, 

GrapBench archives them in a local repository for later retrieval and analysis. Lastly, 

collected results can be visualized through a GUI enabling performance analysis with a 

focus on application performance and scalability or benchmarking of grid site as a whole. 

The analysis component includes ability to predict application's behavior across various 

input data sizes and resources by extrapolation. However, such an approach assumes 

consistent application scalability and relational performance of an application across 

various resources. By enabling a user to compose an application benchmark, GrapBench 

allows for flexibility regarding the type of benchmarks used and thus provides a 

benchmarking framework that can be customized on as needed basis. By enabling 

variable input data to be included into the benchmarks, impact of input data on 

application performance characteristics can be studied.  

2.7.5. BioPerf 

Building on the notions of application-level benchmarking and information such 

benchmarks can deliver regarding relationships between an application and a resource, 

BioPerf [131] is a tools that focuses on benchmarking bioinformatics applications. With 

the exponential growth of genomic data caused by recent improvements in sequencing 



 
 

72 
 

technologies, the amount of data to be searched through has grown significantly and has 

thus led to higher demand for HPC resources in the bioinformatics community [132]. To 

that extent, in order to provide users a general approach to benchmarking frequently used 

applications across available resources, BioPerf is a benchmark suite of representative 

bioinformatics applications and sample input data sets that can easily be invoked and thus 

provide application-specific benchmark of a selected resource. Through availability of 

such a tool, newly arriving architectures can be quickly and consistently benchmarked 

resulting in immediate comparison to other available resources. BioPerf includes codes 

and input data sets for ten popular bioinformatics applications, one of which is BLAST, 

and thus represents a useful tool in the context of majority of experimental work 

performed as part of this dissertation. One major drawback of BioPerf, as relevant to this 

work, is that it does not allow easy modification of application invocation parameters and 

thus does not allow for benchmarking of influence that various parameters have on 

application runtime characteristics.  

2.7.6. STAPL 

The underlying differences in hardware found in a typical grid causes application 

performance to vary from one resource to another. For many applications, the underlying 

algorithm comes in many flavors but performs the same functionality (e.g., sorting, 

matrix multiplication). Selecting which algorithm to use, depending on the system 

specifications, can significantly improve the execution time of the application or reduce 

application requirements in terms of communication cost and/or compute requirements 

[14]. All of such choices should, however, be hidden from the end user because the user 



 
 

73 
 

is primarily concerned with the correct execution of the application as s whole rather than 

such low-level details.  

Standard Template Adaptive Parallel Library (STAPL) [133] is a framework for 

parallel C++ code which provides a parallel programmer with a shared object view of the 

data space. Through the internal mechanism, STAPL ensures automatic translation of one 

space to another for objects distributed across a possibly distributed address space, thus 

providing the user with a unified data space. As part of the STAPL, a framework has 

been developed for performing an adaptive algorithm selection used to select the most 

appropriate parallel algorithm for the given architecture [134]. The algorithm selection is 

based on the information about the underlying system architecture and is done at runtime. 

STAPL framework focuses on selection between multiple equivalent parallel algorithms 

and tries to optimize on the granularity of data distribution and inter-process 

communication.  

When STAPL is installed, the framework collects statically available information 

from the standard header files and system calls about the underlying system and the given 

environment (e.g., CPU speed, number of CPUs, memory size). This information is 

stored in a data repository along with algorithm performance information obtained from 

installation benchmark runs. Machine learning tools are used next to analyze this data and 

store it for retrieval at application runtime. The machine learning is decomposed into two 

categories: the general empirical model, which uses information from the previous runs 

to predict optimal parameter values for the future runs, and analytical models, which are 

manually generated models (usually by the application developer) that provide insight 

into a given algorithm to a greater detail (e.g., communication formulae) and can possibly 



 
 

74 
 

result in greater accuracy during algorithm selection. Currently, STAPL framework 

supports only the empirical model. As far as analyzing collected data, the framework uses 

three learner methods, the most promising, decision tree learner [135], a back 

propagation neural network [136] with two internal layers, and a Bayes naïve classifier 

[136]. Selection of which learner method to use for algorithm selection is done on per-

algorithm basis and it is based on the examined accuracy of the learner’s ability to model 

the problem (this is evaluated upon the installation and completion of the algorithm 

benchmarks). 

2.7.7. Application Skeletons 

All the approaches attempting to predict application behavior discussed so far do so 

based on information available about the current resource status and/or experiences from 

previous runs of an application. Another approach with a similar goal in mind is 

prediction of application execution time based on application performance skeletons. An 

application performance skeleton is a short running program that mimics the execution 

time and cost of the real application [137]. The basic idea behind performance skeletons 

is that skeletons execute operations representative of the real application in terms of CPU 

usage, communication patterns and cost, memory access patterns, and the similar but 

execute up to 1,000 times faster than the real application.  

From the University of Houston, comes a framework and the initial implementation 

of the application that analyzes applications and automatically generates code for the 

performance skeletons ready to be executed on any given resource [137]. Current version 

of the application deals with MPI applications implemented in C programming language 

only. The process of skeleton generation consists of three steps. First, the application 



 
 

75 
 

execution trace is recorded registering CPU usage and message exchanges. Then the 

signature of the application is created by analyzing the trace, manipulating it, and 

compressing it. Finally, the performance skeleton code is generated that can be executed 

as the real application but will run by a factor K times faster. Testing has shown an 

average time a skeleton needs to run is approximately one second and a reliable execution 

signature of the application can be obtained, thus showing plausible acceptance into the 

grid application scheduling.  

2.7.8. Critique 

In the general context of the grid, it has been shown that individual heterogeneous 

systems provide heterogeneous performance features that map more suitably to one class 

of applications as opposed to another (e.g., [16, 17]). It has also been shown that 

performance of any individual application is heavily dependent on the underlying system 

characteristics including parameters selected during the job submission process [138]. 

Such observations can be used to recognize existence of a relationship between an 

application and a resource. Not observing and understanding such relationships can result 

in excessive job runtimes, wasteful user allocation time, decreased resource utilization, 

and reduced resource throughput. It is thus desirable to detect existing dependencies and 

relationships between individual applications, resources, and job parameters so that the 

observed characteristics can be exploited during future job allocations. 

To that extent, there is a need to capture and provide application- and resource-

specific data so it can be used during the scheduling process and a match between 

application requirements, resource capabilities, and user requests can effectively be 

made. Generic and standardized benchmark suites, such as LINPACK [139] and SPEC 



 
 

76 
 

(Standard Performance Evaluation Corporation) [140], have been created with the idea of 

benchmarking individual workstations and providing meaningful comparisons between 

performances of those. Such approach worked well in more localized and traditional 

settings where major units of performance were resource speed, throughput and 

bandwidth. In the context of the grid, rather than focusing on a number of jobs a resource 

or a group of resources can process, the focus is on the individual user and job turnaround 

time; this is a characteristic of a service oriented environment. Because standardized 

benchmarks focus on benchmarking a resource as opposed to an application, they often 

fail in a number of ways to capture intrinsic details and requirements imposed by 

individual applications as they are executed across various resources [130].  

Individualized solutions and projects that focus on application-specific benchmarks 

and performance analysis, as described and elaborated on throughout Section 2.7, provide 

an excellent direction for capturing necessary application- and resource-specific data that 

can be used during metascheduling. However, such solutions provide standalone 

instances targeted at either specific class of applications or a specific characteristic across 

applications. Because of such individualistic and uncoordinated approach, a general tool, 

such as a metascheduler, that attempts to consume application- and resource-specific data 

to deliver application-oriented services must aggregate desired data from multiple 

sources. Superficially, an approach that attempts to manually combine data from such 

multiple directions complicates its development and functionality because of the differing 

formats the data is stored in and inconsistency of the data collected by individual 

application performance profiling tools. More substantially, by only using the data from 

individual and unrelated projects on an ad-hoc basis, there is a need to repeatedly perform 



 
 

77 
 

analysis of application execution characteristics by each instance of a tool consuming 

available data (i.e., each metascheduler being developed or even just deployed). In other 

words, each tool that tries to analyze and understand behavior or performance 

characteristics of an application must do so individually and irrespective of whether such 

analysis has already been performed by another tool. This is because the application 

analysis information is tied and stored locally and individually by the user of the data 

(i.e., the metascheduler or corresponding analysis tool) as opposed to being tied and 

stored with the application itself and thus distributed with the application itself. With the 

availability of only individualized application performance collection tools, there is no 

standardized set of tools that a VO can adopt and publish. Instead, if a VO could 

publicize availability and support of application-specific data in a standardized format, 

thus ensuring availability of necessary data to metaschedulers, such metaschedulers could 

become more generally deployed. Moreover,  because such a standardized set of data 

would be available to the metaschedulers at the VO level, the metaschedulers could 

immediately offer support for the concepts behind application-oriented metascheduling at 

the level of a VO.  

In conclusion, although current approaches present viable solutions for application-

level and application- and resource-specific performance data collection, the solutions 

they provide are defined in terms of actions they perform and data they collect. Because 

such tools are developed on a stand-alone basis with no direct ties between them, 

consumers (i.e., metaschedulers) of such tools use them on case-by-case basis. Such an 

approach results in tools consuming the data to be forced to aggregate desired data from 

multiple, independent sources and create custom solutions that can be applied in 



 
 

78 
 

scheduling of application jobs. More importantly, it is likely that because individual 

instances of tools consuming available data have to compute the data on their own, the 

available data is being analyzed repeatedly by individual tools and tool instances. This 

obviously results in waste of effort and computational power.  

To alleviate such repeated efforts and enable a higher level of service to relevant 

tools, there is a need to enable capturing, collecting and sharing of pertinent data on a 

more generalized scale (e.g., at the level of a VO). Moreover, rather than focusing on 

storing only low-level application performance data, it would be beneficial if analysis 

results and conclusions about application performance characteristics, which can be 

easily understood and immediately consumed, could also be collected and distributed 

(e.g., this application scales efficiently up to 128 processors and the processor assignment 

number must be a power of 2). Such improvements enable generalized approach to 

application-oriented scheduling while minimizing required effort and are part of the 

topics covered by this dissertation. 

2.8. Embarrassingly Parallel (EP) Application Domain 

 The overall approach and discussion of this work, as outlined in Chapter 1 and 

elaborated in Chapter 3, presents this research as applicable across the field of grid 

metascheduling; topics dealing with application- and user-oriented grid metascheduling 

are detailed and explored (see Section 3.5 and Section 3.6). Within this scope, the focus 

of presented work is on metascheduling Embarrassingly Parallel (EP) class of 

applications. This section builds on the classification of grid applications presented in 

Section 2.3.1 and provided background details regarding the EP class of applications 

(Section 2.8.2). In addition to the general discussion about EP class of applications, 



 
 

79 
 

observations regarding metascheduling considerations for the class of EP applications are 

presented (Section 2.8.3). Conclusions of the considerations and analysis presented in this 

section are incorporated into the work described throughout Chapter 4. 

2.8.1. Selection of the EP Application Domain 

Based on the grid application classification categorization presented in Section 2.3.1, 

with the same general approach to resource allocation, the EP class of applications 

encompasses categories two through four [14]; namely, applications whose parallel 

execution is supported by the application model without any communication between 

individual instances of the application. This class of applications was selected as the 

focus of this dissertation. The selection was made based on the following three reasons: 

1. From the early days of the grid computing, EP class of applications has been 

thought of as the 'killer' application for the grid [96]. This means that the grid 

offers an extremely suitable platform for realizing the type of execution 

environment this class of applications requires. 

2. A recent study [141] shows that the EP class of applications is the most widely 

deployed class of applications on existing national and international grids. 

Therefore, this dissertation's focus and advances within this class of applications 

offers the widest benefit to the global community. 

3. Once the metascheduling model for the EP class of applications is understood, 

other application categories can be modeled within the EP class. Initial discussion 

on how to accomplish this is provided in Section 7.1.4.  



 
 

80 
 

2.8.2. EP Applications 

EP applications are characterized by independent, coarsely grained, and indivisible 

tasks. The goal of EP applications is to introduce parallelism into application execution 

without any application code modifications or associated cost. This parallelism is realized 

through multiple invocations of the same application, where each instance is invoked 

using a different input data set (see Figure 13). The number of tasks being instantiated 

can range greatly, and can include only a few instances or several hundred instances with 

each instance executing from several seconds to minutes to many hours. The end-result is 

speedup of application’s execution that is limited only by the size of input data and the 

number of resources available. Suitability of the EP class of applications for grid 

environments is a result of the ability of EP applications to consume large numbers of 

resources as well as impose minimal requirements and dependencies on network status 

and offer high tolerance for partial failure.  

 

Figure 13. Execution model for embarrassingly parallel applications 



 
 

81 
 

2.8.3. EP Application Metascheduling Considerations 

Although executions of individual instances of EP application jobs are considered 

independent and should therefore be easy to schedule, systematic execution of EP jobs 

involves considerable technical difficulties when executed in grid environments [14]. The 

challenges include dynamic resource availability, initial data distribution, global load 

balancing, and failure handling. If such considerations and dependencies are not 

acknowledged or understood, many of the potential benefits may simply be invalidated.  

Understanding an application’s relationship to potentially numerous grid resources 

may seem as a farfetched goal requiring disproportionate effort for the benefit received. 

If, however, the process of metascheduling is decomposed, the process can be classified 

into several main components, lending themselves as a set of considerations for 

deepening the understanding of the application-resource relationship. Furthermore, 

depending on the desired results (e.g., quick metascheduler development, high accuracy 

of metascheduling actions), the level of understanding of the existing relationship can 

range from rudimentary, where just a small number of the most obvious application 

characteristics are recognized, up to a well-understood and well-developed mathematical 

model for an application’s behavior that can later be mapped to individual resources. 

With the aim of providing a decomposition of the scheduling problem, the following can 

be seen as the most general set of considerations that should be kept in mind when 

metascheduling and executing the EP class of applications across a grid environment: 

• Job-level coordination 

• Task parameterization 

• Load balancing 



 
 

82 
 

• Task failure 

• Cost 

Job-level coordination – it is beneficial to consider a job in its entirety prior to its 

execution rather than simply submitting jobs on first-come-first-serve (FCFS) basis. 

Global overview and comprehension of the job with respect to input file size, input file 

format and characteristics, data locality, available resources, and user requirements is 

desirable. Through recognition of these characteristics, the scheduling objectives, and 

thus the scheduling algorithm, can be adjusted more adequately. By considering a job as a 

unit, a job plan can be developed a priori eliminating many uncertainties as job execution 

gets under way (e.g., job budget, input file distribution, data accuracy, expected task 

failure rate). 

Figure 14 points to the effect job planning may have on overall job runtime 

characteristics. In the figure, the left most three bars (colored in red) represent runtimes 

of tasks resulting from the job plan submission; remainder of the bars represent runtimes 

of the tasks created without a job plan. For the job plan option, a BLAST job was 

submitted across three heterogeneous grid resources so that the job workload (1,024 

queries) was distributed across resources to match the resources’ relative performance. 

Technical job resource details are available in Appendix C where the following resource 

configurations were used: Ferrum resource with 5 nodes, Everest resource with 10 nodes, 

and Cheaha 1 resource with 15 nodes. In order to obtain resource performance, a 

benchmark of resource performance for BLAST was needed; this value was obtained 

from AppDB. The same input data set was then submitted across the same resources in a 

FCFS basis. The input file was divided into 120 chunks using the UNIX split utility and 



 
 

83 
 

submitted to available resources. As a resource completed processing an assigned chunk, 

another chunk was automatically submitted to the given resource (after multiple 

experiments with a variable number of chunks, submitting 120 chunks resulted in shortest 

job runtime so results for 120 chunks are shown). Results in the figure show the benefit 

of the job plan resulting in significantly lower load imbalance across tasks. Such job 

execution and has lead to approximately 30% shorter turnaround time for the job. 

 

Figure 14. Runtimes of tasks distributed across three resources when using a job plan 
(left most three bars - colored in red) and when using first-come-first-serve approach 

with 120 tasks (remainder of bars). Overall, job planning leads to 30% shorter 
turnaround time. Jobs executed 1,024 query BLAST search against the 1.6 GB nr 

database. 

Task parameterization – once created, each task can be seen as an individual job. 

This is especially true from the resource perspective. Depending on the characteristics of 

the execution resource, parameterization of a task should be independently handled and 

optimized for the resource at hand. Based on the amount of data available for current 

application and resource, in addition to the level of understanding of an application 

0

100

200

300

400

500

600

700

800

900

1000

1591317212529333741454953576165697377818589939710
1

10
5

10
9

11
3

11
7

12
1

R
un

tim
e 

(s
ec

on
ds

)

Task ID



 
 

84 
 

performance model, this process could require variable amount of effort. Effects of task 

parameterization can turn a poorly behaving resource into a competitive one or vice 

verse.  

An example is shown in Figure 15 where a properly parameterized task (Parameter 

set 2) executing on an old Sun SPARC machine is comparable in performance to an 

improperly parameterized task (Parameter set 1) on a much newer Intel Xeon based 

resource. The difference in the Parameter set 1 and Parameter set 2 is the number of 

threads that were employed to process given BLAST job. The Parameter set 2 exploited 

resource scheduling policy to realize presented runtime reduction. Scheduling policies of 

given resources assigned a single user job request to a single compute node, irrespective 

of the number of processing cores available on the node. Recognizing the number of 

cores available on a node and starting that number of threads on given node leads to 

shown runtime reduction. 

 

Figure 15. Significance of task-level parameterization - improperly parameterized task 
can result in a resource behaving poorly. Parameter set 1 used basic invocation of 

BLAST where only a single thread was instantiated to process the input. Parameter set 2 
matched the number of threads to the number of cores available on the resource. 

Load balancing – although each task of an EP application executes independently, 

minimizing load imbalance across tasks results in maximization of resource utilization 

0

1000

2000

3000

Parameter set 1 Parameter set 2

R
un

tim
e 

(s
ec

on
ds

) Intel Xeon (2.66 GHz, 2 GB RAM)
Sun SPARC E450 (400 MHz, 4 GB RAM)



 
 

85 
 

and thus minimization of job runtime (i.e., maximization of job performance). At the job 

level, by aiming at achieving load balance leads to task dependencies, thus making 

efficient scheduling of this class of applications significantly more difficult. This is 

further complicated by the task-level parameterization discussed above. An approach to 

managing this issue can be seen in the job plan management that is aware of individual 

task-level optimizations and can thus guide the computation toward set goals. Other 

possible directions for achieving load balance in grid applications include adaptation of 

techniques used in parallel and distributed environments (e.g., [142, 143, 144]).  

Figure 16 presents an example of the effect load imbalance may have on runtime of a 

job. Corresponding BLAST job input file was divided into a number of chunks using the 

UNIX split utility. Each of the chunks was submitted to an available resource node. 

Because of the structure of the job input file (discussed further in Section 4.2.1), tasks 

exhibited shown runtime characteristics. Not understanding and leveraging effects of job 

input data resulted in shown load imbalance, poor resource utilization, and excessive job 

runtime. 

 

Figure 16. Variation in runtimes of a set of BLAST tasks caused by load imbalance 
between the tasks. Tasks performed a search against the 1.6 GB nr database using 4,096 
query input file. Load imbalance was caused by disproportionate workload assignment to 

individual nodes in terms of query lengths.  

2,145

958

434

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
M

ax
…

A
ve

r…
St

de
v

R
un

tim
e 

(s
ec

on
ds

)

Task number



 
 

86 
 

Task failure – superficially, execution of EP class of applications with no task 

communication seems like a perfect platform for easy handling of partial task failures. 

However, under the goals discussed throughout this section, task failure introduces a 

significant issue. The aim of developing a job execution plan is to provide additional 

insight into job execution and try to meet user objectives. Once a task fails, current job 

plan is invalidated and, depending on the failure situation, could completely disrupt 

outlook of successful job completion.  

In order to cope with task failure, the following considerations apply. As a general 

observation, tasks executing on grid resources have the highest failure rate during their 

initialization and startup process. This can be attributed to resource miss-configurations, 

task miss-configuration, policies, events local to a resource, as well as any of other host 

of variables. Consequently, a much higher probability of success can be assigned to a task 

that has reported as being under execution. Alternatively, multiple submissions of a task 

can be initiated, albeit resulting in wastage of resources. In addition, a timeout 

mechanism may be implemented that checks on a status of a task and either cancels it (in 

case of multiple copies of the same task exist) or spawns another copy of the task (in case 

of a non-responsive, single task instance). If balance between computation time and 

number of tasks is well tuned, dynamic task distribution can offer highest tolerance for 

task failure [145]. However, other issues, such as consistent resource availability, may 

pose alternate problems. While there is no safe-guard against task failure, observations 

and models such as these can be incorporated into the job planning process leading to a 

more robust execution.  



 
 

87 
 

Cost – considering the general direction of grid computing toward enterprise and 

cloud computing where economic aspects are being increasingly prevalent [74], cost 

associated with job execution is becoming a concern. Since job cost is obtained from 

cumulative task cost, utilization realized by each task is directly proportional to the 

overall job cost. From the perspective of job metascheduling, it is thus important to 

generate an efficient job execution plan that satisfies user’s requirements while yielding 

profit to the resource owner.  

Adopting the job plan model just discussed leads toward desired estimations 

regarding job execution control and alternatives. Figure 17 (also shown as Figure 3), 

indicates the variation in job cost as caused by different job plans. The three cases, 

shown, represent the outcome of manipulating the internal characteristics of the input 

data files in addition to the distribution size of data chunks that were passed to individual 

resources. As can be seen, realizing an effective job plan that meets resource capability 

leads to considerable reduction in job cost and thus increases user’s QoS. 

 

Figure 17. Difference in job runtime, load balance and cost between a naïve job 
submission and an optimized job submission of a BLAST job. Jobs performed the search 

against the 1.6 GB nr database using 4,096 query input file. 

$0

$2

$4

$6

$8

$10

0

300

600

900

1200

1500

Initial Adjusted Optimized

Jo
b 

co
st

R
un

tim
e 

(s
ec

on
ds

)

Ferrum (96 cores) Cheaha 2 (48 nodes)
Olympus (128 nodes) Cost



 
 

88 
 

In the context of enterprise and cloud computing, user requirements are likely to 

become the major driving force behind job metascheduling policies. Unlike the more 

traditional cluster computing environments where resource utilization was the main 

objective, service oriented architecture promoted by the grid infrastructure is advocating 

a user centric orientation. Here, the quality of a system is realized by user satisfaction and 

measured through user utility. These notions are realized through the QoS requirements 

imposed by the users and agreed upon by the resource provider through the Service Level 

Agreements (SLAs). With future advancements of pervasive computing, a user is likely 

to require detailed insight into their consumption of computational power further 

complicated with imposed requirements on alternative job execution plans. Although 

current efforts in metascheduling EP applications primarily focus on runtime 

minimization, cost may take on different forms in future systems (e.g., result accuracy, 

system responsiveness, power consumption, availability) and will become a primary 

metascheduling consideration. Therefore, considerations such as the ones listed in 

preceding paragraphs will become more important and prevalent and will need to be 

cumulatively manipulated.  

2.9. Other Related Work 

Besides the concepts and projects most relevant to the topic of this dissertation and 

covered throughout Chapter 2, this section provides additional information about 

applications and tools that are either tangentially relevant or used in presented work. 

2.9.1. Bioinformatics Application Domain 

The sequence alignment process enables identification of regions of similarity 

among biomolecular sequences (i.e., DNA, RNA, or amino acid sequences), where high 



 
 

89 
 

sequence similarity often implies significant functional, structural, and evolutionary 

information between genes. Finding such similarities enables derivation of inferences 

about gene functionality and ancestry. Sequence alignment has grown to one of the most 

important aspects of today’s biological research [146]. The alignment process consists of 

comparing multiple sequence queries by searching for series of matching individual 

characters or character patterns across the sequences.  

One of the most widely spread algorithms for sequence alignment is the Basic Local 

Alignment Search Tool (BLAST) [15, 147]. Although there exist other sequence 

alignment algorithms (e.g., FASTA [148], SSEARCH [20], HMMer [21]), BLAST has 

gained popularity because of its emphasis on execution speed. At the same time, the 

advent of high throughput sequencing technologies and large scale projects, such as the 

Human Genome Project [149], have led to exponential growth of search target databases 

and thus exponential search times [132, 146]. 

In order to cope with the prolonged search times, parallel computing techniques have 

been used to help BLAST jobs gain speedup on searches by distributing search jobs over 

a cluster of computers. There are two main methodologies for parallelizing BLAST 

searches, namely database segmentation and query segmentation (depicted in Figure 18). 

Database segmentation methodology (employed by mpiBLAST [22] and TurboBLAST 

[150]) distributes a portion of the sequence database to each cluster node. Thus, each 

cluster node only needs to search a given query set against its portion of the sequence 

database. Alternatively, query segmentation (employed by [25, 151]) distributes portions 

of the user submitted queries to available cluster nodes. Each compute node has access to 

the whole database and performs the search only on its portion of the query set, thus 



 
 

90 
 

speeding up the overall search effort because of the developed parallelism. Query 

segmentation represents an instance of the EP class of applications discussed in Section 

2.3.1 and is the focus of this research work. 

 

Figure 18. Two models for parallelizing BLAST: (a) query splitting and (b) database 
splitting 

Nevertheless, executing alignment searches presents a challenge in terms of required 

resources because neither individual workstations nor individual clusters are capable of 

realizing needed performance. For example, a small-scale search with approximately 

1,000 search queries against a popular 1.6 GB   nr database on a decent workstation (dual 

CPU, dual core Intel Xeon 3 GHz, 4 GB RAM) takes approximately 8 hours to complete 

using one thread per CPU. Because of the speed at which sequencing machines perform 

analysis, it is not uncommon to generate on the order of 250,000 queries in a single 

experiment2

                                                      
2 Based on personal communication, Clemson University, Clemson, SC, February 25, 2008. 

. Performing a search with that amount of data presents itself with a 

challengingly high computation cost. Resorting to publicly available resources such as 

NCBI [152] is still not enough because they impose a one cumulative CPU-hour 

limitation per user job [153].  



 
 

91 
 

In order to realize the benefits of increased execution speed offered by the parallel 

approaches and gain access to needed resources, scientists are aiming at using grid 

computing technologies (e.g., [154, 155, 156]), which offer needed computational 

capabilities to user’s fingertips. However, already discussed heterogeneity of available 

resources introduces additional complexities when executing such jobs across the grid. 

With a goal of improving runtime characteristics of BLAST jobs across grid 

environments, BLAST was chosen as an application to work with during this research. 

2.9.2. Statistical Genomics Domain 

Two different applications from two different domains were considered in the 

validation stage of presented research. Besides BLAST application discussed in the 

previous section, the second application belongs to statistical genomic field and was 

selected from UAB's Department of Biostatistics, Section on Statistical Genetics (SSG)3

The execution of the application is based on random data generated for simulated 

analysis with the goal of understanding behavior of statistical methods onto real data 

analysis. The application needs to be executed repeatedly, as new methods are studied. 

The data analysis is implemented in R [157] and takes as input a set of parameters. The 

. 

The application represents an application of statistical methods to understand gene 

expressions and how those relate to expressed genetic traits. Statistical methods are used 

to determine distribution of traits in an attempt to build a mapping between general 

genetic traits and an individual's expression of those traits; for example, which genes 

control the expression of diabetes? The analysis is performed on real experimental results 

with variables being regions of genome and those may vary in length from 10,000 to 

100,000.  

                                                      
3 http://www.ssg.uab.edu 



 
 

92 
 

number of parameters varies from one experiment to the next and each experiment needs 

to be performed a certain number of times. Because of the limitations of computational 

resources, the total number of iterations performed has typically been less than 10,000; 

however, to achieve desired accuracy 100,000 iterations should be performed.  

From the grid computing perspective, SSG analysis code4

Figure 19

 represents an opportunistic 

platform that allows distribution of individual parameters as well as individual iterations 

across multiple resources.  depicts the computational model of relevant code. 

The application has two inputs, a set of parameters and a number of iterations that should 

be executed on each individual parameter. Each of the parameters is independent of all 

the others and can thus be spawned to a separate resource. Moreover, individual iterations 

that are performed on each parameter can be split into smaller segments and executed in 

parallel across multiple resources. As presented in Section 4.1.1, selected application 

belongs to class III category of EP applications, and, due the potential impact of adopting 

grid computing into the computational pipeline of the SSG group that would deliver 

sought performance, it was used as the application of choice.  

 

Figure 19. Computational model for statistical SSG analysis code indicating viable levels 
of parallelism for application execution. 

                                                      
4 http://projects.uabgrid.uab.edu/r-group 



 
 

93 
 

2.9.3. Simulating Grid Resources 

Application testing, and particularly scheduling of applications on underlying 

resources, requires a testbed to perform required operations and check for validity and 

success of the newly generated application and/or scheduling algorithm. Beyond only 

requiring a testbed, there is a requirement to compare given scheduling algorithm, in 

particular, to other versions of the algorithm or other algorithms altogether. The 

implication of this requirement is that there is a need for repeatable and controllable 

environment where experiments and evaluations can be observed. Because the grid spans 

multiple administrative domains and has a wide range of resources participating, this may 

be hard or impossible to achieve. Researchers, in particular the ones dealing with 

scheduling algorithms, thus need a framework for deterministic modeling and simulation 

to test developed algorithms.  

As a solution to some of these problems, use of simulation methods rather than real 

world testbeds alleviates and enables the necessary manipulation and control of the 

environment. Beyond control over individual resources, use of simulations enables 

researchers to work with varying and otherwise unobtainable resources, allowing testing 

of application and algorithm scalability. Several tools were developed with the goal of 

simulating the grid, namely Bricks [158], MicroGrid [159, 160], Simgrid [161], and 

GridSim [162]. The Bricks project focuses on simulating client-server model as s global 

computing multi-user system. It operates under a centralized system controlling 

performance and providing service rates. The MicroGrid operates as a GT emulator and 

expects applications and the scheduler to be constructed using the GT. Because of the 

characteristics of emulated environments, evaluation of large-scale grid scenarios and 



 
 

94 
 

configurations may take considerable amount of processing power and time. The Simgrid 

tool allows for modeling of time-shared resources or resources restricted to a single user. 

Simgrid is targeted for users developing schedulers that minimize application execution 

time alone and offers support only for the C programming language. Much like Simgrid, 

the GridSim toolkit provides support for schedulers focusing on minimizing application 

execution time but also supports space-shared resources and a multi-user environment. 

As such, it supports scheduling algorithms that focus on cost minimization and deadline 

scheduling based on economic models.  

GridSim offers a versatile set of choices in creating virtual grid with built in support 

for the following options: 

• Modeling of heterogeneous resources 

• Space and time shared modeling of resources 

• Specifying resource capabilities and time zones 

• Specify network speed between resources  

• Weekday/weekend/holiday rate based on resource workload 

• Application modeling on given resources allowing simulation of a range of 

parallel application models (e.g., compute to I/O intensive) 

• Support for static and dynamic schedulers 

• Statistics tools recording selected operations for later analysis 

Interaction with GridSim is done by extending a set of Java classes provided by the 

toolkit and writing the code to specify grid parameters including resources and 

applications. Upon correct environment setup, the scheduler component needs to be 

implemented on top of the toolkit to provide the desired functionality and focus on 



 
 

95 
 

particular goal (e.g., resource, application or cost). Because of its versatility, GridSim has 

been accepted as a de facto standard for simulating grid environments. 

2.9.4. Automating Service Descriptions  

Some of the ideals of the grid computing can be seen as realizing automation and 

consistency across this heterogeneous environment. Much of such work can only be 

accomplished through development and adoption of standards and standard protocols. 

Automated service description and publication has never been attempted for grid 

applications, but there has been much work  at defining and describing software 

components in the field of Software Engineering [163]. By using precise component 

definitions, one is able to advertise individual component functionality and use other such 

components to compose new systems. This has been realized through the Open Software 

Description (OSD) [164] language standard and advanced to where available components 

are published on the web and used as needed by software systems without any human 

intervention.  

By supporting a method for capturing the core purpose of the application, 

requirements, and options, the end user is provided with specific information that 

describes the application. After successful installation, the second most important feature 

enabling application use is the interface that the application provides to its users. With 

respect to grid applications, the most appropriate way to interact with an application is 

through a web-based interface that requires no local installation of the application. A 

web-based interaction may also provide special tools and knowledge to access available 

resources [50, 165]. By providing a default standardized interface to the given application 

automatically, a resource owner may reuse the interface rather than implementing their 



 
 

96 
 

own. The benefit for the end user is that the interface stays constant across different 

providers. An additional benefit is a reduction of possible errors during interface 

generation caused by possible misunderstanding or lack of application knowledge.  

The Pasteur Institute Software Environment (PISE) [166] is an example of previous 

work where the notion of interface description has been adopted in practice. PISE is a 

transformation tool that receives as input a PISE-DTD compliant XML document and 

interprets the document to create any of the suite of interfaces ranging from HTML to 

CGI [166]. A scalable core is also provided by PISE that can be extended to add 

additional interface interpreters as needed. PISE currently contains a database of over 200 

XML documents corresponding to interfaces for various applications that are primarily 

focused on bioinformatics. By leveraging initiatives and technologies such as those 

provided by PISE, many of the accidental complexities associated with grid application 

deployment can be removed.  

2.9.5. Cloud Computing 

Cloud computing [31] is an emerging technological infrastructure that makes use of 

existing and centralized hardware resources to incorporate and deliver functionality such 

as Software-as-a-Service (SaaS) and Infrastructure-as-a-Service (IaaS) directly to the 

consumer over the Internet. Unlike grid computing, cloud computing is characterized by 

localized administrative control of possibly heterogeneous and geographically distributed 

resources. Users gain access to cloud computing resources on as-need basis, utilizing 

required resources to complete a job at hand and releasing consumed resource upon the 

job completion. Individual clouds often provide specific functionality and thus target a 

specific niche of users (e.g., Amazon EC2: general computing, Google App Engine: web 



 
 

97 
 

portal development, Microsoft Azure: enterprise application development for the web). 

Aggregating such variable functionalities and providing a single access point atop 

multiple clouds can be seen as the true potential and realization of the grid. 

Work presented in this dissertation immediately applies to the concept of cloud 

computing primarily from the perspective of the resource owner but with a considerable 

potential for the end user. Concretely, performing distribution and assignment of user 

jobs to resources in an application- and resource-specific fashion by a resource owner, as 

enabled by work presented in this dissertation, would enable not only increased 

utilization of resources for a cloud provider but would also result in shorter turnaround 

time for the end user. Such developments lead toward higher job throughput and more 

satisfied consumers. From the end users' perspective, the true potential is realized upon 

generation of interoperable aggregation of multiple cloud computing providers where 

service comparison and competition is present. Such environment can result in increased 

level of support and QoS as guided by user demands. 

 

 

 



 
 

98 
 

3. APPROACH 

This chapter describes the overall approach and contributions of this dissertation; 

rationale for the approach is presented followed by the general requirements, directions, 

and contributions. Rationale of the approach builds on the analysis and conclusions 

presented in Section 2.8.3 where complexities regarding execution of EP class of 

applications are presented. The goal of this chapter is to provide a high-level architecture 

of the framework developed as part of this dissertation and describe the interaction 

between the different components of the framework. As will be empirically shown in 

Chapter 4 and Chapter 5, adoption of the framework described in this chapter enables 

delivery of higher user utility through incorporation of resource-application dependencies 

into metascheduling and altering the interaction between a user and the scheduler.  

3.1. Complexity of Grid Job Metascheduling 

At its core, a metascheduler receives an abstract resource specification (typically 

from a user) and translates it into a more concrete definition. It does this in order to find a 

match for the job submission request. In the process of searching for an available match, 

multiple domains and resources might be traversed until an available and compatible 

resource has been found. Once a resource, or a combination of resources, is located, the 

specification is passed onto the Local Resource Manager discussed in Section 2.5.1 for 

job execution [167]. However, because grid environments consist of heterogeneous 

resources, the execution characteristics of a job depend on the resources selected for 

execution. Therefore, the resource capability available across individual and 



 
 

99 
 

heterogeneous resources, suit certain applications and application classes better than 

others. Furthermore, the selection of job invocation parameters that match resource 

capabilities, application requirements, and user desires can significantly alter job 

execution characteristics [14]. Consequently, the act of resource selection for job 

execution, or metascheduling, involves the making of multiple, interdependent decisions. 

As a result of the dynamic resource state across grid environments, together with the 

number of combinations and options for each individual job, manual methods employed 

by users are inadequate to reach desired potential. Automated methods that do not 

understand implied dependencies and available options are also inadequate to meet users' 

demands and satisfy user's utility. Hence, there is a need to deliver automated but system- 

and application-aware solutions that can leverage capabilities of underlying resources 

while meeting user demands. 

3.2. Rationale 

As an example of scheduling in the context of providing and supporting interaction 

between a user and the scheduler, a quote from Lee and Snavely [18] seems appropriate: 

“To understand what we mean by a “dialogue” between the user and 
scheduler, it will be helpful to examine the very first supercomputer 
“scheduler,” the scheme of Tennis Court Scheduling. This was the first 
scheduler on San Diego Supercomputer Center’s Touchstone Delta (W. 
Pfeiffer pers. comm. 2004; a contemporary Delta system, belonging to the 
Concurrent Supercomputing Consortium is documented by Messina 
1993). This “scheduler” was in fact a set of human system operators who 
were responsible for managing phoned-in job requests from users. While 
on one level, Tennis Court scheduling is the height of unsophistication, 
and clearly cannot scale to the large and busy systems and grids of today, 
we claim that it can still provide an important perspective from which to 
judge software-based schedulers. Human beings possess a creativity, 
flexibility and nuance of analysis that outclass any proposed scheduling 



 
 

100 
 

algorithm, not just in terms of bin-packing algorithmics [sic], but also in 
terms of the total user interface. One can imagine a lengthy negotiation 
between user and operator over job parameters and schedule availability to 
achieve the most satisfying result for all parties concerned. Operators, 
knowing the habits, personalities and relative importance of their users 
could assess the urgency of each job and act accordingly: backfilling, 
rearranging already scheduled jobs and perhaps even stopping already 
running jobs.”  

For example, assume a grid resource can be consumed at a cost of 10 cents, for one 

hour of application runtime on a single processing core. Assuming all else is constant, if a 

user submits a job that uses only one processing core and their job executes for 10 hours, 

they have spent $1 for their job. Alternatively, if supported by the application, the job 

could be split into 10 tasks and have each task execute on a separate processing core in 

parallel. The outcome is that the user now had to wait only one hour and still spent the 

same amount, namely $1. Delivering such alternative job execution options to the user, 

enables the user to make a more targeted decision given their current utility. Through 

support for such a model, the user becomes informed of their options and, in turn, can 

better meet infrastructure capabilities to their ever-changing desires. 

It is in this context that the basic drawback of approaches of currently available 

schedulers is realized. Typically, a user is prompted for job parameters, which, once 

received, are considered for the lifetime of the job. At the same time, intuition, in 

addition to previous research [18], show how poorly end users evaluate the performance 

of their jobs, even if incentives are given. The job submission requirements may include 

parameters such as expected runtime, total number of CPUs to be used for the job, and 

minimum amount of memory required by the application considering current input data. 

At the same time, users, just like computers, operate on a schedule, it being daily work 

hours, conference deadline, or experiment timeline. Consequently, their jobs have a value 



 
 

101 
 

and, as indicated in [18, 168], it changes over time and from one job to the next. This 

complex dependency and observation is also shown in Figure 20 where, depending on the 

time of the day, user's value for the job completion changes. By providing a set of job 

execution alternatives to the user at the time of job submission, the user can select the 

option that suits their current utility the most. 

 

Figure 20. Value for completed job from user's perspective and associated change 
through a typical day 

3.3. Approach Overview 

In line with the examples from previous section, as users move into the grid 

computing environment, they have expectations and goals that exceed capabilities of 

other technologies that they have been dealing with previously. Examples of such 

capabilities include increased performance, increased resource availability, or improved 

resource utilization. Any of these capabilities are inherently provided by automating the 

process of job submission and job management. Grid job metaschedulers lie at the heart 

of this process and elude users from having to deal with the low-level grid details. 

However, there are still many required components of the job submission process that are 

not supported by metaschedulers. This is primarily because the metaschedulers are not 

aware of application requirements, resource capabilities, and user’s preferences. In order 

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

10:00 
AM

11:00 
AM

12:00 
PM

1:00 
PM

2:00 
PM

4:00 
PM

6:00 
PM

8:00 
PM

10:00 
PM

11:59 
PM

2:00 
AM

4:00 
AM

6:00 
AM

8:00 
AM

10:00 
AM

U
se

r 
va

lu
e 

fo
r 

jo
b

Time of day



 
 

102 
 

to achieve desired functionality, users are expected to know much of required 

information and are required to choose among available options involved in the job 

submission process. As a result, users are overwhelmed by requirements and, combined 

with the dynamic state of grid environments, they cannot realize all the capabilities 

offered [14]. The result is mediocre performance exhibited by resources and unmatched 

expectations from users. Simultaneously, grid computing is advancing into the 

commercial sector, which results in incorporation of economic aspects (e.g., cloud 

computing); however, such aspects are currently only marginally supported in the grid 

[100]. In this context, higher level QoS requirements and user-based adaptability will 

become crucial in users' daily routines. Such development of the commercial aspects 

within grid and cloud environments has the potential of resulting in higher requirements 

on automation and insight into various aspects of user presence on the grid (e.g., cost 

analysis, performance tradeoffs, resource usage, resource utilization, etc.).  

In general, the main goal of the metascheduling process can be seen as maximization 

of user utility. User utility can be explained as a function of variance between the 

requested selection and the delivered service. The value associated with this variance 

depends on user’s goals and requirements and is both user and job dependent, plus 

variable at any point in time. The requested criterion is generally expressed through some 

sort of QoS (e.g., completion time, total cost, minimum number of average CPUs used) 

agreement to which both parties (i.e., end user and resource provider) agree. Upon lack of 

fulfillment of the agreement, penalties can be put in effect, as mandated by the contract. 

User utility can be seen as a support tool to match and compare user QoS to economics 

and services available in a grid environment. User utility can also be described as an 



 
 

103 
 

optimization problem where an objective is minimized or maximized (e.g.. minimize 

runtime, maximize accuracy or minimize cost). For a metascheduler to optimize the 

user’s objectives, certain application and resource parameters and parameter values need 

to be considered. In case of runtime minimization, typical parameters would include 

consumption of as many resources as input data demands. When multiple resources are 

available, parameters may include selecting the ones that realize the best runtime 

characteristics for selected application and parameterizing the given job to use as many 

nodes within one system as the application scales to. On the other hand, if user objective 

is minimization of job cost, the parameters chosen for job submission are likely to 

change; for example, use the number of nodes on a system that result in greatest 

application efficiency or select resources that require minimum data transfer.  

Yet another example of user objective can be maximizing result accuracy. One way 

to achieve this may be to select one implementation of selected application over another. 

Beyond considering one objective, a user may be interested in minimizing or maximizing 

two objectives simultaneously; for example, minimize runtime and cost, or minimize 

runtime and maximize accuracy. These objectives are often conflicting, because 

maximizing result accuracy typically requires longer runtimes, which is in direct conflict 

with minimizing the runtime. Regardless of the objective, in order to realize this kind of 

metascheduling, the metascheduler needs to be able to make decisions and choices 

regarding the influence of individual parameters and parameter values on job execution 

characteristics, and match those to meet user's utility. The act of metascheduling 

application jobs in a fashion where user goals are guiding the metascheduling process is 

defined as user-oriented metascheduling. Furthermore, parameters that affect application 



 
 

104 
 

execution characteristics and are used to meet user's utility are application-specific. This 

can be concluded from observation that application A is likely to have varying 

performance characteristics on heterogeneous Resource 1 and Resource 2 and also that 

applications A and B are likely not to execute in the same fashion on any one resource, 

which can be summarized as application-resource dependency. Recognizing application-

resource dependency and metascheduling jobs that leverage such dependency can further 

be defined as application-oriented metascheduling.  

Combining concepts behind user goals to maximize their utility and the requirement 

for the metaschedulers to understand application-resource dependencies in order to 

deliver and meet user demands, it can be concluded that advancements in the areas of 

infrastructure adaptation and customization on an individual user basis are needed. In 

order to support such a goal, an infrastructure needs to be in place that is capable of 

automating the customization process and warrant its functionality. This dissertation 

addresses these goals by devising a high-level metascheduling architecture that enables 

grid metaschedulers to support notions of application-oriented metascheduling and user-

level customization. More specifically, it is possible to deliver higher user utility by 

incorporating resource-application dependencies into metascheduling and altering the 

interaction between a user and the scheduler. Presented architecture focuses on 

application-oriented metascheduling from the user’s perspective and it does so by 

providing two general contributions: 

1. Application Information Services (AIS) are a suite of core grid services to be 

deployed at the level of a Virtual Organization (VO) in support of application-



 
 

105 
 

specific data collection and distribution. This promotes application- and resource-

specific information generalization and sharing. 

2. Focus on the individual user by supporting two-way communication between the 

user and a scheduler. This feature embodies the functionality captured and offered 

by AIS, and presents it to the user delivering desired level of customization. 

The first advancement is driven by the realization that application-oriented 

metascheduling enables more targeted metascheduling actions and in turn delivers a 

higher level of QoS to the user (as described in Section 2.6.2 and Section 2.6.3 and 

because such an approach enables leveraging of resource heterogeneity to maximize 

application and resource compatibility). In order for metaschedulers to perform 

application-oriented metascheduling however, they need to have access to application- 

and resource-specific information (e.g., application requirements and preferences, 

resource suitability for particular application, application constraints). AIS meets this 

demand by providing a general suite of application-oriented services that capture and 

enable collection and dissemination (at the VO-level) of application- and resource-

specific data that can be effectively used during metascheduling actions. With the 

availability of such information, especially when the information is collected at the level 

of a VO, general metaschedulers can rely on the overall availability of required 

information. Such reliance on information availability enables advanced application-

oriented metaschedulers to be developed. These metaschedulers can transcend any one 

application, or any one VO, and yet deliver desired QoS. Developed metaschedulers can 

consume available data to provide application-oriented metascheduling implementations 

that minimize/maximize user objectives or simply streamline job execution.  



 
 

106 
 

As an example of such an advanced metascheduler, the second major contribution of 

this dissertation is a metascheduler relying on information available in AIS and enabling 

a user to consider tradeoffs regarding their job submission prior to the actual submission 

(i.e., delivering customization to individual users for each individual job). This idea is 

embodied through the notion of two-way interaction between a user and the scheduler 

where the user initiates a job submission and then the scheduler analyzes application-

specific information available through AIS and combines that with current resource 

availability to calculate a range of job execution alternatives. Generated job execution 

alternatives are then presented back to the user in the form of job execution space (i.e., a 

number of alternative job execution options that are mapped onto conflicting objectives) 

allowing the user to make the final decision as to which alternative to execute (e.g., one 

that provides highest utility to the user at the given time).  

Figure 21 presents an example of job execution space where a set of job execution 

options is presented to the user. These options represent a set of concrete and application-

oriented job invocation alternatives, as carefully selected from a large number of possible 

alternatives by the metascheduler. Through the presentation of job execution space to the 

user, the user becomes savvy of various job execution alternatives currently available to 

them and is able to make targeted decisions relating job execution tradeoffs. This can be 

seen as a generalization and an improvement of multi-objective optimization because, in 

case of the optimization, the metascheduler must automatically decide on the weights of 

individual objectives and choose one final value, irrespective of current desires guiding 

user’s utility. On the other hand, by presenting the job execution space to the user, the 



 
 

107 
 

user can quickly interpret and analyze various options, consider tradeoffs and make a 

decision that suits the moment the most. 

 

Figure 21. A representation of job execution space allowing the user to choose among 
available job execution options after having considered associated tradeoffs. Each dot 

represents a job execution option (i.e., fully parameterized job plan) mapped onto the two 
objectives.  

Figure 22 depicts a component-level general architecture for a metascheduler 

supporting contributions devised as part of this dissertation. From the figure, embedded 

support for AIS and flow of information between the metascheduler and a user can be 

seen, as described in the previous paragraph. The unique aspects of the framework are: 

(1) it enables application-oriented scheduling while application specific information and 

the scheduling algorithm are highly decoupled; and (2) presentation of the job execution 

space to the user, which provides the user with a complete insight into viable job 

execution alternatives. Based on the first aspect, generation of job execution options is 

not only entirely automated but also application-oriented, thus hiding the low-level 

infrastructure management details and enabling high-level of QoS for the user. In 

addition, information in AIS can be used irrespective of the job execution space to enable 



 
 

108 
 

goals set by a metascheduler implementation (e.g., runtime minimization, runtime 

minimization and accuracy maximization). 

 

Figure 22. Architecture (showing individual components and interactions between those) 
for a metascheduler supporting contributions devised as part of this dissertation.  

In Figure 22, the user initiates the framework through the job submission process 

(step 1). The job submission process consists only of the desired application that the user 

wishes to execute and associated input. Once the system received the request (step 2), the 

Coordinator module contacts the Information Manager (step 3), which assembles 

information from Grid Information Service (GIS) and AIS (steps 4 and 5). Once 

information is collected and analyzed to include the resource as well as application-

specific information to derive effective mappings between the two sets of entities, the 



 
 

109 
 

Coordinator (step 6) manipulates derived results to provide the user with a concise and 

relevant set of job execution alternatives (step 7). After observing the alternatives 

presented, the user decides on the most suitable and desired job alternative (step 8) and 

passes the information back to the Coordinator (step 9). Selection is passed to the 

Scheduling Algorithm (steps 10 and 11), which implements application specific job 

submission parameters (e.g., input data reorganization) and submits the job to individual 

resources through a job submission manager (step 12). As jobs execute, application-

specific information is submitted to the AIS for future consumption and analysis, 

enhancing future metascheduling actions (in terms of understanding application-resource 

relationship). 

3.4. Requirements for Described Approach 

Two requirements guided the design of the present research: (1) general applicability 

of information collection mechanisms; and (2) delivering higher QoS for the end user. 

The challenge of the first requirement is a necessity to devise a solution capable of 

capturing the requirements and vastly differing capabilities of individual applications. 

The solution employed allows for a custom level of information collection not only for 

individual VOs but also for individual applications. Furthermore, there is support to 

permanently associate collected information with individual applications, thus delivering 

the ability for the information to move alongside the application and, in turn, be available 

where and when needed. The second requirement aims to deliver capabilities of the 

infrastructure to the user, in understandable terms. This is realized by translating the 

infrastructure terms (e.g., individual resources, number of processors) into terms directly 

relevant to the user (e.g., runtime, result accuracy).  



 
 

110 
 

A non-exhaustive list of applications and tools that could rely and benefit from 

adoption of application-specific information collection tool, namely AIS, is as follows: 

• Application discovery service provides a record of available applications, as 

registered by participating resources. Such service represents largely static 

information and enables discovery of relevant applications, their approved use 

and provides instructions on how to invoke selected application. 

• Job submission tool can contact AIS to obtain details about the installation 

properties of an application on a given resource. Such tool can thus obtain 

information about application installation path and location of required input data 

without requiring the user or resource provider to supply such information on as 

needed basis. The discovery of application invocation options and arguments can 

be obtained from AIS offering an ability to automatically generate custom (i.e., 

application-specific) job submission interfaces.  

• Metascheduler can perform resource selection based on available historical 

application runtime data and then optimize selection of job parameters for the 

selected execution resource. It can also query individual components within AIS 

to obtain specific application’s performance analysis results on per-resource level 

and thus provide application- and resource-specific scheduling without needing to 

analysis at the time of job submission. 

• Performance optimizer can be seen as a more specialized and static version of a 

metascheduler with a focus on long-term analysis of historical application runtime 

data to determine 'best' implementation of a given algorithm for a given 

architecture, influence of input data structure on application runtime, appropriate 



 
 

111 
 

granularity when distributing a job, etc. Derived analysis results can be uploaded 

to AIS for sharing among VO participants. 

• Accounting services can deliver information about use and utilization of 

individual applications or resources. With further adoption of cloud computing 

and grid economics [169], insight into past application execution will become a 

necessity for bookkeeping purposes. Users can use AIS to obtain their resource 

usage history and compare various providers or resources while resource 

providers can use it to establish pricing policies. 

Although presented sample use cases of the data available through AIS differ greatly, 

they all fall under the model of requiring application specific-data to enable or improve 

undertaken tasks. More generally, the model employed can be described as having one or 

more consumers requiring data from one or more producers. Such model has been 

described and accepted by the wider grid community as a plausible information delivery 

system for distributed environments [25]. Unlike the more general Grid Information 

Services (GIS) [25] that offer general and current resource and service availability and 

status information, AIS offers more detailed, application-oriented and application-

specific information and includes historical in addition to current data. However, the 

overall motivation, structure, and architecture of AIS mimic that of GIS due to GIS's 

proven record. 

Dynamic resources that appear and disappear in conjunction with hardware and 

software that evolves over time characterize a grid environment. Because of such an 

environment, the system needs to operate under the constraints of data aging, data 

inconsistency, and data incompleteness. To cope with these constraints and to capture 



 
 

112 
 

required information, the information collection mechanism has been divided into three 

distinct but related units. These units operate at different levels of information collection 

and cumulatively cover the entire lifecycle of an application. Moreover, results of data 

analysis based on data collected by an individual unit can be stored in another unit 

making repeated data analysis unnecessary. Such an approach fosters information sharing 

and knowledge buildup. By supporting the notion of VO-wide application information 

collection, many of the ambiguities regarding naming conventions and data aging can be 

safely dealt with, further enhancing embedded functionality. 

Through general support of application- and resource-specific information at the 

level of a VO, tools can emerge that rely on availability of such application-oriented 

information. This further promotes concepts behind simplifying use of the infrastructure 

from the user's perspective. In the context of this dissertation, the abstraction of the 

infrastructure has been raised to the level of an individual job. The developed 

metascheduler consumes application-oriented data in terms of resource and application 

suitability to deliver fully abstracted manifestations of job execution options to the user. 

Each job execution option hides low-level details that otherwise involve resource 

selection, specification of resource configuration and data distribution for a job, in case 

multiple resources are simultaneously used for current job execution.  

With these basic assumptions and general guidelines, application- and resource-

specific information collection can safely cope with many of otherwise cumbersome 

details. Availability of such data then enables and promotes application-level operations, 

including application-oriented metascheduling, which can greatly simplify user 



 
 

113 
 

interaction with the infrastructure and thus raise the level of QoS experienced by the user 

(i.e., realize user-oriented metascheduling). 

3.5. Application-oriented Metascheduling 

Application-oriented metascheduling is realized through understanding and 

leveraging application-specific information. To enable collection of such information, 

Application Information Services (AIS) were designed. AIS is designed as a framework 

composed of multiple services that provide grid users or application tools with the ability 

to store and retrieve relevant information regarding individual application's execution 

requirements and preferences. Stored data includes application purpose, options and 

preferences including application invocation properties across resources, and application 

runtime data from previous executions. By collecting such information in a specific 

format and making it available in a known location through well-defined interfaces, users 

and tools can rely upon availability of such information and develop higher level logic to 

make use of needed information. AIS are realized through a composition of lower-level 

services, each targeting a specific portion of application’s lifecycle.  

By providing a targeted set of services, AIS enables the entire lifespan of an 

application to be captured, including application description, invocation details, 

performance information and later behavior analysis. By establishing and providing such 

a well-defined mechanism for data collection and retrieval, higher level tools can be 

developed that can rely on availability of needed data. Reliance on established data 

availability sources further enables such tools to transcend individual VOs, or even grids, 

leading to a more global tool development and a wider user base. AIS are realized 

through the composition of lower-level services, each targeting a specific portion of 



 
 

114 
 

application’s lifecycle. The following is the list of self-contained services that together 

realize AIS:  

1. Application Specification Language (ASL) [170] is a specification that can be 

used by application developers and end users to describe persistent information 

about an application. The ASL allows application-specific information to be 

captured describing its functionality, options, and known intricacies (e.g., 

minimum required memory, scalability, preferred architecture). Availability of 

such information enables job schedulers, end users, future application developers 

and deployers to obtain job invocation routines, execution instructions and 

comments, known performance tradeoffs, user suggestions and caveats.  

2. Historical application performance database (AppDB) [171] offers collection, 

storage, and retrieval capabilities of previous application execution instances on 

the grid and thus offers a historical perspective of application execution 

characteristics. Availability of such information enables application- and 

resource-specific performance analysis to be performed and made available for 

upcoming job submission delivering desired functionality. 

3. GridAtlas [172] is a tool that hides and automates the process of keeping track of 

installation properties of any one application across resources and allows 

uninterrupted job submission by appropriate tools. Such functionality is offered in 

direct contrast to manual effort otherwise required. 

Figure 23 depicts the overall architecture of AIS; only major communication links 

are shown in the figure with the focus on information providers. Namely, ASL 

documents are created one per application and then aggregated in an ASL repository for 



 
 

115 
 

sharing and updating at the VO level. Similarly, individual resources report relevant 

properties to the GridAtlas Aggregator service. Lastly, as jobs execute on grid resources, 

runtime information is recorded in AppDB. Such information can be provided by a 

metascheduler or a job manager (as depicted in the figure), by the application itself (by 

modifying the application and embedding desired reference calls), by a local resource 

manager (through uploading the local accounting database), or by an application wrapper 

that reports pertinent data to AppDB as the application executes. Interaction with AIS, 

and thus information retrieval, is realized by contacting a desired service directly on as 

needed basis. Within AIS itself, information continuously propagates and builds on itself 

(e.g., performance data stored in AppDB is analyzed and results summarized in the 

relevant ASL document). However, this act of information propagation and analysis 

should be implemented at the VO level and on as needed basis. In general, and as shown 

in the figure, individual services comprising AIS operate as standalone tools and can be 

used as such, but when all of the services are aggregated, the complete functionality of 

AIS is realized.  

To cope with scalability and preserve desired functionality, we suggest supporting 

AIS at the level of an individual VO. Such an approach not only limits the size of 

aggregated information but also limits the type of information stored. This is because, as 

a result of the nature of VOs, it is likely that applications being executed on VO's 

resources are limited and similar in nature, lending itself to collection of more targeted 

and useful information. In addition, supporting AIS at the VO level allows the 

participants to rely on a certain level of service and they can thus build their tools without 

having to worry about exceptions or incompatibilities with the underlying infrastructure. 



 
 

116 
 

Also, with the VO-wide AIS support, real-world experience and information sharing is 

encouraged, allowing speedier advances in overall science.  

 

Figure 23. A high-level architecture of Application Information Services (AIS) deployed 
at the level of a VO with only major communication links shown. 

Overall, we argue that AIS is a missing set of core services that otherwise composes 

the grid middleware. The de facto standard for grid middleware, the Globus Toolkit 

described in Section 2.2, is described as supporting three key elements necessary for 

computing in grid environments. These elements have been depicted as three pillars and 

include Resource Management dealing with grid resource allocation, Information 

Services dealing with provisioning of information about grid resources, and Data 

Management dealing with access and management of data in grid environments [35]. We 

believe that with the global trend of transitioning toward cloud computing environments, 

economic implications of such environments will require effective and controlled 

ASL 
repository

AppDB

GridAtlas 
Aggregator

Application n 
ASL Document

Resource 1 Resource n

AIS
Job manager/
Metascheduler

Resource 1 Resource n

Interface to AIS (http, WS, custom development)

...

...

Application 1 
ASL Document

...
VO

Jobs



 

 

117 

 

execution of user jobs in distributed heterogeneous environments. In order to understand 

and leverage relationships that exists between a resource and an application (e.g., [14], 

[43]) AIS should become the fourth pillar necessary for computing in grid environments 

(Figure 24). 

 

Figure 24. Fourth pillar of grid computing 

The following subsections describe the individual services that comprise AIS, 

indicating the roles each of the services plays in achieving application-oriented 

metascheduling and execution in grid environments. 

3.5.1. Application Specification Language (ASL) 

In order to enable execution of jobs in heterogeneous grid environments, an 

application initially needs to be deployed across a set of resources and only then can it be 

used. It is furthermore important to differentiate the application development process 

from the application deployment process. Typically, high-performance computing (HPC) 

applications are developed using a specific programming language and a parallel 

programming paradigm (e.g., compiler directive-based, threads, message-passing, 

combination of threads and message-passing) and often times the programming paradigm 

chosen decides the application deployment platform. If the application uses a shared-

memory programming paradigm then the application can be only deployed on a shared 

memory system whereas an application developed using the message-passing paradigm 



 
 

118 
 

can be deployed on both distributed memory and shared memory systems. Furthermore, 

applications might require specific processor architecture, memory capacity, disk space, 

etc. to deliver the desired performance and scalability. Following the development 

process, application deployment is the process of installing the application on a set of 

resources. Because of the requirements and preferences imposed by the development 

process, the deployment process is a non-trivial task. If the deployment process is 

automated (as often the case is in cloud environments), it is necessary to first determine 

what resources are available and then decide which is the most suitable resource for that 

particular application.  

While the task of application deployment on a grid is quite challenging, the task of 

using multiple applications deployed is not simpler (e.g., [18]). Users have a variety of 

applications to choose from for performing a specific task. Many applications exist that 

provide the same or similar functionality, yet often there are subtle differences among 

those, such as programming paradigms used (e.g., shared memory, distributed memory), 

algorithms employed (e.g., multiple search or sort methods), resource requirements (e.g., 

memory size, number of processors), numerical accuracy, scalability, and performance. 

Although these differences are interesting to a domain-expert, for an end user who is 

interested in getting a problem solved with a particular QoS requirement (for example, 

find the most accurate solution for this problem, or find the fastest solution to this 

problem) there are too many options to choose from. In order to make the best possible 

application selection that matches users QoS requirement, a typical user would require 

significant domain expertise, HPC expertise, and application expertise.  



 
 

119 
 

In order to ease the process of application deployment as well as execution, it would 

be beneficial if following an application development, an application developer could 

describe application's requirements and dependencies using some sort of application 

descriptors. As the application is executed and execution patterns are observed, it would 

be especially beneficial to add hints and analysis results about various performance 

implications and space/time tradeoffs. For commercial software packages, information 

about licensing and subscription could also be provided by the descriptors. A resource 

broker could take advantage of such descriptors during resource selection and job 

scheduling, in order to perform application-specific scheduling. For example, how would 

a metascheduler invoke a Matlab application in batch mode with five otherwise 

heterogeneous and independently administered resources currently available? It is likely 

that the user would have to specify the number of processors they believe is the required 

number to complete the job in a reasonable amount of time and then the scheduler would 

perform its tasks. However, how does the user, and in turn the scheduler, ‘know’ that the 

specified number of processors is the number of processors that will yield desired 

turnaround time? Is that number the same across all five heterogeneous resources? Can 

the job be divided across five resources or is it limited to any one? Which of the five 

resources should be given a preference, one with faster interconnect, faster processor, 

larger amount of memory or bigger number of compute nodes? What about the licensing 

– can the requested application be deployed at runtime (in the form of a virtual machine) 

or do the licensing restrictions prohibit that? And what about individual toolboxes 

required to execute the application (e.g., parallel computing toolbox, statistics toolbox)? 

Beyond licensing considerations, if the application was to be deployed at runtime, what 



 
 

120 
 

are the required libraries and packages that need to be available on a resource for the 

application to be successfully deployed? 

To address these goals of user accessibility and application requirements, there is a 

need to standardize and simplify the process of application deployment and application 

use on the grid. As a step in that direction, ASL represents a descriptor, along the lines of 

the Job Submission Description Language (JSDL) [57], that is used to describe details of 

a given application. ASL allows an individual application to be represented in 

heterogeneous world of grid computing by capturing its requirements, functionality and 

options. By standardizing communication protocols through ASL, tools access and 

process an ASL document extracting needed information about an application. For 

example, application descriptions are made available for immediate use or for further 

advancements among applications, application deployers, automated interface generators, 

job schedulers, and application-specific on-demand help provisioning tools. ASL can also 

be used to describe how an application is compared and/or combined with other matching 

services and software, thus also supporting concepts behind workflow systems. This 

capability enables individual tools to be automatically combined where the output data of 

one application (i.e., stage in workflow) immediately feeds as input to another 

application. With availability of ASL and input/output data formats supported by an 

application, such functionality can be fully automated.  

ASL is defined as an XML language with a well-formed structure. A single ASL 

document consists of only four distinct yet related sections, each used to describe a 

different component of application's lifecycle. Here, these sections are enumerated and 

only briefly described. In Appendix B, full details on individual sections and structure of 



 
 

121 
 

those is provided. In order to ease composition of ASL documents, a domain specific 

language that was developed part of this dissertation. Complete details regarding the 

creation of ASL documents and use of the domain-specific tool are available in [53, 173]. 

Following are the distinct four sections of an ASL document: 

• Application name and description contains the most basic information about an 

application and acts as the application identification component 

• Installation requirements section of an ASL document contains a set of required 

elements that describe the installation requirements and the installation procedure 

• Job invocation requirements section focuses on providing a user with the 

information needed to execute the application. Starting with the executable name, 

it also provides the available switches and minimum hardware requirements, as 

well as allows the developer to specify the number of input and output files with 

examples of their respective formats. 

• Hints section contains instructions and comments, mostly in natural language, 

providing additional application information that was not otherwise captured by 

other sections of the document. This section of the document provides a 

standardized method for storing and circulating users’ experiences and lessons 

learned as they invoke the application. 

As can be observed from the above description, there should be one ASL document 

created per application. Strictly speaking, ASL documents alone do not represent a 

service that can be simply included into AIS. Rather, individual files are self-contained 

application descriptors. Therefore, in the context of a VO, it is beneficial to provide an 

ASL repository service that would allow collection and sharing of individual descriptor 



 
 

122 
 

documents. Because of the VO focus, it can be expected that related applications would 

be deployed and used by VO's users further fostering the idea of discovery and sharing by 

publicizing information available in individual ASL documents. Once created, ASL 

documents can be modified or appended to. With such structure, ASL documents can be 

modified during the lifetime of an application by multiple parties. By collecting 

application-specific information in a single document (i.e., ASL), knowledge about the 

application can build on itself.  

3.5.2. Historical Application Performance Database (AppDB) 

AppDB focuses on storing static, high-level application and job information over an 

extended period, allowing ample amount of information to be collected. This, in turn, 

facilitates creation of an application- and resource-specific knowledge base. Collected 

information can be searched or mined, resulting in the observation of relationships that 

exist between applications, resources, job parameters, input files, and input file 

properties. Recognizing such relationships and dependencies allows inherent 

performance tradeoffs to be observed, lending itself to improved job scheduling 

techniques and thus improved experience for both, end users and resource owners. 

Similar to the Matlab example from previous section, suppose a user would like to 

execute a BLAST5

                                                      
5 A public service instance is available at http://blast.ncbi.nlm.nih.gov/ 

 search against nr database with 10,000 mostly short query sequences. 

Suppose the same five resources considered earlier in the Matlab example are available. 

When the user needs to provide a job specification or the metascheduler needs to perform 

its scheduling decisions, the same questions as to the number of processors employed can 

be asked. In addition, how does the average length of the query impact application 

runtime? Also, it has been shown that different versions of BLAST offer different 



 
 

123 
 

runtime performance [17]; therefore, depending on the configuration of available 

resources, at what granularity should the user’s input file be divided to achieve maximum 

load balance across resources? Should the granularity be measured in terms of file size or 

number of queries? Depending on the amount of available memory for individual 

resources and the size of the search database, how will the runtime be affected; should 

message-passing implementation of BLAST (i.e., data distribution version) be employed 

or will the sequential one be more appropriate (assuming task distribution can be 

performed)? All these are questions that are not only application dependent, but also 

resource dependent. Moreover, they can significantly influence runtime characteristics of 

a user job [14] and should thus be considered when submitting a job. Before such 

questions can be fully answered, there is a need to capture relevant information and make 

it available on as needed basis, which is the aim of AppDB. 

Unlike Ganglia [174], which is the most popular and accepted cluster monitoring 

tool, AppDB is unique in that it offers a historical view of application execution 

characteristics at the job level (as opposed to the resource level). Because a single grid 

application execution may span multiple resources, job-level view offers global insight 

into job execution properties. Such an approach allows users (or middleware tools 

operating at the same level) to focus on tuning performance of a job as a unit, as opposed 

to viewing a job as a set of disconnected tasks executing on various resources and trying 

to monitor performance of those individual resources. This view can assist in identifying 

application performance problems by noticing irregularities in resource behavior and 

tracking the problem down to the job specification or even resource configuration. Note 

that the definition and intent of AppDB is not to be used as a low-level application 



 
 

124 
 

performance tuning tool, which can be performed by tools such as Tau [159], Vampir 

[175], Prophesy [125] or NWS [76]. Those projects focus on low-level inter-task 

communication or task computation performance details and require code application 

tuning. Instead, AppDB focuses on higher level relationship that exists between an 

application and resources where such observations can be controlled without editing 

application code but rather changing resource selection or job invocation parameters.  

Information that AppDB stores can be divided into two levels: job-level and task-

level. At the job-level, information that is relevant and thus stored includes job-level 

components including application name, user, and execution time. The lower level of 

detail stored focuses around tasks (a job may be composed of multiple tasks that execute 

across multiple resources). This level of information collection includes collection of data 

such as task parameters, task submission information, input files statistics, and individual 

task statistics. The set of task statistics and/or parameters collected can be customized for 

each application, each job, or each user thus facilitating greater system flexibility. Access 

to the current implementation of AppDB is realized through two interfaces, a web-service 

API that enables users to incorporate and/or instrument existing code and fully automate 

interactions with AppDB. Additionally, a web-based front-end is provided to 

accommodate for manual, but more user-friendly interaction.  



 
 

125 
 

 

Figure 25. High-level architecture of AppDB 

High-level architecture of AppDB is provided in Figure 25, showing access 

interfaces and interaction modes for AppDB. As can be seen from the figure, a single 

AppDB can exist per VO with many data providers or consumers connecting to it. Such a 

setup promotes information sharing and leads to a more generalized and rapidly evolving 

application information knowledge base. The term Applications depicted in the figure can 

refer to any application that is capable of automated communication. Examples of such 

applications can include metaschedulers that query AppDB about historical performance 

of applications whose jobs are queued up, smart-applications that can adjust their 

execution configuration during runtime in response to changing resource availability, or 

analyzers that study application-specific data over time to derive analytical models of the 

application. A snapshot of AppDB web interface is provided in Figure 26 showing a set 

of sample runtimes for several jobs and task details for one job. 

Persistent 
DB

Web-service API

DB interface & management

Web portal

Applications Users

Applications
Resources
Users
Jobs
Tasks
Input file statistics
Job parameters
Task parameters
...

VO



 
 

126 
 

 

Figure 26.Snapshot of AppDB web interface showing a list of jobs and task details for 
one job. 

3.5.3. GridAtlas 

With multiple instances of an application deployed across grid resources, one 

particular component that is likely to differ across those resources is the installation path 

of any one instance. Suppose a user submits a job through a job manager (e.g., Globus 

Toolkit [35] or GridWay [109]) and requests the job use BLAST application across three 

independent grid resources. In order to invoke this application (assuming the user has 

required permissions on selected resources), the job manager needs to know which 

version of the application to invoke, where the application is installed on each of the 

resources, as well as if and where requested database is available on those resources. If 

the database is not readily available, the job manager should know where on the resource 

it can upload the database for the duration of the job. In order to resolve these 

requirements, the job manager is likely to request the appropriate answers from the user 



 
 

127 
 

(in the form of an RSL document for the Globus Toolkit or a Job Template file in case of 

GridWay). The user will then have to manually provide required data. This can be 

accomplished by manually accessing each of the resources and retrieving the data; 

alternatively, the user could define an environmental variable on all of the resources and 

instruct the job manager of variable’s existence. Yet another option would be for the 

system administrators of relevant resources to define a system wide environment variable 

that exists and is the same across all resources within a VO (e.g., [176]), or the system 

administrators can agree to install the application in the same location, support the same 

pool of applications and associated input data. These are all tedious solutions that are not 

scalable and are error prone. They also require conformity to a common set of policies, 

which stands against the core ideology of grid, namely site autonomy. A more automated 

method would be preferred that would hide such low-level complexities and not leave 

those for the end user to deal with and manage.  

To that extent, GridAtlas is a tool that hides and automates described process by 

keeping track of resource and application instance details. At its core, GridAtlas is a 

simple lookup tool that matches a request to a previously stored value. Existence of such 

a tool enables a job submission manager to, upon user job submission, contact GridAtlas 

and obtain necessary information to complement user provided information regarding job 

details. The job submission can thus continue without requiring the user to specify 

resources that the application is installed on or where is it installed on those resources.  

Because information stored by GridAtlas is resource-specific, it is important that the 

providers of the information be close to the instance of GridAtlas keeping the 

information. At the same time, because there can potentially be many providers, it is 



 
 

128 
 

necessary to aggregate available information and present it in an easily accessible and 

well-known location. To comply with these requirements, we have designed the 

architecture of GridAtlas with two service levels: individual GridAtlas Daemons (GAD), 

located directly on the information providers and VO-wide GridAtlas Aggregators 

(GAA) that collect information from multiple GADs (see Figure 27). The information in 

GADs is populated by the system administrator in charge of the local resource. The 

amount of data stored in a GAD is relatively small and we have thus not found a need to 

automate the process. By allowing manual population of the data, the system 

administrator can provide information only about the supported applications, thus 

enabling a high-level of control over what gets publicized. The GAA represents a VO-

wide service that aggregates information from multiple GADs and provides a single 

access point for VO users or tools. Because aggregated information depends on the 

information providers to provide and update any information, GAAs can serve 

information through one of two methods: (1) act as a name-serving entity that stores 

contact information about known GADs and direct the query to the source directly, or (2) 

create a local copy of the information reported by registered GADs and serve it 

immediately following a request. There is an obvious tradeoff between the speed of query 

and accuracy of the data. The choice of mechanism used can be made at the VO level 

depending on VO’s characteristics and requirements. Overall, interaction with GridAtlas 

is performed through a set of well-defined web-service APIs or through a web interface. 

In case data serving GAA (as well as AppDB and ASL repositories) where the size of a 

VO or the data being aggregated becomes substantial, well known replication and 

mirroring technologies typically associated with large database installations and directory 



 
 

129 
 

services (e.g., Active Directory, LDAP) can be implemented to handle failure and 

scalability issues.  

 

Figure 27. Architecture and interaction modes of GridAtlas 

3.5.4. Security Considerations in AIS 

Typically, access and use policies for individual resources available in a VO are set 

at the VO level and then refined at the level of individual resource owner, with the Grid 

Security Infrastructure (GSI) [40] typically used to implement security mechanisms. 

Within AIS, support is provided for the information provider to specify who is allowed to 

access and view published information. This is done for each piece of information made 

available. Depending on the implementation of individual AIS service, such support can 

be implemented as simple flag making information either private or public, implementing 

a security mechanism similar to the UNIX file system security with read and write 

permissions, or providing full support for the GSI identity credentials and requiring 

mutual authentication. Regardless of the selected security mechanism, required 

GridAtlas 
Daemon

Resource 1

GridAtlas 
Daemon

Resource 2

GridAtlas 
Daemon

Resource 3

GridAtlas 
Aggregator

Updates and requests (WS)

Update or
Request 

(WS or http)

VO-specific directory

GridAtlas 
Daemon

Resource 4

GridAtlas 
Aggregator



 
 

130 
 

permission or credential data is stored at the same level as the actual data and can thus be 

automatically propagated to the aggregator services. As such, the permissions easily 

traverse individual resources and VOs, and allow a spectrum of access policies. In the 

current implementation of individual services within AIS, the data security is realized as 

being either public or private with no additional granularity at various levels of a VO. 

3.5.5. Composition of Services 

In this section, we discuss how and at what stage are the individual services that 

comprise AIS integrated into the application lifecycle, how these services interact with 

other tools and thus enable execution of applications across the grid and cloud 

environments, in addition to possible performance implications. Overall, AIS is realized 

as a composition of above described services; operating together, these services satisfy 

the requirement to capture the entire lifecycle of an application. Although these services 

can be run individually and be accessed as stand-alone tools, in order to support the 

notion of a well-defined environment for application-oriented scheduling and execution, 

deploying all the services in unity as comprehensive AIS is deemed beneficial. If all the 

services are deployed within a VO, the general benefits of AIS can be advertised, and 

participants can rely on the established and defined set of tools and services. Because of 

the nature and purpose of these services, the location and multiplicity of them varies but 

the following can be used as general guidelines within a VO: 

• ASL is an application level descriptor and there should be one ASL document per 

application. Simultaneously, there should be a single ASL repository service per 

VO to enable collection and easy sharing of available ASL documents. 



 
 

131 
 

• AppDB can be configured as a single instance within a VO allowing multiple 

information consumers and providers (e.g., job submission managers, 

applications) to easily report or retrieve captured data from a well known location.  

• The complete functionality of GridAtlas requires a GridAtlas daemon service 

instance to exist on each participating resource accompanied with a single 

GridAtlas aggregator per VO. 

3.5.6. AIS Implementation 

Individual services within AIS were developed in Java as Web Services [10] and 

thus support service and application interoperability. Metascheduling tools utilizing AIS 

interact with those services on as needed basis and extract data that is then operated on. 

Chapter 4 points at the type of data that is stored in AIS and how to make use of it. Data 

storage for both AppDB and GridAtlas has been implemented on top of MySQL database 

[177] using Hibernate [178]. Use of Hibernate provides immediate support for a range of 

relational database implementations without requiring any changes to developed 

software. The Web Services and associated web-frontends for both services were 

implemented using Apache Tomcat web server [179] and Axis [180]. Developed tools 

are freely available for download from lab's website6

3.5.7. AIS Usage Scenario 

. Additional technical 

implementation details about individual services are available in previously published 

works: ASL [173], AppDB [171], and GridAtlas [181]. 

In this section, a general usage scenario of AIS is presented depicting ability and 

usefulness of combining individual services into the AIS framework: 

                                                      
6 http://www.cis.uab.edu/ccl/ 



 
 

132 
 

1. Upon completing development of a new application, a developer composes an 

ASL document describing the application and uploads it to an ASL repository. 

The provided ASL document (see Appendix B for an example) provides a 

description of the application, installation requirements and procedure, and usage 

options. 

2. The newly developed application is deployed by respective local system 

administrators on a number of resources. The deployment process is aided by the 

content of the ASL document where installation requirements and installation 

process were described. In future, it can be envisioned that automated application 

installation and deployment methods (e.g., GridRPM) may arise that could use 

available information directly from an ASL document, further advancing the idea 

of the application-specific environments.  

3. System administrators register their installation details with the local GridAtlas 

Daemon (GAD) instance that resides on the installation resource. Local GridAtlas 

instances then register new data automatically with the VO's GridAtlas 

Aggregator (GAA) service, making it easily available to the remainder of the VO. 

Figure 28 shows this interaction and propagation of data between GAD and GAA 

though an event diagram. 



 

 

133 

 

 

Figure 28. An event diagram for registration or update of data incorporating data 

propagation from GAD to GAA 

4. The user submits a request to run the new application by simply selecting the 

application and providing input data. A sample job specification for BLAST 

application is provided in Figure 29 where the user simply specifies desired 

application, input, and output files while the rest is left up to the metascheduler 

and AIS. In order to realize job submission captured in this figure, the 

metascheduler queries ASL repository to discover invocation requirements and 

application preferences. AppDB is queried to discover any historical performance 

data or models (in current scenario, because this was a newly installed 

application, AppDB data will not yet be available so approaches introduced in 

Section 2.7.8 and described in Section 4.2.2 should be used). Next, the 

metascheduler queries GIS and GridAtlas Aggregator service to discover 

resources where selected application and needed data is available. Metascheduler 

invokes its resource selection algorithm to perform resource selection and 

develops a job execution plan. 



 
 

134 
 

 

Figure 29. Sample job specification provided by a user at the time of job submission to 
AIS-integrated metascheduler. 

5. Devised job execution plan is passed to a job manager (JM), which queries 

GridAtlas Aggregator service once again to discover application installation path 

including any other input parameters pertinent to the given application, job and 

resource. Finally, the job is submitted without any user intervention in an 

application-specific manner using a metascheduler. The overall process of job 

submission and integration of a general purpose GridWay metascheduler into the 

AIS framework are shown through an event diagram in Figure 30. The figure 

points at the behind-the-scenes interactions that take place between user’s job 

submission and job instantiation on selected resource. Resource selection and 

binding of application- and resource-specific data take place on user’s behalf, thus 

streamlining the job submission process. As a comment, depicted wrapper on top 

of GridWay is provided as part of GridAtlas software distribution package. 

APPLICATION  = BLAST 
ARGUMENTS   = -p blastp –d nr -i input.fas_${TASK_ID} -o results.out_${TASK_ID} 
STDIN_FILE  = /dev/null 
STDOUT_FILE = out.${JOB_ID} 
STDERR_FILE = err.${JOB_ID} 
INPUT_FILES = input.fas 
OUTPUT_FILES = results.out_${TASK_ID} 
 



 

 

135 

 

 

Figure 30. An event diagram for GridAtlas wrapper on top of GridWay metascheduler. 

User job submission is streamlined by extracting application- and resource-specific 

information automatically on user’s behalf from GridAtlas service. 

6. As the job executes (or at least when it completes), performance data is recorded 

in AppDB (e.g., performance data that is analyzed in next chapter) where it can be 

used in future application invocations to improve resource selection process. 

Relevant data reporting can be done by the metascheduler, the job manager, the 

application itself, or a separate monitoring tool.  

7. As the application performance data becomes available in AppDB (after repeated 

application executions), application performance analysis can be performed on 

collected and available data. Analysis can incorporate and focus on anything from 

the job execution cost, application scalability on a given system, input data impact 

or development of an analytical model.  



 
 

136 
 

8. The output of the analysis can be used in conjunction with user suggestions (e.g., 

[182]) to update the Hints section of the ASL document and thus enable future 

dissemination of derived data, which can also be used to support development of 

future versions and improvements to the application.  

Figure 31 captures the described data progression and general workflow of 

integrating individual AIS services. As can be concluded from the provided scenario and 

illustrated through the figure, the information collected and provided through AIS 

represents a cyclical paradigm. It is a constant cycle of application execution followed by 

adjustment. The adjustment does not necessarily need to refer to the executing 

application adjustment (i.e., application source code); instead, it can refer to the 

adjustment to the metascheduler itself or just the job scheduling process. Whichever the 

case, because of the application-specific data availability delivered through AIS services, 

the updates can be more specific and targeted. Consequently, modifications to an 

application can be guided by user suggestions or analysis results, thus contributing 

desired application functionality.  

 

Figure 31. Integration of AIS into the application execution control flow. 

Application 
deployed

ASL 
document GridAtlas

Meta-
scheduler &

JM

AppDBAnalysisAnalysis 
results

User 
suggestions

UpdateApplication



 
 

137 
 

3.6. User-oriented Metascheduling 

Building on the concepts developed and established in the previous section, this 

section focuses on applying delivered functionality in a user-oriented fashion. Therefore, 

described approach completes the quest of fundamentally changing the interaction mode 

between the scheduler and a user. As described in Section 2.5 on related work, most of 

the advanced previous work in grid job scheduling area aims at automatically optimizing 

execution of user’s jobs in terms of execution time, or cost, or both (e.g., [30]). 

Component presented in this section focuses on exploring and presenting a set of 

tradeoffs and concrete values regarding one’s job before job execution begins. Through 

this model, the user is exposed to and is interacting at the true service level. Rather than 

keeping track of how many resources were selected for execution, how many processors 

are employed on each resource or how much data is being transferred between hosts, a 

user is presented with discrete, quantitative metrics – for example, job execution time and 

associated cost. To accommodate such interaction mode, the user-oriented 

metascheduling approach developed here analyzes and maps information available 

through the AIS onto concrete infrastructure metrics of direct benefit to the user.  

3.6.1.  Interacting with a User 

In the context of metascheduling, access to grid resources is typically handled 

through a job submission interface, such as a web-based portal [50] or a command line 

interface, where the user is requested to supply job execution parameters. Parameters 

requested depend on the scheduling engine employed behind the submission interface 

and can range from as few as the application name and job input files to as many as an 

individual application supports (e.g., requirements for number of processors employed, 



 
 

138 
 

amount of memory needed, speed of data transfer, etc.). As discussed in Section 2.5 and 

Section 3.2, typical metascheduler accepts user input and acts on it. However, such an 

approach assumes the user knows available alternatives and major factors that enable the 

manipulation of such alternatives. In order to alleviate the user from having to make these 

assumptions, work presented thus far in this dissertation can be applied in a way that 

enables focus on an individual user and their current needs. Rather than providing a 

generic job submission interface and requiring a user to provide information that they 

think is most suitable for effective job execution across currently available resources 

(e.g., number of processors to execute a job across), the aim of this part of the dissertation 

is to build on information collected and delivered by AIS to turn the roles around. In such 

context, the user is provided with job execution options without requiring much job-

specific information. Through such an approach, the user becomes aware of the 

alternatives and accepts the technology rather than being bogged down with the low-

level, operating details.  

This is realized through an effective presentation of the job execution options 

generated as part of OptionView application (fully described in Section 5.3) where the 

user is capable of observing a set of tradeoffs and then makes the final decision regarding 

their job submission. Consequently, this approach has the direct function of informing the 

user of choices currently available to them, thus allowing them to examine tradeoffs 

regarding their current situation. Calculating and composing such a set of tradeoffs in an 

application-specific fashion (based on information available in AIS), embodies notions 

behind application-oriented while realizing user-oriented metascheduling. This is because 

the interaction between a user and the scheduler is no longer at the low, infrastructure 



 
 

139 
 

details level, but it is rather at the user level where individual job execution options are 

presented to the user in applicable terms, thereby allowing the user to analyze available 

tradeoffs and make an informed decision regarding their job execution. 

Overall, the focus of this approach is on an individual job and an individual user. For 

the service-oriented model adopted by the grid, the proposed approach represents an 

exciting solution because the user is abstracted from architectural details while enjoying 

maximum system flexibility and support. To deepen the understanding and significance 

of proposed hypothesis, an analogy to the airline industry is made here: when a customer 

wants to purchase a flight ticket, a popular option is to visit one of the online flight search 

engines and provide simple trip information (i.e., departure/destination and travel dates). 

The system then analyzes many possible routes, companies, layovers, among others. 

resulting in a self-contained list of travel alternatives. Such alternatives offer the user a 

choice regarding ticket cost, departure time, flight duration, layover location, etc. In the 

end, the user can make informed, custom decisions that meet their current needs. For 

example, if a person is traveling on business and has set meeting times and a tight 

schedule, they may choose the shortest flight or one that lands at a particular time, 

irrespective of the cost. On the other hand, if a person is traveling for leisure with their 

family, they are likely to choose the cheapest alternative and not be so much concerned 

with travel times. Solution proposed in this part of this dissertation achieves the same for 

grid job submission, where the user is informed of their job execution options without 

having to poses detailed knowledge about grid environments or applications.  



 
 

140 
 

3.7. Realizing Described Approach 

In its entirety, the described approach can be generalized into a process required to 

deliver an application-oriented metascheduling environment to the end user in a user-

oriented fashion. In order to provide a solution that can be applied in a variety of 

scenarios and for a variety of applications, there is a need to decouple application-specific 

components from the general purpose components (Section 3.5). In addition, there is a 

need to enable flexibility regarding delivery format of user-oriented scheduling, as 

described in Section 3.6 (i.e., single/multi objective optimization, tradeoff presentation).  

With the availability of information within AIS (Section 3.5) and a specific goal set 

for the metascheduler, a general purpose metascheduler can be customized with the 

addition of an application-specific wrapper, a plug-in, or a metascheduler adapter to 

deliver desired functionality. Examples of such a wrapper are typically custom scripts or 

small programs that are capable of interpreting application-specific information available 

in AIS (e.g., divide and distribute the job input data based on the data distribution model 

supported by the application). Development of such wrappers represents an efficient 

approach to tiered development of an application because it also enables code and 

software reuse. Such an approach is well accepted and supported in the software 

engineering community through availability of software development patterns such as the 

adapter pattern or the façade pattern [183]. Furthermore, the application-specific wrapper 

implements desired type of user-oriented scheduling or processing of metascheduling 

results (i.e., single/multi objective optimization, tradeoff presentation) and thus provide 

full support for application- and user-oriented metascheduling. Figure 32 depicts a 

schematic model of how this was achieved in the presented approach. 



 
 

141 
 

 

Figure 32. A general model of support mechanisms for delivering application- and user-
oriented metascheduling solutions that can range in level and type of user support. 

In this dissertation above model and the approach described in this chapter has been 

implemented, realized, and validated through development of AIS, development of a 

general-purpose metascheduler model, development of two application-specific 

wrappers, and realization of user-oriented metascheduling. Based on the requirements 

described in Section 3.4 and summarized at the beginning of this section, application-

oriented metascheduling is realized development of through AIS (architectural and 

implementation details of AIS are provided in Section 3.5). User-oriented metascheduling 

is enabled by extending capabilities offered by the application-oriented metascheduling, 

as described in Section 3.6 and detailed in Section 5.3. Model of a general purpose 

metascheduler that understands notions of variable resource performance, the act of 

resource selection, and the act of data distribution across resources is detailed in the 

Chapter 4 (Section 4.3). Lastly, implementation and validation details for the two 

application wrappers from two different domains are presented in Chapter 5 (Section 5.1 

and Section 5.2).  

 

Single 
objective 

optimization

Multi  
objective 

optimization

Tradeoff 
presentation

AIS

Metascheduler App-specific 
wrapper

 Application- and 
user-oriented 

metascheduling



 
 

142 
 

4. PERFORMANCE ANALYSIS AND MODELING 

Chapter 3 presented rationale (based on the motivation presented in Section 2.8.3) as 

well as the overall approach of work accomplished in this dissertation. Focus on 

application- and user-oriented metascheduling was highlighted accompanied by an 

overview of the general solution. This chapter focuses on enabling application-oriented 

metascheduling through analysis of application performance. The aim of this chapter, and 

the outcome of this dissertation, is to explain how to obtain and subsequently utilize 

application-specific information in order to enable application-oriented metascheduling. 

Initially, an approach for metascheduling EP class of applications is presented in the form 

of an EP application execution model and a metascheduler framework (Section 4.1). An 

example of application performance analysis is presented in Section 4.2, which serves as 

an example in future application performance analyses. Lastly, in Section 4.3, 

metascheduling models that support the approach proposed by the metascheduling 

framework are provided. These models are instantiated and implemented in Chapter 5 

where additional validation and results of application-oriented metascheduling are 

presented.  

4.1. EP Application Metascheduling 

With the overall aim of providing a solution for application-oriented metascheduling, 

this section presents a general purpose metascheduling approach for EP class of 

applications. A finer taxonomy of EP class of applications is presented (Section 4.1.1) 

followed by an EP application execution model (Section 4.1.2); derived results are 



 
 

143 
 

captured in a general purpose metascheduling framework for EP class of applications 

presented in Section 4.1.3. 

4.1.1. EP Application Taxonomy 

With the aim of enabling and providing insight into the metascheduling procedure of 

EP class of applications (relevant considerations were described in Section 2.8), this 

section presents a finer taxonomy of the EP class of applications. Taxonomy is presented 

in order to enable deeper and more targeted discussion with respect to the purpose of grid 

job metascheduling and metascheduler development. This taxonomy captures major 

characteristics regarding data distribution of an EP class of applications. Presented 

taxonomy is divided into three classes, as follows:   

1. Class I – Embarrassingly parallel with homogeneous tasks: this type of EP 

applications is characterized by having input data set of approximately equivalent 

size (hence, tasks experience homogeneous execution times, within a  small delta, 

on a homogeneous resource). Input data size can be defined relative to the 

application, with examples being physical file size, number of lines in the input 

file, or number of iterations per task. The scheduling approach for this type of 

applications largely folds into analyzing resource performance for the given 

application, followed by resource selection and assignment that maximizes overall 

job objective(s). Resource selection and task instance assignment (i.e., online 

scheduling) can be effectively done even during job’s execution, as required by a 

change in resource availability or by resource failure. A formal representation of 

this type of application is provided in Equation (1) where  refers to the job as a 



 
 

144 
 

whole and  refers to an individual task. Function  used in this Equation 

refers to the amount of data assigned to task . 

  (1) 

2. Class II – Embarrassingly parallel with heterogeneous tasks: this type of 

applications is characterized by having input data set that are heterogeneous in 

size or content when compared to one another. Although the scheduling approach 

for this type of application is largely the same as the previous one, there is a need 

to perform subtle load balancing between task instances. This may be achieved 

through dynamic task assignment or resource selection at the job level by creating 

a job execution plan that simultaneously considers and accounts for task 

heterogeneity. Realizing job load balance and thus achieving effective scheduling 

for this category requires deeper understanding of application execution patterns, 

associated input data influence on application’s execution time, and application-

resource relationship. Such understanding increases scheduling potential because 

application-intrinsic properties can be more closely matched to resources’ 

capabilities, thus improving overall job characteristics. Dealing with failed task 

instances or changes in resource availability within this category increases the 

difficulty of achieving load balance. Therefore, metascheduling application jobs 

within this category is more difficult than the homogeneous task category. More 

formally, this category can be represented as follows: 

  (2) 

3. Class III – Embarrassingly parallel with moldable data: this type of EP 

applications is characterized by having a single, large input data set that can be 



 
 

145 
 

freely divided and distributed. As result, a variable number of execution tasks, 

each with possibly heterogeneous input data size, may be created. This category 

of EP applications is similar to the traditional moldable jobs [184] in that it can be 

divided into a variable number of tasks. However, the distinction made here deals 

with the data accompanying each task. Unlike the traditional moldable jobs where 

data is not explicitly discussed and can thus be assumed to be homogeneously 

divided among tasks, in the current case, the initial input data can be divided in 

any fashion supported by the application. As a result, the input data division 

process is generally application specific and must comply with application’s 

requirements regarding location of data splitting; examples for textual input are: 

split at end of any line, split at end of any paragraph, or split at a special character. 

For Monte Carlo methods or Genetic Algorithm applications, an example of data 

division can be an iteration number. Evidently, scheduling for this type of 

applications requires an application-specific module for the data division. From 

the scheduling perspective, the major difference with this class of applications is 

that rather than matching resource’s capabilities to tasks’ requirements (as the 

case is with the previous two classes), tasks’ requirements can be created to meet 

resource capabilities. In order to do so, resource capabilities in terms of a given 

application need to be understood. Overall, in grid environments with 

heterogeneous resources, this model offers a shift in scheduling approach and a 

large potential regarding job execution options; through creation of a job 

execution plan, maximization of resource utilization can be achieved with 

significant reduction or even elimination of load imbalance. As the case is with 



 
 

146 
 

the heterogeneous tasks though, resource failure may require changes to the job 

plan. This increases the difficulty of minimizing load imbalance. In practice 

however, factors such as job input data size or application memory requirements 

often restrict the number of tasks that should effectively be generated. It is one of 

the goals of job scheduling, and the described approach, to derive such limits. 

Although class III of EP applications is sufficient to model either of the two earlier 

classes (similarly, class II can be used to represent class I), presented taxonomy is 

necessary because it transitions into taxonomy of metaschedulers and the type of 

metascheduling individual metaschedulers are capable of performing. Additionally, 

because different scheduling approaches, techniques, and considerations apply to 

individual application classes, future implementations of metaschedulers that will target 

specific class of applications can focus on the specifics of an individual class. Parallel to 

the ideas of component frameworks [52], if a metascheduler is designed to handle only 

Class I type of applications, there is no need to build in a large, complex and heavy 

weight structure needed to support either of the other two classes if such functionality 

will never be used. Therefore, we are convinced that there is a need to define the above 

specified taxonomy and thus divide the generic class of EP applications more adequately. 

4.1.2. EP Application Execution Model 

Aiming at providing an applicable methodology and a framework for 

metascheduling EP class of applications that recognize considerations of Section 2.8.3, 

this dissertation focuses on metascheduling the Class III category of EP applications. 

Such focus provides the most general solution, the most widely applicable case, and 

maximum potential. In this context, we define accompanying job metascheduling as the 



 
 

147 
 

problem of selecting available resources for execution, distributing the input data to meet 

resources’ capabilities, and assigning generated task instances to selected resources.  

An instance of an EP application is referred to as an EP job  and it is represented by 

a set of tasks  that work toward a common goal: . Because of the 

heterogeneity of grid resources, individual tasks  comprising the job  are likely to 

exhibit heterogeneous runtime characteristics. Figure 33 presents an example where a 

10,000 query input file was divided into 17 evenly sized chunks and then individual 

chunks were submitted across four different grid resources for execution. As can be seen 

in the figure, runtimes of individual tasks assigned to any one resource are approximately 

the same. However, runtimes of tasks assigned to different resources vary greatly. In the 

EP application execution model, the job is considered complete only after the longest 

running task has completed. Therefore, in order to achieve maximum performance for a 

job, load imbalance across tasks needs to be minimized while resource utilization is 

maximized. To achieve such job execution characteristics, factors that affect runtime 

characteristics of a task need to be understood (e.g., from Figure 33, why is 2.8 GHz Intel 

Xeon only 25% faster than the 3.2 GHz resource although it has twice the number of 

processing cores and a slightly slower processor?).  



 
 

148 
 

 

Figure 33. Heterogeneity of task runtimes for a job that is executed across heterogeneous 
resources. Tasks assigned to individual resources exhibit comparable runtimes but 

runtimes of tasks assigned to different resources vary significantly indicating the impact 
a resource can have on task’s (and in turn, job’s) runtime.  

The following are factors affecting runtime characteristics of a task  [14]: 

•  - the task input data 

•  - task execution resource  

•  - task invocation parameters 

As a result, the runtime characteristics  of a task are a function of the three 

factors:  

  (3) 

Understanding and controlling how these factors cumulatively affect task runtime 

characteristics is an example of task parameterization introduced in Section 2.8.3. 

Controlling individual tasks that comprise a job leads to a fine level of control of the job 

and thus the ability to realize desired objective from the perspective of a job. More 

specifically, task parameterization leads to job parameterization. Task parameterization is 

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
un

tim
e 

(s
ec

on
ds

)

Task number

Intel Xeon 2.8 GHz, 4 cores/node
AMD Opteron 1.6 GHz, 2 cores/node
Intel Xeon 3.2 GHz, 2 cores/node
Intel Xeon 2.4 GHz, 8 cores/node



 
 

149 
 

defined as understanding and selecting the task parameters (i.e., user controllable and 

application dependent options that can be changed when submitting a task, such as the 

number of threads employed or algorithm used) that are algorithm, input data, and 

resource dependent. Job parameterization is then defined as coordination and control of 

individual tasks (and relevant factors) in such a fashion that a desired objective is realized 

(e.g., minimize runtime, maximize accuracy).  

For the objective of job runtime minimization, the aim of job parameterization is to 

minimize the load imbalance across tasks comprising the job. Achieving such a goal 

requires the metascheduler to coordinate resource capabilities, match those to 

application’s observed potential, realize appropriate data distribution, and finalize the 

process through individual task parameterization. The results of a job metascheduling 

action is a job plan comprising of a set of heterogeneous tasks whose interactions and 

execution characteristics are simultaneously understood, balanced, and coordinated (see 

Figure 34 for an illustration). 

Job

Task 1 Task 2 Task n...

d1, r1, p1 d2, r2, p2 dn, rn, pn Tasks

Ru
nt

im
e

          

 

Figure 34. Illustration of the job parameterization process aiming at minimizing load 
imbalance 

The process of job parameterization focused on runtime minimization objective is 

realized through minimization of load imbalance while maximizing resource utilization. 

This process can be formalized as follows: given a job  with a single input  of size 



 
 

150 
 

, we may create  tasks  and  such that 

 holds (  is defined as size of the input assigned to a task ). Let  

be the set of available resources. Each resource , has capacity . 

Although capacity of individual resources is considered application, data, and parameter 

dependent, in this discussion it is considered constant. Let  (where ) be a set of 

resources selected for executing job . Function  then defines a 

policy stating that full capacity of each resource in  is consumed by the job  (e.g., if  

CPUs are available on , all  CPUs are consumed by the task assigned to the given 

resource). Furthermore, two functions are assumed existent, , which 

provides an estimate of runtime for a task  on a resource , and , which 

provides an estimate of cost for executing task  on resource .  is a 

defined as  

is minimized, where indicates a resource to which tasks  are assigned.  

A function , is then defined, which generates the set of tasks  and 

parameterizes each task according to Equation (3) so that  is small 

and  is satisfied. Single execution of the function planJ provides 

a single job execution option  for executing given job .  

defines the job option space as a set of all execution options generated for the job .  

As an example of the above formulation, consider a BLAST job where 32 input 

queries need to be processed. Assume two resources  and  are available;  has 6 slots 

(i.e., nodes, cores) available while  has 2 slots available. Invocation of the function 

 (i.e., the metascheduler) will result in creation of a job plan consisting of two 

tasks,  and . The two tasks will be assigned to the two resources and parameterized to 



 
 

151 
 

utilize 6 and 2 slots on  and , respectively. Furthermore, the 32 input query file will 

be divided between the two tasks in such a fashion that estimated runtimes of individual 

tasks are approximately the same. For example, if resources were homogeneous when 

compared to one another and all else is constant,  would be assigned 24 queries while 

 would be assigned 8 queries. 

4.1.3. EP Application Scheduling Framework 

In order to implement function  described in previous section and provide 

accompanying functionality, as part of this dissertation, a general framework for effective 

metascheduling of the EP class of applications has been devised. Figure 35 provides a 

schematic overview of the devised metascheduling framework. This figure is also a more 

detailed version of the earlier discussed Figure 32. As can be seen in the figure, effective 

EP application scheduling is a two-step process. In step one, the application needs to be 

analyzed, yielding needed application-specific information. In step two, the derived 

information is exploited to plan execution of user jobs in an application-specific fashion. 

Once a job plan has been derived, the control is transferred to a job submission engine for 

execution on grid resources.  



 
 

152 
 

 

Figure 35. Devised two-step EP application metascheduling framework 

Analyzer and planner are the two main components of the described framework. 

Analyzer operates at the application level by performing analysis of an application. Such 

analysis is targeted toward deriving application-specific relationships between input data, 

input parameters, runtime modes, and execution resources (i.e., understanding factors 

presented in Equation (3)). Currently, the application analysis is a non-automated process 

that requires manual analysis of the application execution patterns. Tools and services 

devised as part of AIS [173] are used to store and help this analysis process. In the 

simplest format, application analysis involves benchmarking of various resources 

enabling relative comparison of those resources for later job execution (sample 

benchmarking tools: [16, 26]). In the most complicated format, application analysis 



 
 

153 
 

involves development of a mathematical model that describes application execution 

patterns and dependencies. 

Once an application has been analyzed, the derived information can be leveraged to 

improve job performance. Job planner represents a general purpose metascheduler that 

understands notions of variable resource performance, the resource selection process, and 

variable data distribution. In other words, the job planner represents a general 

implementation of the  function. In order to realize application-oriented 

metascheduling, but also support the decoupling of the metascheduler from the 

application, an application-specific module (i.e., wrapper or plug-in) needs to be 

developed that utilizes results from the analysis performed in step one and provide it to 

the general purpose job planner. Complementing the general purpose planner with the 

application-specific module enables generation of an application-specific job plan and 

thus application-oriented metascheduling. Once a job plan has been created, it is 

propagated to the job manager and a job submission engine. The job manager component 

is an optional component than can implement application-specific logic for partial task 

failure or runtime changes in resource availability.  

An example of possible functionality of the job-manager component is support for 

job portability. Without such functionality, once created, a job plan is not modified even 

if better resources become available. Instead, the job-manager could modify or re-create 

the job plan and take advantage of the resource availability change. Such functionality, in 

order to be efficient, requires application check-pointing and represents possible 

extension of this work. 



 
 

154 
 

4.2. Performance Analysis 

This section provides an example of application performance analysis, namely 

realization of step one from the framework presented in the previous section. The section 

is divided into three subsections corresponding to the factors defined as affecting runtime 

characteristics of a task (see Equation (3)). Components considered include: hardware 

and software configurations of individual resources focused around number and type of 

processors (factors  and  from Equation (3)), influence of number of threads on job 

runtime as well as resource utilization (factor  from Equation (3)), and influence of 

query input file statistics on job execution time (factor  from Equation (3)). 

Characteristics of relevant job runs are stored in respective AIS services and enable 

observation of changes in patterns in application execution. Technical details of resources 

used during this performance analysis are available in Appendix C with resources 

availability listed in Table 2. 

Table 2. Availability of resources used during experimentation. 
Name Everest Olympus Coosa Wave iBook Dual Opteron 
# nodes 32 128 128 1 1 1 
Total cores 64 256 256 2 2 4 
BLAST ver. v 2.2.11 v2.2.11 v2.2.16 v2.2.16 v2.2.16 v2.2.16 
 

4.2.1. Task Input Data Influence 

First, we study the impact of input data on runtime characteristics of a task. 

Typically, runtime characteristics of a task are primarily characterized by the amount of 

input data that needs to be processed by the task. For the case of BLAST application, the 

amount of input data is measured by the number of queries that need to be processed by a 

task. We analyze performance of BLAST with respect to the number of queries that need 

to be processed. Figure 36 presents the impact on task runtime as the number of queries is 



 
 

155 
 

varied from 32 to 256 (in increments of power of 2). The results are obtained from the 

Everest resource using a single process and two threads (technical resource details can be 

found in Appendix C). The database used was yeast.nt (12MB) and each of the individual 

queries was 393 bases long (i.e., the same query was used a specified number of times). 

Results show that execution time of BLAST application is linearly proportional to the 

size of the input it needs to process.  

 

Figure 36. Impact of number of queries used as input for a BLAST task on task’s runtime 

Depending on the application, structure of the input file may also affect runtime 

characteristics of a task. In case of BLAST, individual queries may be of different 

lengths. In order to analyze impact of query length on task runtime, we performed 

additional tests where we kept the file size as even as possible but varied the number of 

queries in the input files. We created a file with only 19 long queries with average length 

of 3946 bases and a file with 310 short queries of average length 92 bases (see Figure 

37a). Individual queries were selected from the VBRC database based on their length. 

Each file was approximately 77 Kb in size.  

The runtime results of executing the two input files are shown in Figure 37b (using 

Everest resource and the nr database (1.6GB)). As can be seen, the length of the query 

0

20

40

60

80

100

32 64 128 256

R
un

tim
e 

(s
ec

on
ds

)

Number of queries



 
 

156 
 

has significant impact on runtime characteristics of a task. Executing the set of long 

queries exhibited approximately five-fold slower runtime than executing the set of short 

queries. Although presented analysis is not conclusive in terms of direct correlation 

between individual query length and task runtime, it signifies the potential impact query 

length may have on task runtime. The conclusion is that, in order to be able to effectively 

compare performance of resources with respect to the input data, the length of queries 

must be considered alongside the number of queries.  

 

    (a)            (b) 

Figure 37. Physical characteristics of two input files used to test impact of query length 
on BLAST application runtime: (a) one file has a large number of short queries while the 

other has a small number of long queries and (b) runtime of tasks parameterized with 
corresponding input files.  

In the above analysis, BLAST was used as an example but it does not represent the 

only application where input data characteristics affect runtime of a task. Such examples 

are plentiful among computer science applications. Quicksort sorting algorithm [185] is 

an example. Quicksort has average complexity of   where  is the number of 

elements to sort. However, if the data provided as input to the Quicksort algorithm is 

0

50

100

150

200

250

300

350

Many short 
sequences

Few long 
sequences

N
um

be
r 

of
 q

ue
ri

es

0

1000

2000

3000

4000

5000

6000

Many short 
queries

Few long 
queries

R
un

tim
e 

(s
ec

on
ds

)



 
 

157 
 

already sorted and pivot is not randomized, then the algorithm takes longer time to sort 

the data as compared to unsorted data (specifically, complexity is ). 

4.2.2. Task Execution Resource Influence 

With the heterogeneity of resources present in grid environments, there is a need to 

understand how runtime characteristics of a task are affected by the resource selected for 

task execution. There are several methods for determining capabilities of a resource, 

namely: 

• Calculate theoretical peak performance of a resource based on the clock speed of 

the processor 

• Use a generic benchmark tool, such as the SPEC benchmark discussed in Section 

2.7.8 

• Use an application-specific benchmark (this may include analysis of historical 

runtime characteristics of a given application, executing selected application with 

a smaller input data set prior to the job submission, use of application skeletons to 

estimate application performance [137], or use of application-specific benchmark 

tool (e.g., [130])) 

Because of the application-resource dependency explained in Section 3.3, in addition 

to previous research [186], only the application-specific benchmarks offer a true 

performance of a resource as it pertains to the given application. It is thus desirable to 

analyze behavior of runtime characteristics of the application under question as it moves 

across resources available in the grid. Enabling such application introspection is one of 

the aims of AppDB presented in Section 3.5.2. Nevertheless, when such performance 

data is not available, general purpose approaches can be used (with possibly reduced 



 
 

158 
 

level of accuracy). For example, study [27] shows how performance of sequence 

alignment applications on a given resource can typically be estimated within 10% of the 

generic benchmark value for the given resource. Therefore, calculating theoretical peak 

performance of a given resource and using it to estimate available resources’ relative 

performances can lead to significantly better metascheduling approach than blindly 

submitting jobs across available resources. 

Figure 38 presents results of executing the same 32 query input files across a range 

of resources. Individual queries were randomly selected from the Viral Bioinformatics 

Resource Center (VBRC)7

Table 2

 database. The VBRC database contains the complete genomic 

sequences for all viral pathogens and related strains that are available for about half a 

dozen of virus families. All tasks performed the search against the 1.6GB nr database. 

Technical details regarding used resources can be found in . As can be seen from 

the figure, individual resources exhibit significantly different runtime characteristics for 

the same task. Availability of such runtime data enables a metascheduler to 'understand' 

capabilities offered by individual resources and more adequately distribute task 

workloads (as defined by function  in Section 4.1.2).  

As an example of the importance of application-specific benchmarks, one can 

consider the difference in performance between runtime of tasks executed on Olympus 

resource when using two different versions of the Linux kernel (see Figure 38). The 

runtime difference of the two tasks is approximately 30%! Furthermore, using the same 

Linux kernel but varying version of the BLAST application shows difference in tasks' 

performance on the order of 5%. Although these values may change from one resource to 

the next, they point at the impact resource configuration may have on runtime 
                                                      
7 http://www.biovirus.org/ 



 
 

159 
 

characteristics of a task. At the same time, the theoretical peak performance of the given 

resource is constant. This is an example of the benefit of using application-oriented 

benchmarks over standardized ones. 

 

Figure 38. Comparison of BLAST execution times across resources. Architectural details 
of machines used are provided in Appendix C with resource availability listed in Table 2. 
Presented experiments searched 32 queries randomly selected from the VBRC database 

against the nr database (1.6GB in size). 

4.2.3. Task Parameters Influence 

Applications are oftentimes controlled through various arguments, options, and 

values associated with those. For example, the number of threads to instantiate when 

invoking an application, value for transitional probability in a Hidden Markov Model 

application, or step size in a Monte Carlo simulation. Depending on the application, the 

choice of a parameter and associated parameter's value may affect runtime characteristics 

of a task. The change may be observed in terms of result accuracy or task runtime.  

In case of BLAST, runtime characteristics of a task may be manipulated by 

exploiting thread-level parallelism when comparing queries to the different parts of a 

sequence database. Multi-threading support within the BLAST application is supported 

0

500

1000

1500

2000

2500

R
un

tim
e 

(s
ec

on
ds

)

Resources

Everest

Wave 

iBook

Olympus- Linux 2.4.21, BLAST 2.2.11

Olympus - Linux 2.6.9, BLAST 2.2.14

Olympus - Linux 2.6.9, BLAST 2.2.16

Coosa - 2 threads

Coosa - 2 jobs

Dual Opteron 



 
 

160 
 

through the '-a' option. Figure 39 presents runtime results of the same task configuration 

as in the previous section across three different resources but with varying the number of 

threads employed by each task. As can be seen from the figure, parallelism scales 

effectively until the number of processing cores available on a given resource matches 

the number of threads created. Wave and iBook resources contain two processing cores 

and invoking two threads as opposed to one nearly reduces the runtime of the task by 

50%. The Dual Opteron resource exhibits comparable performance for the values up to 

four threads.  

Increasing the number of threads beyond the number of processing cores available 

on a resource has only minimal impact. This is due to the contention between competing 

processes. However, small performance improvement may be observed when number of 

threads is slightly higher than the number of processing cores because of the I/O and 

computation overlap that can be realized by the operating system controlling the threads.  

 

Figure 39. Effect on BLAST task runtime characteristics when varying number of threads 
option across resources. Application scales efficiently to the point where number of 

threads matches the number of processing cores on a given resource. 

Depending on the scheduling policy of individual resources, information about the 

processing capacity of a node may be published in terms of the number of processors or 

number of cores. For example, a node on a resource may have two quad-core processors. 

0

500

1000

1500

2000

1 thread 2 threads 4 threads 8 threads

R
un

tim
e 

(s
ec

on
ds

)

Wave
iBook
Dual Opteron



 
 

161 
 

Published information about resource scheduling policy may be used to discover such a 

detail. There is a question whether scheduling (or instantiating) two separate processes 

(i.e., one per processor) and parameterizing each process to start four threads may be 

better than instantiating a single process and parameterizing it to start eight threads. 

Figure 40 points at runtime differences for the two approaches. The two tasks executed a 

128 query input file against the nr database on a resource made up of two quad-core Intel 

2.33 GHz processors. As can be seen in the figure, creating a single process with the 

number of threads matching the number of processing cores resulted in a slightly better 

runtime performance (note that the y-axis in the figure does not start at zero). This 

difference could be attributed to the fact that for the single process case only one copy of 

the database needs to be read and loaded into memory whereas for the two process case 

two copies of the database need to be read and loaded into memory. 

 

Figure 40. Runtimes of two parameterizations of the same BLAST task on one node. 
Tasks used 128 queries as input and searched against the 1.6 GB nr database (note that 

the y-axis in the figure does not start at zero). 

Once again, the BLAST example shown does not represent the only application 

whose runtime characteristics are affected by parameters and corresponding values used 

when invoking a task. For example, HPL [139] is the most popular benchmark used to 

225

230

235

240

245

250

255

2 processes with 4 threads each 1 process with 8 threads

R
un

tim
e 

(s
ec

on
ds

)



 
 

162 
 

rank high performance clusters8

4.2.4. Job  Parameterization  

. At the same time, HPL is characterized by a variety of 

arguments and argument values that significantly affect runtime characteristics of a task 

[187]. Furthermore, arguments are often closely tied to the resource at hand [188] and 

thus require significant understanding of resource capabilities and application 

requirements.  

The previous three sections focused on analyzing influence of individual factors 

comprising a task on the task's runtime characteristics. As described in Section 4.1.2, job 

parameterization operates on the level above task parameterization and it aims at 

coordinating individual task factors so that the job as a whole can realize set objective(s). 

At the same time, job level parameterization may need to consider and include 

parameterization factors beyond those controlling runtime characteristics of individual 

tasks. Examples include making a decision on how many tasks to invoke or how to 

distribute input data across instantiated tasks.  

For the case of BLAST, the built-in thread-based parallelization method works well 

for a single SMP machine but is limited in terms of scalability. In order to gain additional 

performance benefits, at the level of job parameterization, multiple tasks may be created 

and distributed to multiple nodes of a resource. Results shown in Figure 41 present 

runtimes of BLAST jobs executing two threads per node (because each compute node has 

two processing cores available) and using 1,024-query input file (queries were randomly 

selected from the VBRC database) against the nr database (1.6GB). The same set of jobs 

is executed across three resources. The performance data presented shows a consistent 

speedup across resources as multiple tasks are instantiated. This indicates at the potential 
                                                      
8 http://www.top500.org/ 



 
 

163 
 

to parallelize execution of BLAST jobs beyond the support offered within the application 

through the thread-level parallelism.  

 

Figure 41. Runtimes of a BLAST job using 1,024-query input file against the nr database 
(1.6GB) when the workload is divided into specified number of tasks across multiple 

nodes. The same job was executed on three resources to analyze variation in 
performance across resource architectures. Each task initiated two execution threads. 

If the metascheduling objective is cost minimization for example, the metascheduler 

needs to consider job execution efficiency alongside runtime minimization. As shown in 

Figure 41, increasing the number of tasks that are created within a job decreases the 

runtime of the job; however, introduced parallelism may involve overheads regarding 

tasks' execution. Such overheads may affect resource utilization and job efficiency. For 

the job cost minimization metascheduling example, such overheads can become 

important. 

In order to understand this overhead effect, the following should be considered. Job 

cost  is given by , where  is the number of processors used,  is the 

job runtime for  processors, and  is the overhead included with the computation [4]. 

The goal is to achieve , where  is job runtime for the sequential mode of 

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 32

R
un

tim
e 

(s
ec

on
ds

)

Number of tasks

Everest
Olympus
Coosa



 
 

164 
 

application execution.  is further defined as  leading to 

, where  is sequential time required to setup a process and  is the process 

computation time. Because of the  component, it can be concluded that the efficiency 

of a job must decrease with an increase in number of processors used. Implications of this 

analysis are that cost will be minimized only when a single processor is utilized. 

However, such execution will result in longer runtime. Therefore, there is a need to trade 

off some efficiency for reducing runtime.  

Different computer architectures are implemented in different ways and they handle 

parallel application executions in different ways (e.g., caching procedures, memory 

management). It can thus be important to analyze performance of an application across 

resources in terms of execution efficiency as well as speedup. Figure 42 provides results 

of architecture-dependent job efficiency experiments when executing a BLAST job for a 

variable number of tasks. Jobs executed used 1,024-query input file against the nr 

database (1.6GB). Based on the presented results, Everest resource (AMD based 

architecture) shows a faster decrease in job efficiency but remains largely constant when 

4, 8, and 16 tasks are created. On the other hand, Coosa resource (Intel based 

architecture) experiences a continuous but more consistent decrease in job efficiency. The 

results show that even though creation of multiple tasks leads to significant reduction in 

job runtime (see Figure 41), the efficiency of job execution suffers (see Figure 42). 

Moreover, from the perspective of job efficiency and minimizing job cost, if using 

Everest (i.e., AMD based) resource, it is more beneficial to utilize 8 or 16 nodes than 1, 

2, or 4 because runtime of the job is considerably reduced (see Figure 41) while the job 

efficiency remains approximately constant. Such observations indicate at the importance 



 
 

165 
 

of job parameterization and a need for collecting ample information regarding application 

execution characteristics. AppDB service from AIS (described in Section 3.5.2) provides 

needed support to capture retrieve such data. Although concrete values regarding 

parameterization of  individual jobs and resources may differ significantly, potential for 

described behavior is important to note and incorporate into a metascheduling model.   

 

Figure 42. BLAST job execution efficiency across two resources differing in their 
architectures. Efficiency of Everest (AMD based) resource dips faster but remains 

constant longer while the Coosa (Intel based) resource shows continuous decrease in job 
efficiency. 

4.2.5. Performance Analysis Observations 

Based on the performance analysis presented, several observations regarding 

application execution characteristics are made in this section. Although some of the 

observations are of general nature, the focus is on how to maximize performance of 

BLAST jobs in heterogeneous environments. 

Based on the presented data, the following components can affect task and job 

runtime characteristics:  

• Resource architecture 

0.800

0.850

0.900

0.950

1.000

1.050

1 2 4 8 16 32

Jo
b 

ef
fic

ie
nc

y

Number of tasks

Everest 
Coosa



 
 

166 
 

• Speed and number of CPUs/cores 

• Input data properties 

In terms of the architecture, a trend was observed where the speed (i.e., clock 

frequency) of a processor in SMP (i.e., Intel) based machines compared to NUMA (i.e., 

AMD) based machines needed to be much higher to provide comparable performance. 

Overall, based on the results shown in Figure 38, speed of CPU seemed to provide 

proportional increase in performance when compared across CPUs within a given 

architecture.  

The number of CPUs or cores used has the most influence on the resulting 

turnaround time of a job. Increasing the number of CPUs employed provides a 

continuous and consistent job speedup. When multiple processing cores are available on 

a system, use of the available thread-based parallelism with BLAST application should 

be utilized. The number of threads instantiated should correspond to the total number of 

processing cores available on the system (or node). Instantiating multiple threads within 

BLAST application is the preferred way of maximizing performance on an individual 

system (or node) as opposed to instantiating multiple processes on the node. 

Lastly, if the input data permits, splitting the BLAST input file should be performed 

based on number of queries and length of the queries. If the data is distributed using this 

approach, task (and job) parameterization should be performed to meet capabilities of 

individual resources aiming at minimizing job load imbalance.  

4.3. Metascheduling Models 

This section provides a general purpose metascheduling model, namely realization of 

the first part of the step two of the framework presented in Section 4.1.3. This section is 



 
 

167 
 

further divided into two subsections; Section 4.3.1 describes a metascheduling model for 

homogeneous resources and Section 4.3.2 describes a metascheduling model for 

heterogeneous resources. The aim of presented models is to provide a general purpose 

metascheduling solution that can later be instantiated by developing an application-

specific module that supplies necessary information to this general purpose 

metascheduler. In order to support desired features and requirements discussed in Section 

3.4, the general purpose metascheduler needs to understand notions of variable resource 

performance, the resource selection process, and weighted data distribution across task as 

they are assigned to resources.  

4.3.1. Homogeneous Resources Model 

Overall, parameterization of a job in a heterogeneous environment can be partitioned 

into two components, the first one being parameterization of the overall job in terms of 

resource selection and data distribution across tasks and the second one being 

parameterization of an individual resource upon it being selected. This section focuses on 

the second step and presents a metascheduler model that can be instantiated when 

parameterizing a job on any single resource.  

In the context of a homogeneous resource, three decisions need to be made: 

• How many tasks to create? 

• How to distribute data among created tasks? 

• How to parameterize each task? 

The number of tasks that can be created on a given resource is constrained by the 

number of Processing Slots (PS), or nodes, available on the system. We refer to this 

number as . Although this is a soft constraint, creating more tasks than available PSs 



 
 

168 
 

will result in resource thrashing [32] and is thus not considered. The number of created 

tasks can, however, be smaller than the total number of PSs. As shown in Section 4.2.4, 

depending on the architecture of a resource, certain job configurations result in 

improvements in resource utilization. Depending on the objective of a metascheduler, 

utilizing such information may be of interest when scheduling and parameterizing a job. 

Because such information is application-specific, it should be implemented at the level of 

the application-specific wrapper and provided to the general purpose metascheduler. The 

general purpose metascheduler needs to be able to handle such a request. Therefore, the 

number of tasks to be created by a metascheduler is provided as a variable at the time of 

metascheduler instantiation and it is denoted by  (thus supporting variable resource 

availability). 

Once the number of tasks has been determined, there is a need to decide how to 

distribute the total amount of input data  between the number of tasks . Because the 

resource is composed of homogeneous nodes, it is adequate to divide the input across the 

nodes (and thus the tasks) in a proportional manner. Equation (4) captures this action 

where  indicates the size of the input that should be assigned to each individual task 

(size is application-specific and can refer to the number of queries in case of BLAST or 

physical size of the overall input file): 

 
 (4) 

Variable  indicates a general size of input that should be assigned to individual task 

 However, assigning the actual  amount of data to  should be implemented by the 

application-specific wrapper because this is often an application-specific action. For 

example, based on the BLAST analysis from the previous section, the amount of data 



 
 

169 
 

assigned to each task  should be guided by the number of queries and the length of 

individual queries. Therefore, creating a script or a module that, when instructed as to 

how many data chunks to create and much how much data to assign to each task, it can 

distribute the provided input data in the appropriate fashion.  

Lastly, each task should be parameterized to help realize the desired scheduling 

objective. Because this is an application-specific action, the metascheduler should 

understand the notion of task parameterization but the parameter value should be passed 

to the metascheduler as a variable. In case of BLAST, the parameter value could be the 

number of threads to instantiate within a task. The number passed would likely 

correspond to the total number of processing cores available on any one Processing Slot 

(as per conclusions of Section 4.2.3). 

In conclusion, the presented metascheduler model provides a standardized interface 

for an application-specific wrapper to rely upon. The model supports notions of variable 

resource assignment, data distribution, and task parameterization. Within an 

implementation of the model, a general purpose solution to above actions and subsequent 

duties (e.g., task submission, data staging) can be implemented; however, it is the 

application-specific wrapper that provides necessary information and performs 

application-specific tasks. 

4.3.2. Heterogeneous Resources Model 

At the highest metascheduling level, a model is needed that encompasses global job 

parameterization in terms of resource selection and data distribution. This section 

presents such a metascheduling model. Presented model represents a general purpose 



 
 

170 
 

solution that can be instantiated and it assumes existence of an application-specific plug-

in that provides and implements many of the necessary details.  

The following notation is used throughout this section: 

 Set of normalized performance weights of resources available for executing job 

 

 Number of Processing Slots (PSs) or nodes on resource  

 Performance rate of individual PS on resource  

 Performance weight of resource  

 Set of normalized performance weights of resources selected for executing job  

 Number of tasks assigned to resource  

 The size of data chunk assigned to resource  

 The total size of input for job  

The following is the list of actions supported by the derived model: 

• Understand heterogeneity of available resources 

• Support notion of resource selection 

• Understand the possibility for variable data assignment to selected resources 

Capabilities of a resource can be measured by its size, and size can be quantified 

through the number of PSs available. Because of the heterogeneity of grid resources, size 

should not be the only measurement. Therefore, understanding resource heterogeneity 

involves accounting for the size of the resource and resource’s performance. 

Furthermore, because of the application-specific relationship, performance of a resource 

should be measured in terms relevant to the given application. Equation (5) captures the 

process of resource weight calculation.  



 
 

171 
 

  (5) 

The performance weight  of a resource can be obtained through one of the methods 

discussed in Section 4.2.2; how such a value is obtained is left up to the application-

specific module that instantiates the metascheduling model. Note that Equation (5) 

exclusively considers all of the available PSs on given resource. However, this does not 

need to be the case and an instance of the presented metascheduling model can be 

invoked with a desired number of a PSs. This can be captured in above formulation by 

replacing the number of PSs on a resource  with the number of tasks  that wish to be 

created on given resource (an example is provided later, in Section 5.3). 

Once the resource weights are obtained, they are normalized and used to represent 

the set of available resources whose individual performances can be directly compared 

(see Equation (6)).  

  (6) 

Resources can now be effectively compared and the act of resource selection can be 

performed. Presented model realizes the notion of resource selection based on a certain 

threshold. The value of the threshold may be interpreted differently for different 

applications. Some examples are: resource performance is less than some constant, 

resource performance is less than 50% of the fastest resource, cost of a resource if greater 

than some constant. Equation (7) captures such functionality:  

 
 (7) 

Lastly, the metascheduling model needs to understand the notion of variable data 

distribution across selected resources based on the relative resource performance. 

Equation (8) provides a general formulation for the resource performance relative data 



 
 

172 
 

distribution. Computed value  refers to the amount of the data that should be assigned 

to resource  but the data distribution is implemented by the application-specific module 

to adhere to the requirements imposed by the application. For the BLAST example such 

requirement implies that division should be performed at the granularity of individual 

query. Furthermore, the division module should account for number of queries as well as 

length of queries when performing the data distribution. As with the case of Equation (5), 

the total number of PSs  in Equation (8) can be replaced with the desired number of 

tasks to be created on resource . 

  (8) 

Once the decisions regarding above discussion are made at the level of a job, the 

scheduling model presented in the previous section can be instantiated to parameterize 

each individual task on each individual resource. Overall, presented model captures the 

requirements of a metascheduler to understand and cope with heterogeneity of resources 

in grid environments. Implementations and instantiations of the presented model can thus 

rely on availability of essential functionality while interpretation of the application-

specific information is implemented in a separate module (refer to Figure 32 for a 

graphical illustration). 

4.4. Reflections on the Approach  

Overall, this chapter focused on enabling and realizing goals behind application-

oriented metascheduling. More specifically, an approach and a framework for 

metascheduling EP class of applications was described (Section 4.1), followed by an 

example of application performance analysis (Section 4.2), and culminating in 



 
 

173 
 

description of derived general-purpose metascheduling models (Section 4.3). The 

described framework for metascheduling EP class of applications is a two-step process 

consisting of application analysis (and utilization of AIS functionality described in 

Section 3.5) followed by development of an application-specific metascheduler, which 

utilizes conclusions derived from the analysis in an application-oriented fashion. Such 

approach enables realization of benefits resulting from application-oriented 

metascheduling while providing a well-defined process to follow, thus easing the 

required effort.  

The next topic discussed (Section 4.2) focused on providing an example of 

application-performance analysis (i.e., Step 1 from the EP metascheduling framework). 

Individual components of application’s lifecycle and factors affecting application 

execution characteristics were systematically presented and analyzed offering a model for 

achieving the same with any EP application. Lastly (Section 4.3), general purpose models 

for metascheduling EP applications were formulated and presented (i.e., Step 2 form EP 

metascheduling framework). Existence of such models enables application-oriented 

metascheduling to be realized by simply plugging-in application-specific analysis 

conclusions into the existing metascheduling framework.  

The approach presented in this chapter enables application-oriented metaschedulers 

to be easily developed. This is achieved through use of AIS, which supports collection 

and retrieval of application-specific data, and the metascheduling framework, which 

provides an example and a model for realizing application-oriented metascheduling. With 

the availability of these key components (i.e., information collection services and an 

example-supported metascheduling framework), application-oriented metascheduling is 



 
 

174 
 

realized. In support of realizing application-oriented metascheduling, empirical analysis 

and validation of presented approach and derived solutions are presented in Chapter 5, 

along with the utilization of application-oriented metascheduling to deliver user-oriented 

metascheduling.  

 



 
 

175 
 

5. REALIZING APPLICATION- AND USER-ORIENTED 
METASCHEDULING 

Chapter 4 provided a general approach and an example for realizing application-

oriented metascheduling through analysis of application performance. This chapter 

focuses on means for delivering application-oriented metascheduling to a user. Initially, 

the presentation focuses on how to realize application-oriented metascheduling through 

implementation of application-specific wrappers (Section 5.1 and Section 5.2). 

Implementations of these wrappers serve as validation scenarios for delivering higher 

user utility by incorporating resource-application dependencies into metascheduling and 

enable realization of two-way interaction between a user and the scheduler – the central 

hypothesis of this dissertation. Next, Section 5.3 focuses on realizing user-oriented 

metascheduling through utilization of information available within AIS and the results of 

application-oriented metascheduling. User-oriented metascheduling is realized and 

validated through simulation in addition to real-world grid resources, showing significant 

potential and benefit of the proposed methods. 

5.1. Bioinformatics Application  

In order to complete an implementation of the metascheduling framework presented 

in Section 4.1.3 (specifically, Figure 35), the general purpose metascheduling model 

devised in Section 4.3 needs to be complemented by an application-specific wrapper or 

plug-in to realize application-specific metascheduling. This section presents an 

implementation of such a wrapper for an application from the bioinformatics domain, 



 
 

176 
 

namely BLAST. The developed application was named Dynamic BLAST and it has been 

accepted by SURAgrid as the grid-enabled implementation for the BLAST application9

Dynamic BLAST is a grid enabled version of BLAST; it acts as a wrapper for 

BLAST that is capable of exploiting grid resources for BLAST jobs. Dynamic BLAST 

represents an implementation of the general metascheduler model presented in Section 

. 

4.3. Within Dynamic BLAST, all aspects of resource selection and data distribution are 

not only automated but also tailored for BLAST application. Additionally, Dynamic 

BLAST builds on top of grid tools and standards in order to deliver and support required 

robustness to succeed across grid environments. More specifically, Dynamic BLAST was 

developed using Java on top of the Globus Toolkit [35] and has adopted the DRMAA 

[107] standard for all job invocation operations in addition to GridWay [189] for all job 

submission activities. A high-level overview of Dynamic BLAST’s interaction with grid 

components is given in Figure 43.  

Authentication and authorization are moved outside the Dynamic BLAST where the 

user is required to have a valid grid proxy before job invocation. Resources are 

discovered dynamically through Grid Information Service (GIS). GridAtlas is used to 

monitor application-related parameters on various resources and deliver required 

information to Dynamic BLAST. Interaction with GridWay is performed through 

DRMAA API and is used for all job submission and monitoring activities. As discussed 

in the following paragraphs, Dynamic BLAST handles resource selection and data 

distribution; however, actions regarding resource allocation, data transfer, and job 

monitoring are all delegated to GridWay for execution through the DRMAA API. 

Adoption of GridWay in Dynamic BLAST development was a cornerstone with respect 
                                                      
9 http://www.sura.org/programs/docs/UABBLAST.pdf 



 
 

177 
 

to Dynamic BLAST modularity and portability. Through its support for the DRMAA 

standard, GridWay provides a well-established and proven platform for high-level grid 

application development. Before adopting GridWay, the majority of development and 

maintenance effort within Dynamic BLAST was devoted to low-level resource 

interactions and upkeep with ever-changing technologies (e.g., pre-WS to WS). Adoption 

of DRMAA standard within GridWay has even alleviated direct dependencies to 

GridWay, thus increasing code modularity. 

 

Figure 43. High-level diagram of interactions between grid components and Dynamic 
BLAST 

Based on experience obtained during the work associated with this dissertation, 

presented architecture of Dynamic BLAST can be seen as a model that is suitable for 

future application developments. The key aspects of this architecture have shown to be 

development of targeted and specific components where the application is performing 



 
 

178 
 

only the action it was initially intended to perform (beyond standard software engineering 

techniques such as code modularization and low inter-module coupling). Stated approach 

implies making extensive use of available tools rather than trying to re-develop existing 

technologies. 

5.1.1. Dynamic BLAST Architecture 

Analysis of BLAST parallelization methods and grid resource characteristics has led 

Dynamic BLAST to be internally developed under the master-worker communication 

model. The master-worker model allows a single process to control the resource 

selection, data distribution, job submission and parameterization, and job monitoring. 

Thus, selected application model maximizes execution flexibility, code modularity, and 

fault tolerance. Going hand-in-hand with the master-worker model, and as described in 

Section 2.9.1, the original BLAST algorithm can be parallelized by adopting either of the 

two data distribution methods (i.e., query splitting and/or database splitting). Suitability 

of one parallelization method over another is both input data and resource dependent 

[190, 191, 192, 193]. One method can often be found more appropriate than the other, 

based on current resource availability. The adopted master-worker model allows 

flexibility of Dynamic BLAST by supporting notions of advanced scheduling techniques 

to be automatically applied on the user’s behalf. Given model allows for different 

BLAST algorithms to be invoked on available resources even within a single job. This 

has the potential of increasing the suitability of available resources and maximizing 

resource utilization while minimizing job turnaround time. 

Internal dataflow for Dynamic BLAST closely follows the architectural components 

comprising the application and consists of several key layers/steps. A diagram of the 



 
 

179 
 

components and dataflow is provided in Figure 44. The main components of the given 

architecture are: 

• Data Analysis (analyzes input files) 

• Create Job Plan (decide on resource selection, data distribution, algorithm, and 

job parameter selection) 

• File Parsing and Fragmentation Module (based on job plan, splits the input query 

file) 

• Thread creation (each resource and dataset is assigned a thread) 

• Threads (manage all job submission related tasks for assigned resource) 

• Post processing (wait on threads to complete, transfer data to local machine and 

join it into a single results file) 

Data Analysis performs statistical analysis of user input query file to extract 

parameters needed in later steps of data processing. This information includes the number 

of queries, the average query length, and the standard deviation of query lengths. 

Described module also extracts current resource availability and information and stores it 

in an internal, Dynamic BLAST specific format.  



 
 

180 
 

 

Figure 44. Internal dataflow for Dynamic BLAST 

Create Job Plan module implements the general purpose metascheduler presented in 

Section 4.3 and it is the core of Dynamic BLAST. It uses information retrieved by the 

Data Analysis module to perform on-line scheduling and job parameterization. 

Implemented functionality generates query chunks based on relative resource 



 
 

181 
 

performance in order to minimize load imbalance. To do so, Equation (7) is implemented 

for resource selection and Equation (8) for data distribution (as derived in Section 4.3.2). 

Resource performance weights needed for relative resource performance comparison are 

obtained from historical BLAST benchmark runs, as available in AppDB. The result of 

executing the Job Plan module is a concrete job plan for resource assignment and data 

distribution. This job plan is used to guide execution of the remainder of job submission 

process.  

File Parsing and Fragmentation module reads the job plan and proceeded in two 

steps. Initially, it splits the original user query file into chunks, one for each resource 

(chunk sizes are stored in the job plan). Once the chunks are created, each chunk is 

further subdivided to correspond to task assignments (according to Equation (4)). The 

number of tasks created is also provided in the job plan and it generally closely 

corresponds to the number of nodes available on selected resource.  

Thread Creation takes place immediately prior to job submission. The master thread 

creates worker threads – one for each resource. Individual Threads read their respective 

part of the job plan to parameterize a given task (i.e., implement homogeneous resources 

scheduling model presented in Section 4.3.1). Because of such a granular approach to job 

plan generation and execution, as stated earlier, different BLAST algorithms and 

parameters can be used for different resources. This provides needed customization and 

allows for maximization of resource utilization in addition to high-level of user support 

and QoS. Jobs are submitted directly by threads to individual resources through DRMAA 

and GridWay. The master thread waits on the threads to complete. Individual threads 

initiate an output file transfer back to the initial job submission resource before 



 
 

182 
 

completing their execution. If a resource fails or a task does not complete its execution as 

planned, the master thread can resubmit just the given task to another resource.  

Post Processing module is part of the master thread and its primary task is 

combining all the search result files into a single result file presented to the end user. Any 

cleanup and additional tasks, such as bookkeeping (e.g., storing new performance data 

into AppDB) are also performed in this step. 

5.1.2. Dynamic BLAST Performance Results 

Performance of Dynamic BLAST was tested through a set of experiments trying to 

determine the degree to which Dynamic BLAST was able to realize application-oriented 

metascheduling across a set of grid resources. Performance results of Dynamic BLAST 

are compared to a state-of-the-art but general purpose metascheduler.  

Based on BLAST performance analysis from Section 4.2, and thus a corresponding 

ASL document, performance characteristics of a BLAST task are affected by the number 

and length of the queries to be processed. At the same time, capabilities of individual 

resources (i.e., the weight factor used in Equation (8)), as derived from application 

benchmarks, are proportional to the 'standard' input data. In other words, resource 

performance is based on the same input data set. Because number as well as length of the 

input queries affect runtime of a BLAST task, in order to maintain relative resource 

performance derived from available benchmarks, it is important to assign comparable 

data chunks to individual resources. This implies that the data needs to be assigned to 

resources in a well-balanced fashion; a proportional number of short, medium, and long 

queries should be assigned to each individual resource (i.e., cluster) and furthermore to 

each individual task (i.e., node). The result is that load balance among tasks and resources 



 
 

183 
 

will be achieved and thus resource comparison used to derive the job plan and the data 

distribution will actually hold during job runtime.  

This problem can be generalized into a bin-packing problem [185] where the number 

and size of bins is predetermined (i.e., number of resources and number of queries 

assigned to each individual resource). A simple yet effective and efficient heuristic 

implementation for this problem is the first-fit decreasing algorithm (complexity is 

 where  is the number of queries). The algorithm assigns data elements across 

individual bins in a decreasing order for as long as there is input [67]. Note that under the 

constraints of the heterogeneous and distributed environment where this algorithm is 

applied, a need for an optimal solution is minimal and, instead, focus should be put on 

efficiency. Therefore, the file parsing module of Dynamic BLAST implements the first-

fit decreasing algorithm as a two-step progress: first, user input file is divided into chunks 

of proportional type of data as dictated by the job plan, and second, each chunk is divided 

into a number of proportional tasks, as indicated in the job plan again. 

Resources and the environmental setup used during the Dynamic BLAST 

experiments included three resources available on SURAgrid [194]. These resources are 

located across three independent departments, each locally administered with applicable 

policies and procedures in place. All of the resources had a version of the BLAST 

installed and required input (i.e., requested database) data available for use. Technical 

resource details are provided in Appendix C with resource availability listed in Table 3. 

Experiments were performed against the 1.6 GB nr database and the input file consisted 

of 4,096 search queries randomly selected from the VBRC database.  

 



 
 

184 
 

Table 3. Availability of resources used during experiments with Dynamic BLAST and 
AIS. 

 Cheaha 2 Ferrum Olympus 
No. of Nodes Available 12 24 64 
Total No. of Cores Available 96 192 128 

 

Initially, the overall runtime results are presented pointing at the performance 

variability from the user's perspective. Following, details of each run are presented and 

analyzed pointing at the reasons for performance variability and in turn describing the 

functionality automatically understood and leveraged by Dynamic BLAST. Performance 

of Dynamic BLAST is compared to the performance of the plain query splitting variant 

of BLAST job parallelization (i.e., GridWay-controlled job submission). The query 

splitting variant operates under the model of dividing the total number of input queries 

across individual resources based on those resources' relative size. Equation (9), a 

variation of Equation (8), was used to derive proportional amount of data that should be 

assigned to each resource. For the given Equation,  represents the chunk size for a task 

assigned to resource ,  refers to the number of Processing Slots (PSs) or nodes on 

resource ,  represents the total size of user input. 

  (9) 

Each data chunk  is divided into tasks according to Equation (4). Additionally, 

because of the described impact of data distribution and data format (i.e., query length) 

on performance of BLAST jobs, performance of Dynamic BLAST is compared to 

applying only data distribution to the query splitting variant without including resource-

specific weight into the Equation. The overall runtime characteristics of this set of 



 
 

185 
 

BLAST jobs are provided in Figure 45. The figure presents contributing runtimes of 

individual resources. As can be seen in the figure, obtained runtime statistics indicate that 

utilizing application-specific data distribution model reduces runtime of the overall job 

by approximately 50%. The job runtime is reduced an additional 15% by incorporating 

the Dynamic BLAST calculated resource weight into the data distribution model. 

Realized improvements are a result of the reduction of load imbalance across individual 

resources. This leads to greater resource utilization and thus shorter job turnaround time. 

 

Figure 45. Runtime characteristics of a set of BLAST jobs ranging from plain query 
splitting BLAST parallelization to Dynamic BLAST. Different data distributions indicate 

the restructuring of the data assigned to individual resources and assignment of data 
amount to individual resources that is proportional to resources’ capability. Experiments 

were performed against the 1.6 GB nr database using 4,096 query input file. 

As discussed in Section 4.2.1 and in [17], runtime of BLAST algorithm is 

significantly affected by the length of the input query. By simply taking an input file 

provided by the user and dividing it into a number of chunks at predetermined data points 

(e.g., using the UNIX split utility), the type of data that gets assigned to individual tasks 

(i.e., nodes) within a resource can vary greatly. This can result in the load imbalance 

530
407

553

1,255

509 504

1,284

657
519

0

200

400

600

800

1000

1200

1400

Number of queries First-fit decreasing Weighted first-fit decreasing 
(Dynamic BLAST)

R
un

tim
e 

(s
ec

on
ds

)

Data distribution models

Cheaha
Ferrum
Olympus



 
 

186 
 

problem. Figure 46 shows a profile view for the portion of query lengths that were used 

during experimentation with Dynamic BLAST (only a portion of the dataset is shown to 

enable meaningful display of the data and this does not result in any loss of generality). 

As is evident from the (a) portion of the figure, lengths of individual queries vary greatly 

and are unevenly spread across the provided input file. When Equation (9) is applied to 

this input data set, corresponding to the three available resources, three well defined data 

chunks are created (dotted black boxes shown in the figure). Each of those data chunks 

are relative to the resource size. In addition, each of the data chunks is further divided 

among available nodes on a particular resource (solid green boxes). Figure 46 (a) then 

presents a great level of variability and irregularity among properties of various queries, 

as they are assigned to corresponding resources and then nodes. Instead of simply 

dividing the data at predefined points, by applying the first-fit decreasing algorithm to 

reorganize assignment of individual queries to corresponding nodes, data distribution 

shown in Figure 46 (b) can be obtained. Resulting data distribution shows a much more 

even distribution of comparative queries across individual compute nodes. The result is 

reduction of load imbalance across those nodes and reduction in runtime of the overall 

job, as already shown in Figure 45.  

Having observed the benefits of exploiting application-specific knowledge regarding 

data distribution to reduce job runtime, Dynamic BLAST also implements the realization 

that individual resources should not be compared solely on their size but instead on their 

application-specific performance [14]. By applying Equation (8) when performing data 

distribution, the size of data chunks assigned to individual resources corresponds to the 

particular resource's capability in terms of BLAST application (as opposed to the generic 



 

 

187 

 

resource size). Figure 47 presents the two different data distributions; one is based on the 

resource size only while the other one is based on resource performance. Figure 45, under 

“Dynamic BLAST,” shows the effects resource-performance based input data distribution 

has on overall job runtime.  

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1

2
2

4
3

6
4

8
5

1
0

6

1
2

7

1
4

8

1
6

9

1
9

0

2
1

1

2
3

2

2
5

3

2
7

4

2
9

5

3
1

6

3
3

7

3
5

8

3
7

9

4
0

0

4
2

1

4
4

2

4
6

3

4
8

4

5
0

5

5
2

6

5
4

7

5
6

8

5
8

9

6
1

0

6
3

1

6
5

2

6
7

3

6
9

4

7
1

5

7
3

6

7
5

7

7
7

8

7
9

9

8
2

0

8
4

1

8
6

2

8
8

3

9
0

4

9
2

5

9
4

6

9
6

7

9
8

8

1
0

0
9

Q
u

e
r
y

 l
e
n

g
th

Query number

Cheaha Ferrum Olympus

(a) 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

5
4

1

5
6

1

5
8

1

6
0

1

6
2

1

6
4

1

6
6

1

6
8

1

7
0

1

7
2

1

7
4

1

7
6

1

7
8

1

8
0

1

8
2

1

8
4

1

8
6

1

8
8

1

9
0

1

9
2

1

9
4

1

9
6

1

9
8

1

1
0

0
1

1
0

2
1

Q
u

er
y

 l
e
n

g
th

Query number

Cheaha Ferrum Olympus

(b) 

Figure 46. Difference in query distribution between (a) simple query splitting model and  

(b) BLAST-specific data distribution model. Dotted boxes indicate the amount of data 

assigned to individual resources while solid boxes indicate data portions assigned to 

individual nodes (i.e., tasks) on any one resource. Consistent distribution of queries 

results in consistent node and resource performance reducing load imbalance. 

In conclusion, it can be stated that Dynamic BLAST represents an implementation of 

the query splitting BLAST parallelization model that far supersedes performance of the 

plain query splitting model. This achievement is possible because of the specific ties that 



 
 

188 
 

have been made to understand and leverage BLAST execution characteristics across 

heterogeneous resources and implement the general purpose metascheduling model.  

 

Figure 47. Different data distributions across resources based on (1) resource size only, 
and (2) resource performance. 

5.2. Statistical Genetics Domain  

Dynamic BLAST application represents an application-oriented metascheduler built 

on top of the derived general metascheduling model (from Section 4.3) and operates with 

a general objective of runtime minimization for the specific application. Mirroring the 

Dynamic BLAST analysis, we show how the same approach derived there, and then 

generalized to the EP class of applications, is just as effective when applied to statistical 

genetics R code.  

The performance data shown (see Figure 48) represents the full range of job 

performance results, starting with the initial task distribution and gradually applying 

application-specific metascheduling information and performing corresponding 

adjustments to realize desired performance improvement. All the experiments focused on 

executing a single job parameter for 10,000 iterations; the 10,000 iterations were 

distributed across four resources, thus introducing parallelism into the application 

946 1255

1890 1949

1260 892

0

1000

2000

3000

4000

5000

Resource size only Resource size and performance

N
um

be
r 

of
 q

ue
ri

es

Data distributions

Cheaha Ferrum Olympus



 
 

189 
 

execution. Details about resources used are available in Appendix C with their 

availability listed in Table 4. 

Table 4. Technical details of resources used during experimentation with R code. 

 Ferrum Olympus Cheaha 1 Everest 
Number of Nodes 
Available 

5 25 5 10 

Total Number of Cores 
Available 

40 50 10 20 

 

Figure 48 presents the performance characteristics of progressive improvements 

regarding the set of executed jobs. The progression has been done through three different 

data distributions, resulting in significant performance improvement. In the figure, the 

"Basic" distribution is based on relative resource size, where Equation (9) was used to 

assign a number of iterations to each resource; furthermore, Equation (4) was then used 

to calculate a number of iterations that should be executed by each node within a 

resource.  

In the first improved step, with the goal of obtaining an application-specific value for 

resource performance as opposed to resource size alone, we used Equation (8) to 

incorporate application-specific resource performance weight. Resource weights were 

obtained from the analysis of the initial run. With existence of AIS, such information is 

stored and retrieved on a as needed basis. In this step, we exploited information available 

within GridAtlas to obtain the number of Processing Elements (i.e., cores) within each 

Processing Slot (i.e., node). This permitted us to parameterize each task more 

appropriately to the true resource capabilities. Results of this improvement are shown in 

Figure 48 under "Resource-weighted distribution.” 



 
 

190 
 

Finally, noticing that there is considerable load imbalance across employed 

resources, we resorted to further analysis of application execution characteristics and 

development of an application-specific module to accompany the general metascheduler 

(more details are included in following paragraphs). The developed module implemented 

heterogeneous data distribution to individual nodes within available resources to cope 

with application peculiarity regarding input data processing. The final runtime results are 

shown under ‘Resource-optimized distribution’ column in Figure 48, where it can be seen 

that load imbalance was further reduced, resulting in 75% reduction of runtime when 

compared to the initial case. 

 

Figure 48. Runtime characteristics of a set of R jobs highlighting importance and effects 
of applying derived data distributions and utilizing publicized resource allocation 

policies. More specifically, jobs executed a single parameter set for 10,000 iterations and 
multiple processes were started on each node to correspond to the total number of 

processing cores available per resource node. 

Based on the conclusion of BLAST analysis, performing data distribution by 

incorporating resource capability instead of resource size alone was the first level 

optimization when metascheduling R code. The two data distributions corresponding to 

16.5

3.7 3.4

15.4

8.0

4.03.9 3.9 3.9

8.3

4.2 4.2

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

Basic distribution Resource-weighted 
distribution

Resource-optimized 
distribution

R
un

tim
e 

(h
ou

rs
)

Distribution variations

Ferrum
Olympus
Cheaha
Everest



 
 

191 
 

the number of iterations assigned to individual resources are shown in Figure 49. Unlike 

with BLAST, which required an application-specific module to perform data division, R 

code, being a parameter sweep type of an application, is simply parameterized with 

different input values when a job is invoked. This case imposed fewer requirements in 

terms of application specific adaptation and/or development of the metascheduling 

adapter component. 

 

Figure 49. Two data distributions  across resources based on (1) resource size only, and  
(2) application-specific resource performance. Values indicate number of iterations to be 

performed against the parameter set under analysis. 

In Figure 48, under "Resource-weighted distribution," significant job load imbalance 

was observed by one resource (namely, Olympus). By analyzing performance of jobs that 

were submitted to that resource, an irregularity was observed across individual tasks (see 

Figure 50a). The irregularity was resulting in tasks executing progressively longer as the 

iteration index numbers grew. Similar observations were made across all resources, but it 

was most prominent on Olympus because of the largest number of nodes employed on 

given resource. In order to cope with this realization, an R-specific metascheduling plug-

307
1300614

750

4472
4200

4607
3750

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2

N
um

be
r 

of
 it

er
at

io
ns

Distribution type

Ferrum

Olympus

Cheaha

Everest



 
 

192 
 

in was developed that assigned and controlled assignment of a variable number of 

iterations to each node within a resource. This action can be seen as being parallel to the 

initial chunking of original 10,000 iterations across resources. In other words, variable 

iteration numbers were assigned to individual nodes within a resource. Figure 50b depicts 

the resulting irregularity and runtimes of tasks. Although noticeable load imbalance is 

still present, overall tendency is largely disrupted resulting in much less impact on the 

overall runtime of the job (as can be seen in final runtime results from Figure 48). 

 

(a) 

 

(b) 

Figure 50. (a) Initial irregularity among runtimes of individual tasks within one resource 
(i.e., Olympus), and (b) restricted irregularity leading to more controlled load balancing. 

Control was achieved through heterogeneous assignment of iterations to individual 
nodes. 

0
10,000
20,000
30,000
40,000
50,000
60,000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Ta
sk

 r
un

tim
e 

(s
ec

)

Individual tasks

12,500

13,000

13,500

14,000

14,500

15,000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

T
as

k 
ru

nt
im

e 
(s

ec
)

Individual tasks



 
 

193 
 

Final results of metascheduling R in an application-oriented fashion resulted in 

reduction of runtime on the order of 75%. Such reduction came as a result of following 

principles of a metascheduling methodology that were devised throughout this 

dissertation. Therefore, the presented methodology can be seen as a set of guidelines and 

directions that can help alleviate many of the issues found along the process of 

metascheduling grid applications. By following this methodology, it has been shown that 

significant improvements can be made that do not require exorbitant amount of effort or 

time. 

5.3. Realizing User-oriented Metascheduling  

Efforts discussed thus far have focused on a single objective optimization, namely 

minimization of job runtime. As the last major contribution of work presented in this 

dissertation, we have adopted the notions behind user-oriented metascheduling. Enabling 

user-oriented metascheduling requires extensive use of application-specific information 

and application-oriented metascheduling. Realization of the devised approach is observed 

through generation of a set of job execution options that are mapped onto conflicting 

objectives. A single job execution option represents a decomposition of a job into a set of 

tasks and a mapping of this set of tasks to a set of execution resources. Each option 

represents a distribution, or allocation, of job input requirements (e.g., input data, number 

of iterations), representing the job’s workload, to selected resources in a manner that best 

meets selected resources’ capabilities and minimizes load imbalance across employed 

tasks. Repeated generation of such job execution options leads to a job execution space 

that covers a full spectrum of job execution alternatives and whose effective presentation 



 
 

194 
 

offers deep insight into available job execution tradeoffs to an individual user (as 

discussed in Section 3.6.1).  

Realizing generation of the job execution space is achieved through a refinement of 

the presented metascheduling framework. Overall, the framework is complemented by a 

Controller module that artificially constrains resource availability passed to the 

application-specific metascheduler. Repeated invocations of the metascheduler result in 

generation of the job execution space (details are provided in the following sub-sections). 

These sub-sections cover the following topics: the job execution option selection process 

(Section 5.3.1 and Section 5.3.2), the scheduling algorithm derived for generating 

selected options (Section 5.3.3), and the subsequent mapping of derived options to 

absolute values (Section 5.3.4). Experimental validation was performed in a simulated 

environment and on real-world resources and is presented in Section 5.3.5 and Section 

5.3.6. 

5.3.1. OptionView Architecture 

Tool presented in this section is referred to as OptionView. OptionView represents 

an implementation of the user-oriented metascheduling. The notion of job execution 

tradeoffs is implemented allowing a user to meet their utility for the current job and 

current situation without any regard for how to use the underlying infrastructure.  

Figure 51 presents the global architecture of OptionView. Job submission is initiated 

by a user who simply selects which application to run and provides desired input data 

file. OptionView then analyzes job properties and resource availability leading to a job 

execution option space that is presented back to the user. The user considers presented 

options and selects which job option to execute. Additional motivation and explanation of 



 
 

195 
 

the interaction between a user and the metascheduler are provided in Section 3.6.1. The 

control is then transferred to a job submission engine for execution on appropriate grid 

resources. Controller, scheduler, mapper, and GUI generator are the four major 

components comprising OptionView (see Figure 51).  

 

Figure 51. High-level OptionView architecture with numbers indicating general progress 
flow. Following user initiated job submission, the scheduling algorithm is repeatedly 

invoked to generate the job execution space. After presenting the job execution space to 
the user, the user selects desired job execution option. 

The controller accepts a job submission request from the job submission interface 

and implements the logic controlling option generation. It acquires information from the 

GIS regarding resource availability. The scheduler is invoked for each option the 

controller selects to generate. The scheduler acquires application-specific information 



 
 

196 
 

required for effective scheduling from AIS [173] and generates tasks comprising the 

given option. After all of the selected options have been generated, the mapper is called. 

It maps options’ relative values to the absolute ones based on information from available 

tools (e.g., performance prediction tools [195], AIS, AppDB [171]). Lastly, the GUI 

generator presents the derived options to the user by mapping them onto conflicting 

objectives. 

5.3.2. The Controller 

The controller is responsible for coordinating generation of job execution options. 

As stated in the previous section, a job execution option represents a single 

parameterization of the job. In other words, a single job execution option corresponds to a 

single execution of function  defined in Section 4.1.2. Descriptively, a single job 

option is comprised of a set of resources and a CPU assignment across those resources as 

they are chosen among all of the available resources and resources’ maximum CPU 

capacity. Furthermore, within each option, each resource is assigned a task that meets 

resource’s capability. All tasks across selected resources have their workload distributed 

in such a fashion that the overall load imbalance within the option is minimized. Note 

that a task, depending on the application, may correspond to a single or multiple 

execution instances of the application within a resource (i.e., one process consuming 

multiple CPUs or multiple processes consuming one CPU each).  

An example is provided in Figure 52, where total resource availability is shown 

along with two sample job execution options. Resources 1 and 2 comprise Option 1 with 

5 CPUs selected from the 10 available on Resource 1 and, similarly, 10 CPUs from 15 

available on Resource 2. How these assignments are selected is discussed in the 



 
 

197 
 

following paragraphs. The data assignment in the example represents the amount of data 

units assigned to each resource such that chosen resource capability is most closely 

matched to other resources’ capabilities within the option. Note that even though twice 

the number of CPUs was selected for Task 2 when compared to Task 1, Task 2 was not 

assigned twice the amount of data units. Proper assignment of data among selected 

resources within an option is based on application-oriented metascheduling approach 

where performance of given resources is measured in terms of the application at hand. 

This process is described through the scheduling algorithm described in the next section. 

Task ID

1

2

3

Resource

R1

R2

R3

CPU assign.

5

10

5

Data assign.

80

110

60

Option 2

Task ID

1

2

Resource

R1

R2

CPU assign.

5

10

Data assign.

100

150

Option 1

Resource

R1

R2

R3

Free CPUs (total)

10

15

8

 

Figure 52. A sample two job execution options. Based on maximum resource availability, 
different configurations of resource availability are artificially constrained by the 
Controller and used to invoke the Scheduler, which automatically generates job 

execution option. Repeated invocations of the Scheduler lead to generation of job 
execution space. 

In order to initiate generation of job execution options, the controller’s two main 

functions are: (1) determining the range of possible parameters for job options, followed 



 
 

198 
 

by (2) selection of which options to generate. The acceptable range of parameters for 

options is governed by the resource availability. Because individual options are primarily 

distinguished by the different selection of resources and assignment of CPUs across those 

resources, the total number of possible options is the product of idle CPUs across 

available resources. For the example from Figure 52, the total number of options would 

be (10+1) × (15+1) × (8+1) = 1584 (note that 1 is added to the total number of CPUs on 

each resource to account for zero CPUs on each resource – that is, not using the 

resource). From this simple example, it is obvious that the total number of possible 

options for all but non-trivial resource availability will be very large. Because the total 

number of possible job options represents an exhaustive list of resource and CPU 

assignments, it is clear that such an approach is unnecessary and even unwanted. Rather, 

a subset of all possible options should be selected, processed, and presented to the user. 

Such a subset should be representative of the overall set of options to allow for a 

comprehensive overview of the possible job execution options to the user. 

Selection of the subset of options can be performed using either of two main 

statistical sampling principles: random or targeted [196]. A form of targeted search 

includes selection of options based on their quality with the solution yielding a Pareto 

line [67] of job execution options. Because the details of the sample space (i.e., job 

options) are unknown prior to the generation of the data points (i.e., job options), the 

quality of individual data points cannot be calculated. Such an approach would thus 

require generation of all the options (by invoking the scheduling algorithm) followed by 

option ranking and selection. Because of the associated computational cost, this is 

infeasible. An alternate targeted search is systematic sampling [196], where resource- and 



 
 

199 
 

application-specific knowledge is exploited to drive option exploration. In such a case, 

certain predetermined resource configurations could be explored, such as: use all idle 

CPUs on a resource, use half of idle CPUs on a resource, use a quarter of the idle CPUs 

on a resource, etc. In addition, application-specific information about scalability of the 

application (e.g., number of CPUs must be a power of two, or maximum number of CPUs 

this application scales to is ) can be used to select option configurations. The benefit of 

such an approach is that the option configurations can be systematically chosen, requiring 

generation of only a small subset of all possible options. Application-specific knowledge 

enables such targeted option selection to maximize job’s performance. If needed 

application-specific information is not available though, systematic sampling resorts to 

resource-based sample selection and can thus omit interesting data points.  

In cases where application-specific information is lacking, a simple random sampling 

method [196] can be used to perform option selection. Based on [123], in addition to our 

own observations, the exhaustive list of job execution options is characterized by the 

normal distribution. Well-established statistical methods (e.g., [196]) can thus be used to 

obtain a high-level of confidence about truthful representation of a sample compared to 

the overall sample space. To obtain desired level of accuracy, a confidence level of 95% 

is used with a 5% confidence interval. These values can easily be adjusted by the user, 

but the presented values offer a suitable balance between required and presented number 

of sample data points. Based on [196], a suitable formula to use for calculating the 

number of data points is as follows: 

 
 (10) 



 
 

200 
 

where  is the critical standard score calculated as  and final  value is obtained 

from the normal table.  refers to the likelihood that the true population parameter lays 

outside the confidence interval and is calculated as .  is the 

population proportion; because no prior knowledge about job execution options exist,  

should be set to 0.5 to maximize the size of the calculated sample. Variable  specifies 

the margin of error or the confidence interval while  is the overall population size.  

The calculated number of job execution options is randomly selected by the 

Controller module without replacement from the exhaustive list of job execution 

alternatives. Using the described method, the number of options selected was less than 

400 irrespective of resource availability and the total number of possible job execution 

options. This represents a manageable number of data points to be calculated by the 

metascheduler and presented to the user. 

5.3.3. Metascheduling Algorithm 

The focus of the presented scheduling algorithm is to provide a job plan for an 

individual job execution option under the constraints of the  function described in 

Section 4.1.2. Implementing the described function results in generation of a set of tasks 

that are mapped to selected resources, each directly corresponding to capabilities of an 

assigned resource. By definition of the  function, minimizing load imbalance 

among tasks to be created maximizes option performance, and is thus the single most 

important goal of the metascheduling algorithm. In the context of presented algorithm 

and selected application type, this is realized through relative comparison of available 

resources and assignment of appropriate data allocations to each resource. This results in 

cumulative minimization of load imbalance at the job option level.  



 
 

201 
 

Overall, when a job execution option data is presented to the metascheduling 

algorithm, the input data is decomposed by applying a static scheduling scheme and 

matched to selected resources. As a result, a fraction  of entire data is allocated to task 

. The data decomposition is based on the performance information of current 

application on selected resources. The objective of the scheduling action is determining 

the workload distribution  corresponding to a set of tasks . 

The pseudo code for the scheduling algorithm is provided in Algorithm I and it 

proceeds as follows: after receiving initialization data that consists of resource 

configurations, input data size and application name, the performance of resources in 

terms of current application is computed (lines 2 and 3). This strategy accounts for 

heterogeneity of individual resources, so that the amount of data  assigned to resource 

 is proportional to the resource capacity. Formula (11) is used to perform the 

calculation: 

  (11) 

where  is the number of processing elements on resource  and  is application 

performance metric, or weight, for the same resource. Calculation of such application 

performance across selected resources is implemented in a separate module, 

adjustResourcePerfToApp on line 3. This module interacts with AIS to obtain needed 

application- and resource-specific information (e.g., application benchmark data for 

select resource). On line 4, the data allocations  for 

corresponding resources are calculated.  is computed as follows (  represents the total 

size of user provided input data): 



 
 

202 
 

  (12) 

Depending on the application though, workload allocation process may differ from the 

one just shown and can thus be implemented as a plug-in to OptionView’s scheduling 

algorithm by implementing divideData module. By extracting implementations of 

resource weight calculation and data distribution into separate modules, the presented 

algorithm is made more versatile while providing support for application-specific 

scheduling [88]. With all of the information calculated and available, the second for loop 

iterates over the number of available resources, assembles information into a single task, 

and adds the task to the current option list. Generated option is then returned to the 

Controller. 

Algorithm I – Job option generation algorithm 
1: Receive resource info R, job input size D, application info A 
2: for i = 1 to |R| do { |R| - number of resources } 
3:    optionPerf[i]  = adjustResourcePerfToApp (Ri, A); 
4: dData = divideData (R, D, optionPerf); 
5: for i = 0 to |R| do 
6:     task = new Task (i, anOption, dData, resourceID); 
7:     option.add (task); 
8:   return option; 

 

5.3.4. User Interaction Module 

Job execution options calculated by OptionView are presented to the user for 

analysis through a user interaction module. This user interaction module consists of the 

mapper and the GUI generator.  

The mapper is concerned with taking the relative values of job execution options 

generated by the scheduling algorithm and replacing those with the absolute ones. During 

execution, the scheduling algorithm normalizes performance of individual resources and 

thus the options it returns are relative to each other on the normalized scale. In order to 



 
 

203 
 

map those onto absolute values, whether it is cost and time or accuracy and time, the 

mapper must analyze each option’s parameters and adjust the values. The mapping 

component interacts with the necessary services to obtain actual resource cost and the 

application’s absolute performance values (i.e., base execution time). This is achieved 

through calls to  and  functions defined in Section 4.1.2.  

Note should be taken that derived options have the property of relative comparison, 

meaning that one option is directly comparable to any other option. This property follows 

from the consistent method through which the options are generated (i.e., a single 

scheduling algorithm). The benefit is that runtime and cost estimation for all the options 

can be derived by scaling such information from any single option. This is important 

because the presented method operates on an application-specific basis and, as a result, 

options that it generates are unique and application-specific leading to hardship in 

accurate runtime/cost estimation by generic methods [195]. Therefore, mapping of 

options to desired objectives is performed by obtaining relevant information for a single 

option (e.g., from historical data or performance prediction tool) and then scaling the 

remainder of options accordingly.  

The GUI generator represents the user-scheduler interaction module. All the 

complexities of resource, application, data, and scheduling calculations and interactions 

are abstracted and hidden from the user who is presented with a clean interface 

enumerating available options and visualizing them in terms of selected tradeoffs. Such 

an approach to user-scheduler interaction enables a two-way interaction model where the 

user is offered insight into their job’s execution properties before committing to job 



 
 

204 
 

submission. Through this model, the user becomes aware of job’s execution space and 

can choose job execution option that they might not have known even existed.  

A sample user interface displaying a set of possible job execution options is provided 

in Figure 53. As can be seen, the interface provides a mapping of available and generated 

job execution options onto the two objectives, namely time and cost. The user can easily 

interpret available options, consider tradeoffs and select an option for execution. Such 

presentation of a comprehensive spectrum of available job execution options allows the 

user great flexibility in terms of meeting their current needs (compare requirements and 

experience of an OptionView user to the user accessing the grid as described in Table 1).  

The interface allows the user to see details about any one option and apply a filter 

that will reduce the number of elements displayed on the screen. If user has narrowed 

down the desired area, local exploration functionality has also been implemented. Based 

on user input, the controller is invoked with a specific job execution option around which 

the user wishes to explore. The controller initiates exhaustive computation of a set of job 

execution options within a predefined window that are neighboring the one specified by 

the user (neighboring as based on resource and CPU assignment). The aim of this 

functionality is to provide the user with deeper insight regarding job execution options 

within a targeted range. 



 
 

205 
 

 

Figure 53. A snapshot of the OptionView GUI module presenting a job execution space 
to the user 

Because OptionView’s focus is on individual users and their individual jobs, it 

represents user’s workspace for access to the grid. The workspace targets single user use 

and the implementation can reside either on user’s local machine or in a personal account 

within a portal. Also, note that with the adopted approach there is no need for job queues. 

Within OptionView, jobs are mapped only to available resources. In environments where 

resources are rarely idle or where resource availability changes rapidly, presented 

approach can be integrated with solutions for advance reservation (e.g., [197]). 

5.3.5. Experimental Validation of OptionView through Simulation 

Validation of OptionView has been done in two stages. In the first stage, the entire 

set of job execution options is validated for accuracy and relative comparison through 



 
 

206 
 

simulation. In the second stage, a representative subset of the options is executed on real-

world resources further demonstrating the validity of job option generation mechanism.  

With the focus on generating job execution space that is applicable to an individual 

application and an available set of resources, the validation methodology employed 

focuses on one application, namely BLAST. During performed tests, nr database, 1.6 GB 

in size, was used to execute the searches against the 1,024 input protein queries. 

The simulation part of validating proposed scheduling approach is performed 

through the GridSim toolkit [162]. As described in Section 2.9.2, GridSim is a grid 

simulation package that allows for creation and customization of individual resources as 

well as creation of heterogeneous jobs. Jobs created were packaged as Gridlets, which are 

specified in terms of job length in millions of instructions per second (MI), the size of job 

input, and the size of job output in bytes. Processing times of jobs within GridSim are 

proportional to the predefined speed of resources (shown in Table 5) and the size of the 

job with a random variation of 0-10% to account for heterogeneity present in real-world 

grid environments.  

For the simulation experiments, a set of resources was created within GridSim that 

represent available real-world resources in terms of their configuration and relative 

performance. Relative performance was assigned based on application-specific resource 

benchmarks; BLAST was executed with the same input data across all available 

resources and obtained runtime values were normalized to the fastest resource. Derived 

values were used for the performance rate (i.e., Millions of Instructions per Second - 

MIPS) of individual Processing Elements of a resource within GridSim (see Table 5). 



 
 

207 
 

Cost associated with consuming resources was uniformly assigned to $0.10 per unit of 

execution (i.e., the same as Amazon.com’s Elastic Cloud10

Table 5. Resource details used during experiments. PS refers to Processing Slot or a 
node. PE refers to a Processing Element or a core. MIPS stands for Millions Instructions 

per Second of a single PE and is a resource performance metric employed by GridSim 
toolkit. PE MIPS were derived based from normalized application-specific performance 

benchmarks for given resource. 

).  

 # PSs # PEs  PE MIPS rating Cost/time unit 
Resource 1 (F) 5  40 100 $0.10 
Resource 2 (E) 10 20 52 $0.10 
Resource 3 (C) 15 15 57 $0.10 

 

OptionView was used to generate a set of job execution options containing resource 

assignments and appropriate data distributions. Derived options were simulated through 

GridSim by setting task’s sizes as derived by OptionView and submitting the jobs to 

respective resources. Results are shown in Figure 54(a) and Figure 54(b) for generated 

and simulated data, respectively. From the shown data, it may be observed that the 

generated job execution options are somewhat more structured and regular than the 

simulated counterpart. Nevertheless, the overall shape of the job execution space is 

maintained across generated and simulated data indicating global accuracy achieved by 

OptionView. Groupings of shown job execution options are a result of task assignments 

to any one resource with different PS assignments.  

                                                      
10 http://aws.amazon.com/ec2/ 



 
 

208 
 

 

(a) 

 

(b) 

Figure 54. Job option execution space as (a) generated by OptionView, and  
(b) simulated through GridSim. Each individual point shown represents a single job 
execution option, namely all the details required to submit a job in an application-
oriented fashion (e.g., resource(s) selected for execution, data distribution under 

resource capability constraints, and individual task parameterizations). 

Statistical results of the analysis of simulated data at the individual option level are 

presented in Table 6. In the table, delta (∆) is calculated by noting the difference between 

$2.0 

$2.5 

$3.0 

$3.5 

$4.0 

$4.5 

$5.0 

$5.5 

$6.0 

0 2 4 6 8

C
os

t

Time (minutes)

$2.0 

$2.5 

$3.0 

$3.5 

$4.0 

$4.5 

$5.0 

$5.5 

$6.0 

0 2 4 6 8

C
os

t

Time (minutes)



 
 

209 
 

each of the generated and simulated data points and summarizing those across the sample 

space. From this data, it can be observed that on average the system achieves a high level 

of accuracy (approx. within 4%). In addition, value for the median statistic indicates that 

the system is evenly generating data points on the positive and negative side. Noteworthy 

values for the standard deviation and maximum delta indicate that many data points are 

likely to be incorrectly generated. Based on values of standard deviation measurements, it 

is apparent that the error is largely contained within 15% of the observed results. In the 

area of application runtime prediction, this is considered an acceptable result (e.g., [198]). 

The cost analysis presented shows that the cost component of the estimate is at least as 

accurate as the runtime component. Overall, these results present high accuracy of the 

system and validate the technique and the approach adopted.  

Table 6. Statistics of differences between generated and simulated job execution options. 
Numbers indicate difference in respective units and the corresponding percentage of 

simulated results when compared to the estimated values. 

 Runtime analysis Cost analysis 
Avg ∆ 0.01 4.08% $0.04 0.93% 
Mean ∆ -0.01 -0.94% $0.03 0.98% 
Std dev ∆ 0.21 15.00% $0.12 3.18% 
Max ∆ 0.93 84.55% $0.46 10.87% 

 

5.3.6. Experimental Validation of OptionView on Real-World Resources 

Real-world validation has been performed on a set of UABgrid [8] resources. 

Individual tasks were parameterized as per results of OptionView and then submitted 

through GridWay, which was used as the job submission engine. Relevant hardware 

characteristics of employed resources are shown in Table 5. In the table, PSs refers to the 

maximum number of Processing Slots available for use. A PE refers to the smallest 

computational unit on given resource. With the available resources, the exhaustive 



 
 

210 
 

number of job execution options is 1,056. The selected sample  generated by 

OptionView, as per Equation (10), is 282. Therefore, 282 job execution options were 

simulated in GridSim and analyzed. 

Because comprehensive validation of the generated options would require executing 

 parameterizations of the same BLAST job, for the validation purposes, a smaller, 

representative subset of job execution options was selected. This subset was selected in 

the same fashion as the selection process of the sample space generated by OptionView 

(i.e., using Equation (10)). When using OptionView for meaningful computations, the 

user would obviously select only one such option to execute, namely the one that meets 

their utility most closely.  

     For our calculation of the validation sample space, the confidence level was set to 

95% and confidence interval to 15%. Selected confidence interval value was selected in 

accordance to observed accuracy levels of application prediction tools (e.g., [198]). As a 

result, from the 282 job execution options generated by OptionView, 37 represented the 

sample space and were randomly selected for execution on real-world resources. Each of 

the jobs was executed based on the parameterization obtained from the OptionView tool 

and runtime results were recorded.  

Figure 55 presents the runtime results of executing selected job execution options on 

resources specified in Table 5. Because of the individualized parameterization of any one 

option, the behavior of the scheduling system can be verified by considering accuracy of 

runtime estimation for a given option and then generalized by the cumulative accuracy of 

all executed options. Because of the great level of detail regarding each job execution 

option, parameterization particulars on individual options that were executed are not 



 
 

211 
 

included here. Analysis of details at such low level is not necessary because, from the 

user’s perspective, the interaction with OptionView takes place at the option level. When 

interacting with OptionView, the user only sees available job execution options without 

regard for the details as to how the option execution is implemented.  

 

Figure 55. Experimental runtime data for real-world resources for selected job execution 
options. Circles represent job execution option runtime estimation generated by 

OptionView while x’s represent observed runtime characteristics after job’s execution on 
real-world resources as per instructions of the job plan generated by OptionView.  

Based on the data in Figure 55, overall accuracy of individual options in real-world 

setting is quite satisfying. Data in Table 7 shows results of a statistical analysis of runtime 

accuracy across all executed options. The data shows average accuracy of the system 

within 2% and the maximum error within 10%. These results furthermore coincide with 

the results obtained through simulation, as described in the previous section.  

Table 7. Statistical analysis of runtime accuracy across all executed job execution 
options 

Average error Median error Max error 
-1.43% -2.13% 8.21% 

 

Based on the experimental data, it can be concluded that job execution options 

calculated and presented through OptionView tool experience a high-level of accuracy. 

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350

R
un

tim
e 

(s
ec

)

Job execution option ID

Estimated runtime
Measured runtime



 
 

212 
 

This high-level of accuracy comes from the application-specific orientation adopted 

during option generation. By understanding the dependencies that exist between an 

application and resource, resource capabilities can be more adequately met resulting in 

high confidence regarding runtime estimation.  

Overall, OptionView performs metascheduling actions across grid resources in a 

fully automated fashion. It performs such actions in application- and resource-specific 

manner and realizes notions behind user-oriented metascheduling. OptionView presents a 

revolutionary approach to grid application scheduling that has also shown a high-level of 

accuracy for application metascheduling in a real-world environment. 



 
 

213 
 

6. SUMMARY AND CONCLUSIONS 

In the context of grid computing, where access to heterogeneous, dynamically 

available resources that can span multiple administrative domains is enabled, the process 

of selecting resources for running an application is an example of making a choice. It is a 

choice with a goal of meeting users’ predetermined goals. This process can, however, 

present itself as a major challenge and can easily deny many of potential benefits an 

infrastructure offers [14]. This is because execution characteristics of user jobs depend on 

the individual resource in which an application runs. In order to simplify the overall 

resource allocation process, metaschedulers take on a task of selecting resources for a 

job’s execution and thus abstract this step from the user.   

6.1. Selected Highlights 

This dissertation introduced the notion of user-driven choice into the field of 

metascheduling. Unlike other available approaches where much of the interaction 

between a user and the metascheduler is assumed, this work focuses on disclosing many 

of the options enabled by the grid infrastructure directly to the user. These choices are 

presented to the user in terms applicable to them directly (i.e., by using metrics within the 

user’s domain) instead of using terms otherwise native to the field. 

6.1.1. Contributions 

The contributions of this research build on established benefits of exploiting 

application-specific information to enable wide-spread adoption of application-oriented 

metascheduling (Section 3.5). This general approach was advanced to deliver application-



 
 

214 
 

oriented solutions in the form of viable job execution options directly to users. Such a 

solution enables and delivers the concept of user-oriented metascheduling (Section 3.6). 

Overall, the described approach enables effective execution of applications across 

heterogeneous resources. Combined with the notion of user-oriented metascheduling, this 

approach enables individual users to make choices suitable to their current requirements. 

The overall approach of application-oriented scheduling is realized in a set of core 

grid services, namely Application Information Services (AIS) that allow application-

specific information to be captured and disseminated in a standardized fashion. By 

adopting and using AIS, especially at the level of a Virtual Organization, application-

specific information can be collected, analyzed and finally consumed in a standardized 

fashion. The potential for AIS is to become an integral component of grid middleware as 

a set of core services, akin to GIS, and enable advantages discussed throughout this 

document on the scale of the grid. Such an approach would further enable development 

of tools (e.g., metaschedulers, grid job managers, application performance analyzers) that 

can rely on existence of such information and become themselves more standardized, 

portable and application independent. At the same time, these tools can exploit 

advantages of relationships that exist between an application and resources. Benefits of 

such progression (e.g., standardized interfaces, tool modularity) would include an ability 

of tools to transcend individual VO's and require fewer or no customizations each time 

deployed.  

In addition to providing a set of services that enable application-oriented 

metascheduling, a framework for grid-enabling applications is presented (Section 4.1.2) 

and is considered a significant contribution of this work. The presented framework relies 



 
 

215 
 

on and exemplifies use of AIS to deliver benefits of grid environments to applications, 

and ultimately, the users. The framework outlines steps and provides best-practices 

toward simple yet effective transitioning of a sequential or cluster application into a grid 

application. 

By exploiting application-specific information available through AIS to deliver 

application-oriented metascheduling, the model of interaction between a user and 

scheduler can be significantly altered. A user can operate entirely abstracted from low-

level infrastructure details and can focus on task at hand. Through such an approach, a 

user becomes aware of alternatives and accepts the technology.  

In research for this dissertation, application-oriented metascheduling was recognized 

and achieved by presenting users with a relevant subset of possible job execution 

alternatives for given job submission and resource availability. This is realized without 

requiring a user to provide much job-specific information to the metascheduler.  

Concrete contributions of this work are seen as (in no particular order):  

• A general purpose metascheduler model for EP applications 

• Two instances of application-specific metaschedulers that instantiate a general 

purpose metascheduler 

• A tool enabling user-oriented metascheduling, 

• Taxonomy of EP applications 

• A set of core grid services enabling storage and retrieval of application-specific 

information at grid level  

• Examples of application performance analysis process 



 
 

216 
 

 In addition, the presented work is tangentially related to the following two areas: (1) 

information within AIS can serve as an infrastructure for application runtime prediction 

in grid environments, (2) the metascheduling model realized can be complemented to 

support runtime job-plan modification and application migration. 

Immediate benefits of the presented approach are as follows: (1) increased resource 

utilization by exploiting application-resource relationship, (2) direct benefit to users by 

delivering user-oriented metascheduling. As part of future potential, adoption of this 

approach and incorporation of grid-awareness into applications leads to development of 

self-scheduling, or smart applications that can heavily rely on availability of information 

about heterogeneous resources to accordingly adjust execution patterns. 

6.1.2. Validation 

Validation of the presented approach was gradually developed through experiments 

with individual components; when aggregated, individual components validate the 

overall approach and present a viable solution. These projects originated with planning 

and development of AIS. Information collected and made available through AIS was 

analyzed and used to derive a general purpose metascheduler model for EP applications. 

Lastly, devised methodology was applied through a novel approach to deliver the notion 

of job execution space and thus move away from a somewhat restrictive optimization 

problem into a tradeoff problem.  

Accompanied with presentation of individual components and leading toward the 

final solution, each of the presented components was individually tested for performance. 

Obtained results show a high degree of success. Results also show benefit caused 

primarily by availability of information collected in AIS as well as the overall 



 
 

217 
 

methodology of iterative empirical model where data is collected, analyzed and then used 

to improve earlier conclusions.  

6.1.3. Future Directions 

Mirroring the general contributions by the work presented in this dissertation, 

devised results are directly applicable in two general directions. The initial direction is 

enablement of application-oriented scheduling through delivery of application-specific 

information that can be consumed by a metascheduler. The focus of information provided 

by AIS is at the level of tools and services in the grid software stack (see Figure 7). By 

enabling and standardizing collection and dissemination of application-specific and 

resource-specific information, tools can rely on such information’s existence and be 

developed without having to construct custom and localized solutions. 

Simultaneously, the part of this dissertation that deals with introducing and enabling 

two-way communication between a user and scheduler provides a higher level product 

that is purely focused on an individual user. The presented approach and solution aim to 

redefine the model of interaction between users and a scheduler as it is currently known. 

By providing users with a targeted set of job execution options, the level at which a user 

interacts with the infrastructure has moved from the ‘infrastructural language’ to ‘user 

language’, thus providing needed focus directly on users. 

6.2. Vision 

The work presented in this dissertation focuses on enabling use and access to 

heterogeneous and dynamic resources found across grid environments by users in a 

fashion that maximizes a user’s utility for a given job. This is achieved through 

understanding and exploitation of relationships that exist between a resource and an 



 
 

218 
 

application. Overall, this field offers a large potential in terms of resource utilization and 

delivering higher QoS directly to users. Additional realizations of the presented approach, 

as well as future extensions, have a potential for significantly altering access and use 

patterns to grid and cloud resources. These realizations will have potential applicability in 

account management, runtime prediction, in addition to application and resource 

optimizations. 



 
 

219 
 

7. FUTURE WORK 

This chapter presents some suggestions for extending this research. The first section 

focuses on extensions to existing tools and services in terms of functionality added and 

possible adoption scenarios. Section 7.2 focuses on more general application of presented 

methodologies and tools in the context of the emerging cloud computing. Finally, the last 

section of the chapter presents relatively more challenging ideas regarding a general 

metascheduling framework for grid applications that are currently under development.  

7.1. Extensions 

This section presents a set of possible extensions relating to automation of the overall 

process and applying the process to additional computational paradigms. 

7.1.1. Automating the Process  

Methods devised during the course of this research represent a detailed but 

nonetheless preliminary investigation into application-specific scheduling, and advances 

that such methods enable. Hand-in-hand with availability of application-specific 

information goes improvement of application execution characteristics. Consider an 

application-specific tool to set up execution of each application according to desired 

objectives. Such an approach requires complete automation of data collection, data 

analysis, and data interpretation processes. AIS represent a mechanism for collecting and 

retrieving available data, thus providing means for analyzing the same; a welcomed 

extension would incorporate data-mining and machine-learning techniques (e.g., 



 
 

220 
 

knowledge extraction, supervised learning) to automate the overall process and enable 

development of higher level tools on a quicker basis. 

As a possible direction to achieve and enable such an independent and coarse 

approach that still enables application-oriented metascheduling could involve application 

categorization (as presented in Section 2.3.1). Application categorization is an idea based 

on a notion of application similarity and execution implications for similar applications 

[26]. Categorization of applications can then be seen as a way to capture high-level detail 

that categorizes a class of applications and enables creation of best practices and insight 

into resource selection and job parameterization for that application category. This can 

lead to application category based performance comparison and materialization of future 

goals of delivering generalized yet application-oriented tools. 

7.1.2. Metascheduler Pool  

A related endeavor to notions of process automation and application categorization is 

whether such specific and targeted information extracted from application-resource 

relationships can be used to develop more customizable metascheduling models. Such 

metascheduling models would represent a pool of partially composed and configured 

tools that focus on a specific application or class of applications. A specific instance 

could then be developed quickly from the available pool. A concrete implication of this 

question is availability of a range of application-specific schedulers capable of exploiting 

application-resource relationships to result in more effective job execution strategies.  

As a likely direction for development of such application-specific modules, one may 

foresee strong relationships and collaborative ties to software engineering; in particular, 

adaptive programming and model-driven programming. Techniques being developed in 



 
 

221 
 

these fields can enable high-level, effective implementation, adaptation and modification 

techniques for the derived models. These derived models could be utilized with little 

domain specific knowledge, or even by application scientists on an as-needed basis. 

7.1.3. Workflow Applications  

 Building on top of solutions dealing with automated application and scheduling 

models, application workflows are direct extensions of current work. Many applied 

sciences describe solutions as a sets of tasks in which execution of some depend on 

executions of others. Specification of these relationships forms a computational 

workflow. While work has been done at optimizing ordering of tasks within workflows 

[199], combining presented work in application-specific scheduling with execution of 

individual tasks within a workflow has a large potential for two-level workflow 

optimizations, for which further customized execution characteristics of workflow jobs 

could occur. In Figure 56 a depiction of a sample workflow exhibits noticeable load 

imbalance among tasks across its execution stages. Application-oriented metascheduling 

techniques could be adopted to perform resource selection and parameter optimization 

that would work toward minimizing such load imbalance and lead to explained goals. 

One can easily imagine the level of impact a significant level of load imbalance can have 

on a multi-level, long-running workflow.  

 
Figure 56. A sample of task-level workflow optimization 



 
 

222 
 

7.1.4. Extensions Beyond EP Applications 

Because of lack of communication among individual tasks, a common assumption is 

that execution of an EP application in grid environments is easy or at least significantly 

easier than execution of lightly or tightly (e.g., MPI) coupled applications (application 

categories 5 and 6 defined in Section 2.3.1). On the contrary, as evidenced through the 

case studies and examples provided earlier (specifically, in Section 4.2), execution of EP 

applications in grid environments is confined by resource availability, optimized through 

task parameterization, hindered by simultaneous use and management of heterogeneous 

resources belonging to different administrative domains, and dependent on user 

requirements. Consequently, an act of effective application execution inherently includes 

an act of application metascheduling. Because of multiple influencing components, 

metascheduling becomes a major component for effective grid execution of EP 

applications and should be handled comprehensively with respect to application 

execution environment variables and user desires.  

The model of the EP class of applications possesses a versatility that can be used to 

model other classes of applications. This can be achieved by encapsulating those 

application classes within the EP class itself. A benefit of this feature of the EP class of 

applications is that it allows the same key metascheduling techniques to be applied to 

other application classes. 

As an example, a sequential application can be represented by a single task that 

would also define the entire job within the EP application model. At that point, the 

metascheduling model is simplified because the requirement to minimize load imbalance 

(discussed on Section 4.1.2) is removed and only a direct comparison of individual 



 
 

223 
 

resources in terms of the given application needs to be performed. Similarly, because of 

general inability of MPI applications to cross individual cluster boundaries, a tightly 

coupled MPI application can be encapsulated within a single task and metascheduled as 

such. As the case is with the sequential applications, such an application instance can be 

metascheduled irrespective of other such instances. Therefore, metascheduling one such 

application job reduces to an ability to understand and leverage capabilities of individual 

resources from the perspective of an application, and then select the one resource that is 

the most likely to realize desired objective. With AIS, the ability to understand an 

application’s requirements across resources is largely supported; the main difference in 

the metascheduling approach is selection of features that should be monitored, leveraged 

and controlled. For MPI applications with a goal of minimizing job runtime, examples of 

such features include a resource requirement to have high speed cluster interconnect. 

Alternatively, if a desired objective is cost minimization, one feature that might be 

considered is the number of processors that the application scales most effectively; that 

value would then transition into a requirement where selected resource would have that 

many processors available.  

7.2. Moving into the Clouds 

Cloud computing [31] is emerging as a major computational platform, abstracting 

traditional reliance on locally available hardware and its configuration into infrastructure-

as-a-service (IaaS) and software-as-a-service (SaaS) paradigms. With such a paradigm 

shift, users are becoming disconnected from low-level hardware and software details, 

allowing users to focus on problems. To deliver advanced QoS to end users, together with 

resource owners, a need exists to customize and automate high performance application 



 
 

224 
 

execution on underlying resources across the entire cloud infrastructure. Such 

customization and automation requires understanding of an individual application's 

execution characteristics across individual resources, rooted in topics presented 

throughout this dissertation.  

In a context of cloud computing, although basic resource usage rules are still 

mandated by a resource provider, user access is granted on one of two principles: (1) 

allow full access to a (virtual) resource through the IaaS paradigm, or (2) allow access to 

specific resource through the SaaS paradigm, hiding away any details not pertinent to the 

application service. Option 1 can be seen as a power-user option for users to explore low-

level resource capabilities and leverage those to maximize application performance. 

Option 2 appeals to domain scientists primarily interested in computation results and not 

possessing necessary knowledge or time to invest into composing or tweaking an 

application for maximum performance. Additionally, it is in the interest of users as well 

as resource owners to maximize desired objectives (i.e., turnaround time, cost, 

throughput, accuracy) of individual jobs. In a context of dynamic, heterogeneous 

resources offered within or across clouds, achieving desired objectives is non-trivial; 

there are existing dependencies between interacting components making manual 

adjustments inadequate, incomplete or not timely. High-level manifestations of poor 

support in today’s clouds are observed through a need for a user to either manually setup 

an individual cloud resource, or to specify resource-specific parameters when interacting 

with the cloud through the SaaS interface. Such requirements signify inability of the 

cloud to effectively manage itself and simultaneously meet users’ expectations. 



 
 

225 
 

Possible directions that aim at advancing the current state of computational clouds 

are as follows: (1) automate cloud job management to deliver application-oriented 

mappings of jobs to available resources, and (2) advance user interaction with a cloud by 

enabling automatic insight into user's job properties prior to job's submission. It can be 

safely stated that resources available within a cloud are heterogeneous in terms of their 

hardware characteristics. As shown in the Introduction Chapter as well as throughout 

Chapter 4, an application exhibits variable performance (typically in terms of runtime, 

but that can be translated into scalability, cost, accuracy or similar metrics) when 

executed across such heterogeneous resources. From a perspective of managing a cloud, 

because many factors influence job performance, it would be desirable to develop an 

understanding and a mechanism for job cost and runtime control (CRC) that would 

automatically understand application requirements and dependencies as well as 

underlying resource capabilities to a point where the two could be purposefully matched. 

CRC can then be realized as a set of job execution alternatives corresponding to different 

job parameters selected for each job alternative. Individual job parameters can be selected 

independently of other jobs or could be selected jointly across several jobs aiming at 

maximizing cumulative (resource owner) objective. Existence of such a mechanism 

would warrant detailed control over individual jobs, leading to effective management of a 

set of jobs and eventually the cloud. Concurrently, development of a CRC mechanism 

(and corresponding tools) would lead to support for improved user interaction methods 

where users are presented with results of CRC analysis and can easily choose between 

available and presented job execution alternatives. Such interaction with the cloud 

eliminates any need for users to specify or dwell on low-level job operating details, 



 
 

226 
 

allowing users to focus on objectives of direct impact, while the system automatically 

configures job execution parameters. Through application of these mechanisms, the true 

potential of cloud computing can be realized for resource owners as well as end users. 

Although the optimal mapping of multiple applications' requirements to resource 

capabilities is a well-known NP-hard problem, there is a significant potential for 

improving general execution characteristics of applications across resources through the 

targeted study and subsequent matching of application requirements and resource 

capabilities. Combined with AIS and subsequent process automation, future 

developments could lead to cloud job management opportunities described in the 

previous paragraph. In order to accomplish set goals, the following steps are expected: 

aggregation of individual application information collection services into an interoperable 

unit that can be queried, analyzed and updated (through derivation of communication 

protocols); creation of a method for interpreting application and resource data leading to 

a composition of an Application-Resource Suitability Metric (ARSM); generalization of a 

computation method for job execution alternatives based on the ARSM; shift from 

individual application consideration toward multi-application job execution alternatives; 

development of a user interface to deliver described advances to users. 

Overall, proposed extension and adoption would result in following, two-fold, goals: 

improvement in utilization of resources within a cloud, and a paradigm shift in terms of 

how users interact with a cloud or individual compute resources. Improvement in 

resource utilization results from a targeted mapping of jobs and tasks to resources 

yielding higher throughput of utilized resources. Derived improvement can be easily 

measured and compared to a resource allocation method unaware of application-resource 



 
 

227 
 

suitability. The user interaction component holds potential of significantly altering 

current users experience when interacting with the cloud.  

7.3. Metascheduling-as-a-Service (MaaS) 

Thus far, all discussion has been oriented around existing applications where 

functionality offered by metascheduling is an add-on service applied at job submission. 

This model applied well to existing and legacy applications whose reengineering proves 

to be too time consuming and costly. However, as the grid and cloud paradigms emerge 

and mature, more and more applications will be developed for general infrastructure; 

standards are emerging that foster easy grid-application development [49]. At that point, 

a shift in the overall metascheduling approach can be realized. In this new paradigm, 

instead of the metascheduler conforming to the application, the application can conform 

to a metascheduler.  

More concretely, a metascheduling framework can be developed to provide a 

standardized set of services and corresponding functionality (e.g., similar to the one 

depicted in Figure 22). At that point, an application can be developed with ‘hooks’ that 

are compatible with the general functionality offered by the metascheduling framework. 

Once deployed, applications can expose internal information to the metascheduling 

functionality; the metascheduler can consume application-specific information and return 

an application-oriented job plan. At that point, the application can be seen as enjoying 

application-oriented Metascheduling-as-a-Service (MaaS). 

 

  



 
 

228 
 

 

LIST OF REFERENCES 

[1] J. Morris, "Programming doesn't begin to define computer science," in Post-
Gazette Pittsburgh, PA, 2004. 

[2] The Grid: Blueprint for a New Computing Infrastructure, 1st ed.: Morgan 
Kaufmann Publishers, 1998. 

[3] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Principles, 
Algorithms, and Systems. New York: Cambridge University Press, 2008. 

[4] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel 
Computing: Design and Analysis of Algorithms. Redwood City, CA: The 
Benjamin/Cummings Publishing Company, 1994. 

[5] F. Berman, G. Fox, and T. Hey, "The Grid: past, present, future," in Grid 
Computing - Making the Global Infrastructure a Reality, F. Berman, G. Fox, and 
T. Hey, Eds., Hoboken, NJ: John Wiley & Sons Inc., 2003, pp. 9-51. 

[6] I. Foster, "What is the Grid? A Three Point Checklist," July 22, 2002, Available at 
http://www.gridtoday.com/02/0722/100136.html, Retrieved: May 31st, 2004. 

[7] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid," Lecture 
Notes in Computer Science, 2150(2001, pp. 1-28. 

[8] J. Gemmill and P. Bangalore, "UABGrid - A campus-wide distributed 
computational infrastructure,"  Birmingham, AL: UAB, 2006, p. 5. 

[9] "TeraGrid," March 19, 2009, Available at http://www.teragrid.org, Retrieved: 
March 19, 2009. 

[10] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, "Introduction to Web Services 
Architecture," IBM Systems Journal, 41(2), 2002, pp. 170-178. 

[11] I. Foster, "The Grid: A New Infrastructure for 21st Century Science," Physics 
Today, 55(2), April 2002, pp. 42-47. 

[12] I. Foster and C. Kesselman, Eds. The Grid 2, Second ed., New York: Morgan 
Kaufmann, 2004. 

[13] C. Mateos, A. Zunino, and M. Campo, "A survey on approaches to gridification," 
Software—Practice & Experience, 38(5), April 2008, pp. 523-556. 

[14] E. Afgan and P. Bangalore, "Embarrassingly Parallel Jobs Are Not 
Embarrassingly Easy to Schedule on the Grid," in SC08 International Conference 



 
 

229 
 

for High Performance, Networking, Storage and Analysis - Workshop on Many-
Task Computing on Grids and Supercomputers Austin, TX, 2008, p. 10. 

[15] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local 
alignment search tool," Mol Biol, 215(3), Oct 5 1990, pp. 403-410. 

[16] G. Tsouloupas and M. D. Dikaiakos, "Grid Resource Ranking Using Low-Level 
Performance Measurements," in 13th International Euro-Par Conference 2007 on 
Parallel Processing, Rennes, France, 2007, pp. 467-476. 

[17] E. Afgan and P. Bangalore, "Performance Characterization of BLAST for the 
Grid," in IEEE 7th International Symposium on Bioinformatics & Bioengineering 
(IEEE BIBE 2007) Boston, MA, 2007, pp. 1394-1398. 

[18] C. B. Lee and A. Snavely, "On the User–Scheduler Dialogue: Studies of User-
Provided Runtime Estimates and Utility Functions," International Journal of 
High Performance Computing Applications, 20(4), Winter 2006, pp. 495-506. 

[19] A. D. Baxevanis and F. Ouellette, Eds. Bioinformatics: A Practical Guide to the 
Analysis of Genes and Proteins, 3rd ed., New Jersey: Wiley-Interscience, 2004. 

[20] T. Smith and M. Waterman, "Identification of Common Molecular 
Subsequences," Journal of Molecular Biology, 147), 1981, pp. 195-197. 

[21] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: 
probabilistic models of proteins and nucleic acids: Cambridge University Press, 
1998. 

[22] A. E. Darling, L. Carey, and W.-c. Feng, "The Design, Implementation, and 
Evaluation of mpiBLAST," in ClusterWorld Conference & Expo in conjunction 
with the 4th International Conference on Linux Clusters: The HPC Revolution 
2003, San Jose, CA, 2003. 

[23] C.-W. T. Xue Wu, "Searching Sequence Databases Using High-Performance 
BLASTs," in Parallel Computing for Bioinformatics and Computational Biology, 
Y. Z. Albert, Ed.: John Wiley & Sons, 2006, pp. 211-232. 

[24] E. Afgan and P. Bangalore, "Assisting Efficient Job Planning and Scheduling in 
the Grid," in Handbook of Research on Grid Technologies and Utility Computing: 
Concepts for Managing Large-Scale Applications, E. Udoh and F. Z. Wang, Eds.: 
IGI Global, 2009, pp. 22-31. 

[25] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, "Grid Information 
Services for Distributed Resource Sharing," in 10 th IEEE Symp. On High 
Performance Distributed Computing (HPDC), Los Alamitos, CA, 2001, pp. 181-
195. 



 
 

230 
 

[26] G. Tsouloupas and M. Dikaiakos, "GridBench: A Tool for Benchmarking Grids," 
in 4th International Workshop on Grid Computing (Grid2003), Phoenix, AZ, 
2003, pp. 60-67. 

[27] F. Sanchez, E. Salami, A. Ramirez, and M. Valero, "Performance Analysis of 
Sequence Alignment Applications," in 2006 IEEE International Symposium on 
Workload Characterization, San Jose, CA, 2006, pp. 51-60. 

[28] F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, "Application-Level 
Scheduling on Distributed Heterogeneous Networks," in Supercomputing '96, 
Pittsburgh, PA, 1996, p. 28. 

[29] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng, J. 
Dongarra, L. Johnsson, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal, G. 
Marin, M. Mazina, J. Mellor-Crummey, C. Mendes, A. Olugbile, J. M. Patel, D. 
Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan, "New grid scheduling and 
rescheduling methods in the GrADS project," International Journal of Parallel 
Programming, 33(2), June 2005, pp. 209-229. 

[30] R. Buyya, M. Murshed, D. Abramson, and S. Venugopa, "Scheduling parameter 
sweep applications on global Grids: a deadline and budget constrained cost-time 
optimization algorithm," Software - Practice & Experience, 35(5), April 2005, pp. 
491-512. 

[31] G. Gruman and E. Knorr, "What cloud computing really means," in InfoWorld, 
2008, p. 2. 

[32] W. Stallings, Operating systems: internals and design principles, 6th ed.: Prentice 
Hall, 2009. 

[33] L. Kleinrock, "Network is the computer.," ARPANET project, 1969. 

[34] OGF, "Open Grid Forum," 2009, Available at http://www.ogf.org, Retrieved: 
March 19, 2009. 

[35] I. Foster and C. Kesselman, "The Globus toolkit," in The Grid: Blueprint for a 
New Computing Infrastructure, I. Foster and C. Kesselman, Eds., San Francisco, 
California: Morgan Kaufmann, 1999, pp. 259--278. 

[36] D. W. Erwin and D. F. Snelling, "UNICORE: A Grid Computing Environment," 
Lecture Notes in Computer Science, 2150(2001, pp. 825-834. 

[37] F. Dvořák, D. Kouřil, A. Křenek, L. Matyska, M. Mulač, J. Pospíšil, M. Ruda, Z. 
Salvet, J. Sitera, and M. Voců, " gLite Job Provenance," in Provenance and 
Annotation of Data: Springer, 2006, pp. 246-253. 



 
 

231 
 

[38] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal, "Alchemi: A .NET-Based 
Enterprise Grid Computing System," in 6th International Conference on Internet 
Computing (ICOMP'05), Las Vegas, NV, 2005. 

[39] S. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw, "The Legion Resource 
Management System " in International Parallel and Distributed Processing 
Symposium (IPDPS '99) - 5th Workshop on Job Scheduling Strategies for Parallel 
Processing, San Juan, Puerto Rico, 1999, pp. 162-178. 

[40] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, "A Security Architecture for 
Computational Grids," in 5th ACM Conference on Computer and Communication 
Security Conference, San Francisco, CA, 1998, pp. 83-92. 

[41] K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith, and S. Tuecke, "A 
Resource Management Architecture for Metacomputing Systems," in IPPS/SPDP 
Workshop on Job Scheduling Strategies for Parallel Processing, 1998, pp. 62-82. 

[42] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. 
Meder, V. Nefedova, D. Quesnel, and S. Tuecke, "Data Management and 
Transfer in High-Performance Computational Grid Environments," Parallel 
Computing, 28(5), May 2001, pp. 749 - 771. 

[43] F. Berman, "High-performance schedulers," in The grid: blueprint for a new 
computing infrastructure, I. Foster and C. Kesselman, Eds., San Francisco, CA: 
Morgan Kaufmann Publishers Inc., 1998, pp. 279 - 309. 

[44] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, "Condor-G: A 
Computation Management Agent for Multi-Institutional Grids," in IEEE 
Symposium on High Performance Distributed Computing (HPDC10), San 
Francisco, CA, 2001, p. 9. 

[45] G. Allen, T. Goodale, M. Russell, E. Seidel, and J. Shalf, "Classifying and 
Enabling Grid Applications," in Grid Computing: Making the Global 
Infrastructure a Reality, F. Berman, G. Fox, and T. Hey, Eds.: John Wiley & 
Sons, 2003, pp. 601-614. 

[46] "LHC - The Large Hadron Collider," July 24, 2008, Available at 
http://lhc.web.cern.ch/lhc/, Retrieved: January 26, 2009. 

[47] Z. Schreiber, "G.ho.st," September 8, 2008, Available at http://G.ho.st, Retrieved: 
January 26, 2009. 

[48] T. V. Raman, "Toward 2w, beyond web 2.0," Communications of ACM, 52(2), 
February 2009, pp. 52-59. 

[49] SAGA-RG, "Simple API for Grid Applications RG " December 18, 2008, 
Available at http://forge.ogf.org/sf/projects/saga-rg, Retrieved: January 26, 2009. 



 
 

232 
 

[50] D. Gannon, G. Fox, M. Pierce, B. Plale, G. v. Laszewski, C. Severance, J. Hardin, 
J. Alameda, M. Thomas, and J. Boisseau, "Grid Portals: A Scientist's Access 
Point for Grid Services," Global Grid Forum (GGF) September 19 2003. 

[51] W. v. d. Aalst and K. M. v. Hee, Workflow Management: Models, Methods, and 
Systems, 1st ed. Cambridge, MA: MIT Press, 2002. 

[52] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, 
and B. Smolinski, "Toward a Common Component Architecture for High-
Performance Scientific Computing," in The High-Performance Distributed 
Computing Conference (HPDC), Redondo Beach, CA, 1999, pp. 115-124. 

[53] E. Afgan, P. Bangalore, and J. Gray, "Configuring Grid Applications from Higher 
Level Domain-Specific Languages," in Designing Software-Intensive Systems: 
Methods and Principles, P. F. Tiako, Ed., Langston, OK, 2007, pp. 402-439. 

[54] M. P. I. Forum, "MPI message-passing interface standard Vers. 2.0," 1998, 
Available at http://www.mpi-forum.org/docs/docs.html, Retrieved: May 18th, 
2004. 

[55] N. Karonis, B. Toonen, and I. Foster, "MPICH-G2: A Grid-Enabled 
Implementation of the Message Passing Interface," Journal of Parallel and 
Distributed Computing (JPDC), 63(5), May 2003, pp. 551-563. 

[56] "The Globus Resource Specification Language RSL v1.0," 01/03/2005, Available 
at http://www-fp.globus.org/gram/rsl_spec1.html, Retrieved: April 6, 2006. 

[57] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. 
Pulsipher, and A. Savva, "Job Submission Description Language (JSDL) 
Specification, Version 1.0," Global Grid Forum (GGF), Technical Report GFD-
R.056, 7 November 2005. 

[58] "Job Submission Description Language Working Group (JSDL-WG)," July 12 
2005, 2004, Available at https://forge.gridforum.org/projects/jsdl-wg/, Retrieved: 
April 6, 2006. 

[59] W3C, "RDF Primer," 10 February, 2004, Available at http://www.w3.org/TR/rdf-
primer/, Retrieved: March 29, 2007. 

[60] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web," in Scientific 
American, 2001. 

[61] C. Systinet, "Introduction to Web Services Architecture,"  Cambridge, MA, 2002, 
p. 22. 

[62] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. 
Snelling, S. Tuecke, and W. Vambenepe, "The WS-Resource Framework," 
OASIS March 5 2004. 



 
 

233 
 

[63] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F. 
Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, and S. 
Weerawarana, "Modeling Stateful Resources with Web Services," OASIS March 
5 2004. 

[64] S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagaratnam, J. Parikh, S. Patil, 
S. Samdarshi, I. Sedukhin, D. Snelling, S. Tuecke, W. Vambenepe, and B. Weihl, 
"Publish-Subscribe Notification for Web services," OASIS March 5 2004. 

[65] "Web Services Addressing," August 10 2004, 2004, Available at http://www-
128.ibm.com/developerworks/library/specification/ws-add/, Retrieved: April 6, 
2006. 

[66] L. Cooper and D. Steinberg, Methods and Applications of Linear Programming. 
Philadelphia: W.B. Saunders Company, 1974. 

[67] J. Y.-T. Leung, Ed. Handbook of Scheduling: Algorithms, Models, and 
Performance Analysis, 1st ed., vol. 1: CRC Press, 2004. 

[68] J. M. Schopf, "Ten Actions when Grid Scheduling," Argonne National Laboratory 
2005. 

[69] S. B. Wellington, "Road to grid computing remains difficult," in ComputerWorld, 
2009, p. 1. 

[70] V. Systems, "OpenPBS v2.3: The Portable Batch System Software," 2004. 

[71] "N1 Grid Engine 6 User’s Guide," Sun Microsystems May 2005. 

[72] S. Zhou, "LSF: Load Sharing in Large-scale Heterogeneous Distributed Systems," 
in Workshop on Cluster Computing, 1992. 

[73] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J. F. Skovira, "Workload 
Management with LoadLeveler," IBM SG24-6038-00, November 2001. 

[74] J. Broberg, S. Venugopal, and R. Buyya, "Market-oriented Grids and Utility 
Computing: The State-of-the-art and Future Directions," Journal of Grid 
Computing, 5(4), December 28 2007,  

[75] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler, "Wide Area Cluster 
Monitoring with Ganglia," in IEEE Cluster 2003, Hong Kong, 2003. 

[76] R. Wolski, N. Spring, and J. Hayes, "The Network Weather Service: A 
Distributed Resource Performance Forecasting Service for Metacomputing," 
Journal of Future Generation Computing Systems, 15(5-6), October 1999, pp. 
757-768. 



 
 

234 
 

[77] H. B. Newman, I. C. Legrand, P.Galvez, R. Voicu, and C. Cirstoiu, "MonALISA: 
A Distributed Monitoring Service Architecture," in CHEP 2003, La Jola, CA, 
2003, p. 8. 

[78] P. Z. Kunszt and L. P. Guy, "The Open Grid Services Architecture, and Data 
Grids," in Grid Computing - Making the Global Infrastructure a Reality, F. 
Berman, A. Hey, and G. Fox, Eds., Hoboken, NJ: John Wiley & Sons Inc., 2003, 
p. 24. 

[79] A. Kertesz and P. Kacsuk, " A Taxonomy of Grid Resource Brokers," in 
Distributed and Parallel Systems from Cluster to Grid Computing, 1 ed, P. 
Kacsuk, T. Fahringer, and Z. Németh, Eds.: Springer, 2007, pp. 201-210. 

[80] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud computing 
and emerging IT platforms: Vision, hype, and reality for delivering computing as 
the 5th utility," Future Generation Computer Systems, 25(6), June 2009, pp. 599-
616. 

[81] C. Smith, "Open source metascheduling for Virtual Organizations with the 
Community Scheduler Framework (CSF)," Platform Computing, Whitepaper 
August 2003. 

[82] "CSF," Available at http://www.globus.org/grid_software/computation/csf.php, 
Retrieved: April 6, 2006. 

[83] J. Mausolf, "Use Community Scheduler Framework to implement grid meta-
schedulers," IBM July 24 2004. 

[84] F. Berman and R. Wolski, "Scheduling from the Perspective of the Application," 
in High Performance Distributed Computing Conference (HPDC), Syracuse, NJ, 
1996, pp. 100-111. 

[85] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, "The AppLeS Parameter 
Sweep Template: User-Level Middleware for the Grid," in Supercomputing 2000, 
Dallas, TX, 2000. 

[86] H. Casanova and F. Berman, "Parameter sweeps on the Grid with APST," in Grid 
Computing: Making the Global Infrastructure a Reality, B. F., F. G., and H. T., 
Eds., Hoboken, NJ: John Wiley & Sons Inc., 2003, pp. 773-789. 

[87] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, 
K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and R. 
Wolski, "The GrADS Project: Software Support for High-Level Grid Application 
Development," International Journal of High Performance Computing 
Applications, 15(4), Winter 2001, pp. 327-344. 



 
 

235 
 

[88] H. Dail, F. Berman, and H. Casanova, "A Decoupled Scheduling Approach for 
Grid Application Development Environments," Journal of Parallel and 
Distributed Computing, 63(5), May 2003, pp. 505-524. 

[89] M. Litzkow, M. Livny, and M. Mutka, "Condor - A Hunter of Idle Workstations," 
in 8th International Conference of Distributed Computing Systems, 1988. 

[90] D. Thain, T. Tannenbaum, and M. Livny, "Condor and the Grid," in Grid 
Computing: Making The Global Infrastructure a Reality, B. F., F. G., and H. T., 
Eds., Hoboken, NJ: John Wiley & Sons Inc, 2003, pp. 299-337. 

[91] R. Raman, M. Livny, and M. Solomon, "Matchmaking: Distributed Resource 
Management for High Throughput Computing," in Seventh IEEE International 
Symposium on High Performance Distributed Computing, 1998, p. 7. 

[92] "Classified Advertisements," Available at http://www.cs.wisc.edu/condor/ 
classad/, Retrieved: April 6, 2006. 

[93] D. Abramson, R. Sosic, J. Giddy, and B. Hall, "Nimrod: A Tool for Performing 
Parameterized Simulations Using Distributed Workstations," in High 
Performance Distributed Computing (HPDC), 1995, pp. 112-121. 

[94] R. Buyya, D. Abramson, and J. Giddy, "Nimrod-G: An Architecture for a 
Resource Management and Scheduling in a Global Computational Grid," in 4th 
International Conference and Exhibition on High Performance Computing in 
Asia-Pacific Region (HPC ASIA 2000), Beijing, China, 2000, pp. 283-289. 

[95] R. Buyya, J. Giddy, and D. Abramson, "An Evaluation of Economy-based 
Resource Trading and Scheduling on Computational Power Grids for Parameter 
Sweep Applications," in The Second Workshop on Active Middleware Services 
(AMS 2000), In conjuction with Ninth IEEE International Symposium on High 
Performance Distributed Computing (HPDC 2000), Pittsburgh, PA, 2000, p. 10. 

[96] D. Abramson, J. Giddy, and L. Kotler, "High Performance Parametric Modeling 
with Nimrod/G: Killer Application for the Global Grid," in International Parallel 
and Distributed Processing Symposium (IPDPS), Cancun, Mexico, 2000, pp. 520-
528. 

[97] S. Venugopal, R. Buyya, and L. Winton, "A Grid Service Broker for Scheduling 
e-Science Applications on Global Data Grids," Journal of Concurrency and 
Computation: Practice and Experience, 18(6), Nov 8 2005, pp. 685-699. 

[98] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The Data 
Grid: Towards an architecture for the distributed management and analysis of 
large scientific datasets," Journal of Network and Computer Applications, 23(3), 
2000, pp. 189-2000. 



 
 

236 
 

[99] K. R. A. I. Foster, "Decoupling Computation and Data Scheduling in Distributed 
Data-Intensive Applications," in 11th IEEE International Symposium on High 
Performance Distributed Computing (HPDC-11), Edinburgh, Scotland, 2002. 

[100] R. Buyya, D. Abramson, and J. Giddy, "An Economy Driven Resource 
Management Architecture for Global Computational Power Grids," in The 2000 
International Conference on Parallel and Distributed Processing Techniques and 
Applications (PDPTA 2000), Las Vegas, NV, 2000. 

[101] A. Bose, B. Wickman, and C. Wood, "MARS: A Metascheduler for Distributed 
Resources in Campus Grids," in 5th ACM/IEEE International Workshop on Grid 
Computing, 2004, pp. 110-118. 

[102] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting, 
2nd ed.: Springer, 2003. 

[103] L. Hall, A. Schulz, D. Shmoys, and J. Wein, "Scheduling To Minimize Average 
Completion Time: Off-line and On-line Algorithms," in SODA: ACM-SIAM 
Symposium on Discrete Algorithms (A Conference on Theoretical and 
Experimental Analysis of Discrete Algorithms), Atlanta, GA, 1996, pp. 142 - 151. 

[104] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F. Freund, "Dynamic 
Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous 
Computing Systems," in Heterogeneous Computing Workshop, 1999, pp. 30-45. 

[105] "GridWay Metascheduler: Metascheduling Technologies for the Grid," April, 
2006, Available at http://www.gridway.org/, Retrieved: April 7, 2006. 

[106] "An "Ecosystem" of Grid Components," Available at 
http://www.globus.org/grid_software/ecology.php, Retrieved: April 7, 2006. 

[107] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner, A. Haas, B. Nitzberg, H. 
Rajic, and J. Tollefsrud, "Distributed Resource Management Application API 
(DRMAA) Specification 1.0," Global Grid Forum (GGF) GFD-R-P.022, June 
2004. 

[108] E. Afgan and P. Bangalore, "Experiences with developing and deploying dynamic 
BLAST " in 15th ACM Mardi Gras conference, Workshop on Grid-Enabling 
Applications, Baton Rouge, LA, 2008, pp. 38-48. 

[109] R. S. Montero, E. Huedo, and I. M. Llorente, "Grid Scheduling Infrastructures 
based on the GridWay Meta-scheduler," IEEE Technical Committee on Scalable 
Computing (TCSC) Newsletter, 8(2), 2006,  

[110] R. S. Montero and I. M. Llorente, "Scheduling Policies in the GridWay System," 
GridWay Project January 2007. 



 
 

237 
 

[111] E. Huedo, R. S. Montero, and I. M. LLorente, "A Framework for Adoptive 
Execution on Grids," Journal of Software - Practice and Experience, 34(7), 
March 2004, pp. 631-651. 

[112] I. Taylor, E. Deelman, D. Gannon, and M. Shields, Workflows for e-Science, 1st 
ed.: Springer Verlag, 2006. 

[113] M. W. Carter and C. C. Prince, Operations Research, A Practical Foundation. 
Boca Raton, FL: CRC Press, 2001. 

[114] J. J. Kanet, S. L. Ahire, and M. F. Gorman, "Constraint Programming for 
Scheduling," in Handbook of Scheduling, J. Y.-T. Leung, Ed., Boca Raton, FL: 
CRC Press, 2004, pp. 47-1->47-21. 

[115] J. Yu, M. Kirley, and R. Buyya, "Multi-objective planning for workflow 
execution on Grids," in Grid 2007, Austin, TX, 2007, pp. 10-17. 

[116] R. Duan, R. Prodan, and T. Fahringer, "Performance and Cost Optimization for 
Multiple Large-scale Grid Workflow Applications," in Supercomputing 2007 
(SC|07), Reno, NE, 2007. 

[117] M. Wieczorek, S. Podlipnig, R. Prodan, and T. Fahringer, "Bi-criteria Scheduling 
of Scientific Workflows for the Grid," in 2008 Eighth IEEE International 
Symposium on Cluster Computing and the Grid (ccGrid), Lyon, France, 2008, pp. 
9-16. 

[118] E. Huedo, R. S. Montero, and I. M. Llorente, "A Framework for Adaptive 
Execution on Grids," Journal of Software - Practice and Experience, 34(7), June 
2004, pp. 631-651. 

[119] R. Buyya, D. Abramson, and J. Giddy, "Nimrod-G Resource Broker for Service-
Oriented Grid Computing," 2004, Available at 
http://www.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc
6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/past_issues/0107/de
partments&file=res0107_print.xml&xsl=article.xsl&;jsessionid=LpLsZC1FRLjG
hW22G5CCsqpDyTPvpSht3BD76bpTKLn1pv2BBYgG!1195711095, Retrieved: 
8/18, 2008. 

[120] F. P. Brooks, "No Silver Bullet-Essence and Accidents of Software," IEEE 
Computer, 20(4), April 1987, pp. 10-19. 

[121] A. Downey, "Predicting Queue Times on Space-Sharing Parallel Computers," in 
International Parallel Processing Symposium (IPPS '97), Geneva, Switzerland, 
1997, pp. 209-218. 

[122] R. Gibbons, "A Historical Application Profiler for Use by Parallel Schedulers," 
Lecture Notes In Computer Science, 1291(1997, pp. 58-77. 



 
 

238 
 

[123] W. Smith, I. Foster, and V. Taylor, "Predicting Application Run Times Using 
Historical Information," in Workshop on Job Scheduling Strategies for Parallel 
Processing, 1998, pp. 122-142. 

[124] V. Taylor, X. Wu, J. Geisler, X. Li, Z. Lan, R. Stevens, M. Hereld, and I. R. 
Judson, "Prophesy: An Infrastructure for Analyzing and Modeling the 
Performance of Parallel and Distributed Applications," in High Performance 
Distributed Computing (HPDC) 2000, Pittsburgh, PA, 2000, pp. 302-303. 

[125] X. Wu, V. Taylor, and J. Paris, "A Web-based Prophesy Automated Performance 
Modeling System," in The IASTED International Conference on Web 
Technologies, Applications and Services (WTAS 2006), Calgary, Canada, 2006. 

[126] X. Wu, V. Taylor, J. Geisler, X. Li, Z. Lan, R. Stevens, M. Hereld, and I. R. 
Judson, "Design and Development of Prophesy Performance Database for 
Distributed Scientific Applications," in 10th SIAM Conference on Parallel 
Processing for Scientific Computing, Portsmouth, VA, 2001. 

[127] V. Taylor, X. Wu, J. Geisler, X. Li, Z. Lan, M. Hereld, I. Judson, and R. Stevens, 
"Prophesy: Automating the Modeling Process," in 2001 IEEE International 
Symposium on Performance Analysis of Systems and Software, Tucson, AZ, 2001. 

[128] X. Wu, V. Taylor, J. Leigh, and L. Renambot, "Performance Analysis of a 3D 
Parallel Volume Rendering Application on Scalable Tiled Displays," in 
International Conference on Computer Graphics, Imaging and Vision (CGIV05), 
Beijing, China, 2005. 

[129] X. Wu, V. Taylor, S. Garrick, D. Yu, and J. Richard, "Performance Analysis, 
Modeling and Prediction of a Parallel Multiblock Lattice Boltzmann Application 
Using Prophesy System," in IEEE International Conference on Cluster 
Computing, Barcelona, Spain, 2006. 

[130] F. Nadeem, R. Prodan, T. Fahringer, and A. Iosup, "Benchmarking Grid 
Applications for Performance and Scalability Predictions," in CoreGRID 2007 
Workshop on Middleware, Dresden, Germany, 2007, p. 14. 

[131] D. A. Bader, Y. Li, T. Li, and V. Sachdeva, "BioPerf: A Benchmark Suite to 
Evaluate High-Performance Computer Architecture on Bioinformatics 
Applications," in The IEEE International Symposium on Workload 
Characterization (IISWC 2005), Austin, TX, 2005, pp. 163-173. 

[132] NCBI, "GenBank Statistics," February 3, 2009, Available at 
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html, Retrieved: March 17, 
2009. 

[133] A. Ping, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, 
and L. Rauchwerger, "STAPL: An adaptive, generic parallel c++ library," in 



 
 

239 
 

Workshop on Languages and Compilers for Parallel Computing (LCPC), 
Cumberland Falls, KY, 2001, p. 17. 

[134] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. Amato, and L. 
Rauchwerger, "A Framework for Adaptive Algorithm Selection in STAPL," in 
ACM SIGPLAN 2005 Symposium on Principles and Practices of Parallel 
Programming (PPoPP), Chicago, IL, 2005. 

[135] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed. 
Upper Sadle River, NJ: Prentice Hall, 2002. 

[136] T. Mitchell, Machine Learning: McGraw Hill, 1997. 

[137] S. Sodhi and J. Subhlok, "Automatic Construction and Evaluation of Performance 
Skeletons," in 19th International Parallel and Distributed Processing Symposium 
(IPDPS '05), Denver, CO, 2005, p. 10. 

[138] E. Afgan and B. Purushotham, "Embarrassingly Parallel Jobs Are Not 
Embarrassingly Easy to Schedule on the Grid," in International Conference for 
High Performance, Networking, Storage and Analysis (SC08) - Workshop on 
Many-Task Computing on Grids and Supercomputers Austin, TX, 2008, p. 10. 

[139] HPL - A Portable Implementation of the High-Performance Linpack Benchmark 
for Distributed-Memory Computers. 2.0 ver. 2008. 

[140] "Standard Performance Evaluation Corporation," July 24, 2008, Available at 
http://www.spec.org/, Retrieved: July 25, 2008. 

[141] A. Iosup, C. Dumitrescu, D. H. Epema, H. Li, and L. Wolters, "How are real grids 
used? The analysis of four grid traces and its implications," in International 
Conference on Grid Computing 2006, Barcelona, Spain, 2006, pp. 262-269. 

[142] I. Banicescu and Z. Liu., "Adaptive Factoring: A Dynamic Scheduling Method 
Tuned to the Rate of Weight Changes," in High Performance Computing 
Symposium (HPC 2000), Washington, D.C., 2000, pp. 122-129. 

[143] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. Nudd, "Agent-Based Grid 
Load Balancing Using Performance-Driven Task Scheduling," in 17th 
International Symposium on Parallel and Distributed Processing (IPDPS) 2003, 
Nice, France, 2003, p. 49.2. 

[144] R. U. Payli, E. Yilmaz, A. Ecer, H. U. Akay, and S. Chien, "DLB – A Dynamic 
Load Balancing Tool for Grid Computing," in Parallel CFD Conference, Grand 
Canaria, Canary Islands, Spain, 2004, p. 8. 

[145] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large 
Clusters," in OSDI'04: Sixth Symposium on Operating System Design and 
Implementation San Francisco, CA, 2004, p. 13. 



 
 

240 
 

[146] B. Bergeron, Bioinformatics Computing 1st ed. Upper Saddle River, New Jersey: 
Prentice Hall PTR, 2002. 

[147] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and 
D. J. Lipman, "Gapped BLAST and PSI-BLAST: a new generation of protein 
database search programs," Nucleic Acids Res, 25(17), Sep 1 1997, pp. 3389-
3402. 

[148] W. R. Pearson and D. J. Lipman, "Improved Tools for Biological Sequence 
Comparison," Proceedings of the National Academy of Sciences of the United 
States of America (PNAS), 85(16), August 15 1988, pp. 2444- 2448. 

[149] H. G. Program, "What is the Human Genome Project?," December 07, 2005, 
Available at http://www.ornl.gov/sci/techresources/Human_Genome/ 
project/about.shtml Retrieved: April 28, 2008. 

[150] R. D. Bjomson, A. H. Sherman, S. B. Weston, N. Willard, and J. Wing, 
"TurboBLAST: A Parallel Implementation of BLAST Built on the TurboHub," in 
International Parallel and Distributed Processing Symposium: IPDPS 2002, Ft. 
Lauderdale, FL, 2002. 

[151] N. Camp, H. Cofer, and R. Gomperts, "High-Throughput BLAST," SGI 
September 1998. 

[152] NCBI, "BLAST: Basic Local Alignment Search Tool," April 25, 2008, Available 
at http://blast.ncbi.nlm.nih.gov/Blast.cgi Retrieved: April 28, 2008. 

[153] NCBI, "BLAST Frequently Asked questions," 2008, Available at 
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Web&PAGE_TYPE=BlastF
AQs#sigxcpu Retrieved: April 28, 2008. 

[154] E. Afgan, P. Sathyanarayana, and P. Bangalore, "Dynamic Task Distribution in 
the Grid for BLAST," in Granular Computing (GrC 2006), Atlanta, GA, 2006, 
pp. 554-557. 

[155] D. Sulakhe, A. Rodriguez, M. D’Souza, M. Wilde, V. Nefedova, I. Foster, and N. 
Maltsev, "GNARE: An Environment for Grid-Based High-Throughput Genome 
Analysis," in Fifth IEEE International Symposium on Cluster Computing and the 
Grid (CCGrid'05), Cardiff, UK, 2005 pp. 455 - 462. 

[156] M. K. Gardner, W.-c. Feng, J. Archuleta, H. Lin, and X. Ma, "Parallel genomic 
sequence-searching on an ad-hoc grid: experiences, lessons learned, and 
implications," in Supercomputing, 2006 (SC '06), Tampa, FL, 2006, pp. 22-36. 

[157] R. D. C. Team, "R: A Language and Environment for Statistical Computing," R 
Foundation for Statistical Computing, Vienna, Austria 2005. 



 
 

241 
 

[158] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Sekiguchi, and U. Nagashima, 
"Performance evaluation model for scheduling in a global computing system," 
The International Journal of High Performance Computing Applications, 14(3), 
Fall 2000, pp. 268-279. 

[159] H. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien, 
"The MicroGrid: a Scientific Tool for Modeling Computational Grids," in IEEE 
Supercomputing (SC 2000), Dallas, TX, 2000. 

[160] H. Xia, H. Dail, H. Casanova, and A. A. Chien, "The MicroGrid: Using Online 
Simulation to Predict Application Performance in Diverse Grid Network 
Environments," in Proceedings of the Second International Workshop on 
Challenges of Large Applications in Distributed Environments (CLADE), 
Honolulu, HI, 2004, pp. 52- 61. 

[161] H. Casanova, "SimGrid: A Toolkit for the Simulation of Application Scheduling," 
in First IEEE/ACM International Symposium on Cluster Computing and the Grid 
(CCGrid 2001), Brisbane, Australia, 2001. 

[162] R. Buyya and M. Murshed, "GridSim: A Toolkit for the Modeling and Simulation 
of Distributed Resource Management and Scheduling for Grid Computing," The 
Journal of Concurrency and Computation: Practice and Experience (CCPE), 
14(13-15), Nov-Dec 2002, pp. 1175-1220. 

[163] J. Horst, E. Messina, T. Kramer, and H.-M. Huang, "Precise definition of software 
component specifications," in 7th Symposium on Computer-Aided Control System 
Design (CACSD '97), Gent, Belgium, 1997, pp. 145-150. 

[164] A. v. Hoff, H. Partovi, and T. Thai, "The Open Software Description Format 
(OSD)," W3C August 11 1997. 

[165] F. A. Hernandez, "GAUGE: Grid Automation and Generative Environment Using 
Domain Engineering and Domain Modeling for Drafting Applications for the 
Grid," in Department of Computer and Information Sciences Birmingham, AL: 
University of Alabama at Birmingham (UAB), 2006, p. 188. 

[166] C. Letondal, "A Web interface generator for molecular biology programs in 
Unix," Bioinformatics, 17(1), July 7 2000, pp. 73-82. 

[167] E. Afgan, "Role of the Resource Broker in the Grid," in 42 nd Annual ACM 
Southeast Conference, Huntsville, AL, 2004, pp. 299-300. 

[168] B. N. Chun and D. E. Culler, "User-Centric Performance Analysis of Market-
Based Cluster Batch Schedulers," in 2nd IEEE/ACM International Symposium on 
Cluster Computing and the Grid (CCGrid) 2002, Berlin, Germany, 2002, pp. 30-
39. 



 
 

242 
 

[169] E. Afgan and B. Purushotham, "Computation Cost in Grid Computing 
Environments," in First International Workshop on the Economics of Software 
and Computation in conjunction with International Conference on Software 
Engineering (ICSE) 2007, Minneapolis, MN, 2007. 

[170] E. Afgan and P. Bangalore, "Application Specification Language (ASL) – A 
Language for Describing Applications in Grid Computing," in 4th International 
Conference on Grid Service Engineering and Managemen (GSEM 2007), Leipzig, 
Germany, 2007. 

[171] E. Afgan, P. Bangalore, S. Mukkai, and S. Yammanuru, "Design and 
Implementation of a Readily Available Historical Application Performance 
Database (AppDB) for Grid," University of Alabama at Birmingham (UAB), 
Birmingham, AL UABCIS-TR-2008-0506-1, May 6 2008. 

[172] E. Afgan, P. Bangalore, and S. Mukkai, "GridAtlas," December 18, 2008, 
Available at http://www.cis.uab.edu/ccl/index.php/GridAtlas, Retrieved: February 
1, 2009. 

[173] E. Afgan and P. Bangalore, "Application Specification Language (ASL) – A 
Language for Describing Applications in Grid Computing," in The 4th 
International Conference on Grid Services Engineering and Management - 
GSEM 2007 Leipzig, Germany, 2007, pp. 24-38. 

[174] M. L. Massie, B. N. Chun, and D. E. Culler, "The Ganglia Distributed Monitoring 
System: Design, Implementation, and Experience," Parallel Computing, 30(7), 
July 2004, pp. 817-840. 

[175] "Vampir - Performance Optimization," Nov 16, 2008, Available at 
http://www.vampir.eu/, Retrieved: Jan 20, 2009. 

[176] TeraGrid, "TeraGrid Common Environment Variables," 2009, Available at 
http://www.teragrid.org/userinfo/jobs/variables.php, Retrieved: May 19, 2009. 

[177] Sun Microsystems, Inc., MySQL. 5.1 ver. 2009. 

[178] Hibernate, "Relational Persistence for Java and .NET," 2008, Available at 
http://www.hibernate.org/, Retrieved: May 9, 2008. 

[179] The Apache Software Foundation, Apache Tomcat. 6.0.18 ver. 2009. 

[180] The Apache Software Foundation, Apache Axis. 1.4 ver. 2005. 

[181] E. Afgan, P. Bangalore, and D. Duncan, "GridAtlas - A Grid Application and 
Resource Configuration Repository and Discovery Service," in Submitted for 
review to IEEE Cluster 2009, New Orleans, LA, 2009, p. 10. 



 
 

243 
 

[182] S. B. Emma and A. R. Daniel, "Analysis of application heartbeats: learning 
structural and temporal features in time series data for identification of 
performance problems," in 2008 ACM/IEEE conference on Supercomputing 
(SC|08) Austin, Texas: IEEE Press, 2008, p. 12. 

[183] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of 
Reusable Object-Oriented Software: Addison Wesley Publication Company, 
1994. 

[184] W. Cirne and F. Berman, "A Model for Moldable Supercomputer Jobs," in 
Parallel and Distributed Processing Symposium (IPDPS) 2001, San Francisco, 
CA, 2001, pp. 8-16. 

[185] N. Dale and D. Teague, C++ Plus Data Structures, 2nd ed.: Jones & Bartlett 
Publishers, 2001. 

[186] A. Tirado-Ramos, G. Tsouloupas, M. Dikaiakos, and P. Sloot, "Grid Resource 
Selection by Application Benchmarking for Computational Haemodynamics 
Applications," in International Conference on Computational Science (ICCS) 
2005, Kassel, Germany, 2005, pp. 534-543. 

[187] X. Pillons, "Running HPL on Windows HPC Server 2008,"  January 2008. 

[188] S. N. Kandadai, "Tuning tips for HPL on IBM xSeries Linux Clusters," IBM 
2003. 

[189] E. Huedo, R. S. Montero, and I. M. Llorente, "A Framework for Adaptive 
Execution on Grids," Journal of Software - Practice and Experience, 34(2004, pp. 
631-651. 

[190] E. Afgan and P. Bangalore, "Performance Characterization of BLAST for the 
Grid," Boston, MA, 2007. 

[191] A. E. Darling, L. Carey, and W.-c. Feng, "The Design, Implementation, and 
Evaluation of mpiBLAST," San Jose, CA, 2003. 

[192] C. Wang and E. J. Lefkowitz, "SS-Wrapper: a package of wrapper applications 
for similarity searches on Linux clusters," BMC Bioinformatics, 5(171), 2004,  

[193] C. Dwan, "Bioinformatics Benchmarks on the Dual Core Intel Xeon Processor," 
The BioTeam, Inc., Cambridge, MA 2006. 

[194] SURAgrid, "SURAgrid," February, 2008, Available at 
http://www1.sura.org/3000/SURAgrid.html, Retrieved: April 3, 2008. 

[195] E. Elmroth, J. Tordsson, T. Fahringer, F. Nadeem, R. Gruber, and V. Keller, 
"Three Complementary Performance Prediction Methods For Grid Applications," 
in CoreGRID Integration Workshop 2008, Heraklion, Greece, 2008. 



 
 

244 
 

[196] P. Olofsson, Probability, Statistics, and Stochastic Processes, 1st ed.: Wiley-
Interscience, 2005. 

[197] M. Siddiqui, A. Villazón, and T. Fahringer, "Grid allocation and reservation - 
Grid capacity planning with negotiation-based advance reservation for optimized 
QoS," in 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, 2006, pp. 
21-35. 

[198] W. Pfeiffer and N. J. Wright, "Modeling and Predicting Application Performance 
on Parallel Computers Using HPC Challenge Benchmarks," in IEEE Symposium 
on Parallel and Distributed Processing (IPDPS ) 2008, Miami, FL, 2008, pp. 1-
12. 

[199] R. Duan, R. Prodan, and T. Fahringer, "Run-time Optimization for Grid 
Workflow Applications," in 7th IEEE/ACM International Conference on Grid 
Computing, Barcelona, Spain, 2006. 

[200] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The SDSC Storage Resource 
Broker," in CASCON '98, Toronto, Canada, 1998. 

[201] J. Novotny, M. Russell, and O. Wehrens, "GridSphere: A Portal Framework for 
Building Collaborations," Concurrency and Computation: Practice & Experience, 
16(5), April 2004, pp. 503-513. 

[202] S. McConnell, Rapid Development 1st ed. Redmond, WA: Microsoft Press, 1996. 

[203] G. v. Laszewski, I. Foster, J. Gawor, and P. Lane, "A Java Commodity Grid Kit," 
Concurrency and Computation: Practice and Experience, 13(8-9), 2001, pp. 643-
662. 

[204] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky, 
R. v. Nieuwpoort, A. Reinefeld, F. Schintke, T. Schutt, E. Seidel, and B. Ullmer., 
"The grid application toolkit: toward generic and easy application programming 
interfaces for the grid," IEEE, 93(3), March 2005, pp. 534-550. 

[205] B. Sotomayor and L. Childers, Globus Toolkit: Programming Java Services, 1st 
ed.: Morgan Kaufmann, 2005. 

[206] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "The Physiology of the Grid: An 
Open Grid Services Architecture for Distributed Systems Integration," Global 
Grid Forum, Open Grid Service Infrastructure Working Group June 22 2002. 

[207] L. Wall, T. Christiansen, and J. Orwant, Programming Perl, 3rd ed., vol. 2000: 
O'Reilly Media, 2000. 

[208] B. Momjian, PostgreSQL: Introduction and Concepts, 1st ed.: Pearson Education, 
2000. 



 
 

245 
 

[209] L. Cannon, "A Cellular Computer to Implement the Kalman Filter Algorithm,"  
Bozeman, MN: Montana State University, 1969. 

[210] NCBI, "FASTA format description," 2009, Available at 
http://www.ncbi.nlm.nih.gov/blast/fasta.shtml, Retrieved: March 19, 2009. 

 
 

  



 
 

246 
 

 

 

APPENDIX A 

GRID USER CATEGORY CLASSIFICATION 



 
 

247 
 

This appendix provides an overview of the roles and goals of individual user 

categories that comprise the grid user environment. Such classification helps in 

identifying the specific requirements that are imposed by each user category, as well as 

the tools that accommodate their needs. The categories of users introduced in this section 

are middleware developer, application deployer, application developer, resource owner, 

and end user. In some cases, a single person may play multiple roles (e.g., application 

developer and deployer). 

A.1 Middleware Developer 

As the interconnecting fiber of the grid, middleware represents the component that 

facilitates the management of underlying resources as well as development of grid 

applications. Grid middleware is capable of delivering and sharing compute and data 

resources over secure channels while hiding intrinsic platform differences among the 

available resources. The middleware developers are key participants in the grid 

ecosystem and are closely connected to all other user categories. Middleware developers 

consider feature requests from user groups and participate in the design and 

implementation of the middleware standards that shape the way the grid operates. 

Examples of grid middleware include: the Globus Toolkit, Message Passing Interface 

(MPI) [54], Condor [89], Storage Resource Broker (SRB) [200], web portals (GridSphere 

[201], and the Open Grid Computing Environment (OGCE) [50]. 

A.2 Application Deployer 

An application deployer has the responsibility of performing the necessary work to 

grid-enable a legacy application. Because of the well-known possibility of high costs and 

challenges of application modification, the community focus is not on modifying the 



 
 

248 
 

source code, but rather adopting the application through creation of wrappers that convert 

the entire application into a grid-enabled solution [154, 202]. The deployment process 

and wrapper creation for one of the five strategies is performed using a combination of 

the following techniques: 

• Create script interfaces for command-line tools 

• Program directly to the Globus Toolkit using an available C API 

• Use a commodity toolkit such as Java CoG kit [203] 

• Use the Grid Application Toolkit (GAT) [204] 

• Use Grid Services [205] 

A.3 Application Developer 

As the grid gains acceptance, more applications will be custom tailored to take 

advantage of the benefits offered by the grid. Application developers focus on composing 

new applications that are targeted for the upcoming platform. Because grid computing 

does not provide a novel programming paradigm (as described in Introduction Chapter), 

traditional programming techniques and methodologies (i.e., sequential or parallel) have 

to be employed. However, because of such non-native adoption, those technologies have 

their own set of challenges that need to be dealt with and, incorporating the grid into a 

legacy application, poses a new set of accidental complexities. Most of the programming 

techniques and application types available when developing grid applications come from 

the HPC area or traditional distributed computing.  

Grid services, which are based on the Service-Oriented Architecture (SOA) [206] 

and Simple API for Grid Applications (SAGA) [49], represent the future of grid 

application development.  



 
 

249 
 

A.4 Resource Owner 

Resource owners and providers assist in running the most basic layer of the grid 

multi-tier architecture, which consists of the resources (e.g., networks, computer, storage 

nodes), the middle-tier (e.g., middleware, certificate authority, portals), and the clients 

(e.g., GT clients, GUIs). Resource owners are responsible for maintaining their respective 

resources by meeting hardware requirements for individual applications, installing those 

applications, obtaining relevant libraries and compilers, maintaining applications, and 

enforcing policies. Beyond the initial cost of installing the grid environment, there is the 

natural cost of running individual resources, as well as keeping licenses, subscriptions, 

and libraries up to date. The resource owners must also be cognizant of the QoS 

agreements between participating users (e.g., compatibility, application versioning, 

standardization). In order for grid computing to move further into the mainstream, 

resource providers must be able to balance their operating costs with the resource 

utilization and find a benefit in sharing their resources with the wider community. 

A.5 End user 

The end users rely upon the results of a grid application. End users represent the top-

most layer of the grid environments and are interested in utilizing underlying capabilities. 

In order for the grid to become a commodity computing technology, there is a need to 

attract a wide variety of users. Some of the issues preventing widespread adoption are the 

complexities and dynamics involved in job submission and job management, which are 

not yet tailored for lay-persons (i.e., those who are not computer savvy). The following 

scenario exemplifies the manual steps needed to submit a job on the grid: 

1. Select the resources needed by an application 



 
 

250 
 

2. Create a proxy certificate (e.g.,, grid-proxy-init) 

3. Copy the necessary source code and input files to a remote host (e.g., globus-url-

copy) 

4. Create a Resource Specification Language (RSL) [41] string 

5. Submit the job for execution (e.g., globus-job-run, globus-job-submit) 

6. Copy output files generated from the remote host to local machine (e.g., globus-

url-copy) 

Although the general concept of the above steps exists in many distributed contexts, 

the introduction of the grid manifests as an additional obstacle toward application usage. 

As such, the grid requires a level of computer expertise that is not within the skill sets of 

general end users. Therefore, one common goal is to simplify job submission by 

abstracting grid resources from the end user. 

  



 
 

251 
 

 

 

APPENDIX B 

APPLICATION SPECIFICATION LANGUAGE 

  



 
 

252 
 

This appendix provides additional details and the overall schema of the Application 

Specification Language (ASL) [173] presented in Section ##. As a new approach toward 

application specification that focuses on the needs of grid users and grid applications, the 

ASL is able to capture essential application information. Through standardized protocols, 

tools can be passed the information about an application that is specified in an ASL 

description. Summarizing, ASL is a language for describing any application’s 

requirements, attributes, and options. The ASL directly supports the ability to capture 

application-specific information that is not necessarily found in the general pool of 

available description tags. Using ASL, factors such as software and hardware 

requirements, data constraints, and algorithm complexity can be provided to a user. As 

can be seen in Figure 57, the ASL may be composed with other groups of established 

grid languages (e.g., JSDL/RSL, RDL). The interactions implied in the triangle connect 

all perspectives and user categories of a grid environment, which enable communication 

to take place over well-designed paths to facilitate further communication, refinement, 

contract creation and the possibility of higher QoS for all participants.  

 

Figure 57. ASL-RDL-JSDL/RSL triangle showing direct communication paths between 
corresponding user categories 

ASL 
Application developer 

RDL 
Resource owner 

JSDL/RSL 
End user 



 
 

253 
 

ASL is applicable before and during installation, during job scheduling, during job 

execution, and even after the job has completed. It can be complemented and modified as 

knowledge about an application increases. The ASL can be used with legacy applications 

(requiring adaptation), or with newly developed applications designed specifically for the 

grid (often called ‘Smart Applications’). By providing a standardized way to describe 

application requirements, the ASL enables an automated capability to compare 

applications. Without ASL, such comparisons are hard to perform manually because of 

their subjectivity. Such comparisons can be useful in numerous cases, such as application 

scheduling and software cost estimation [154]. 

In essence, ASL is an extended application version of RSL. It provides a set of 

specialized tags used to capture application-specific details and thus provide a description 

of an application. The goal of this language is to use application-specific descriptions that 

enable deployment, maintenance, and execution of an application in a standardized and 

simplified way. The structure of the language is intended to describe entire, operational 

applications rather than individual components of an application or other software which 

may subsequently be composed into an application. The intent of ASL and individual 

ASL documents is to enable needed communication between heterogeneous resources in 

the grid through standard interfaces. Just like ASL’s sister languages JSDL and RSL, 

ASL is not a grammar-based language, but rather a specification language establishing 

and defining a standard interface needed for heterogeneous grid resources to 

communicate with each other. A grammar-based language refers to a language that is 

defined and constrained by a context-free grammar. A schema-based language is rooted 

in an XML schema and is constrained by the tags defined in the associated schema.  



 
 

254 
 

By providing the appropriate set of tags, ASL enables application comparison and 

interface generation. Because every grid application is custom built to meet a certain 

need, the implementation details may be difficult to describe. Many of the options 

available during application specification often require significant human intervention as 

well as use of human language descriptions that cannot be modeled and captured by a 

general purpose computer language (e.g., Java or C++). Providing a standardized set of 

tags to capture information about an application in a concise and precise manner is 

difficult. The requirements imposed when selecting a given set of tags must focus on 

capturing the core set of characteristics describing any application and then provide an 

extended set of tags that allow unique application components to be specified. Our first 

attempt at defining this set of tags considered existing languages such as JSDL and RSL, 

which capture job submission requirements that map onto resource and application 

requirements. Examples of such tags include numerical values (e.g., CPU speed and 

amount of main memory required), as well as a predefined set of values (e.g., operating 

system and CPU architecture type). 

Additional tags were created by a systematic analysis of characteristics that describe 

an application but were not required for application invocation (e.g., max number of 

CPUs an application scales to). Many of these tags are simple in nature allowing the 

definition of a range of valid values that can be used to validate data entered by the end 

user. The more difficult set of requirements deals with values that are dependent on each 

other, but can be viewed individually as containers of simple values. Thus, these tags 

were organized in groups where sub-elements define individual pieces of the larger 

component. An example is the operating system requirement. An application may be 



 
 

255 
 

suitable for many operating systems as well as different versions of an individual 

operating system. Thus, creating higher level elements that contain equivalent sub-

elements allows different version dependencies to be specified (please see Figure 58). 

 

Figure 58. Grouped set of elements and sub-elements with appropriate tags 

One concern with adopting ASL, especially when viewed from the perspective of a 

developer creating the ASL document, is the requirement of the document syntax to be 

specified correctly (i.e., equivalent tags may have a different meaning when placed in 

different element groups). The most difficult part of describing an application concisely 

occurs with tags that cannot be constrained to a set of predefined values (e.g., tags that 

represent a human readable text string, such as copyright policy). The obvious 

impediment with such tags is the lack of precision needed for formal interpretation. 

However, the additional information provided within these tags can benefit end user 

understandability of the application. The use of the tags for all types of descriptors (e.g., 

simple, complex groups and natural language) helps to partition the entire document and 

provide guided help for natural language descriptors. A further benefit of such tags is the 

possibility of developing additional translators to generate application web 

documentation automatically. 

Operating Systems 

Operating System 

Type 
Version 
Release 
… 

Operating System 

… 



 
 

256 
 

The completed ASL document consists of several parts (discussed next) each 

focusing on a particular portion of an application deployment lifecycle. With the blend of 

the formal tags (i.e., computer readable) and informal tags (i.e., end user understandable), 

the ASL assists in application description from different perspectives and provides user 

support in multiple formats. Examples of interpretation include an application description 

web page with installation and invocation instructions, script generation for automated 

application installation, as well as optimal system requirements for job submission. 

B.1 Structure of the Language 

An ASL document consists of four distinct yet related sections that are described in 

XML. By dividing the document into these distinct sections, an ASL document is more 

modular and allows for easier initial generation and later modification. With the use of 

appropriate tools, each section of the document can have its own permissions, which 

allows the document to be modified independently and securely. As the application 

receives a wider user base, additional information may become available from its users. 

Because of multiple executions of an application, additional information can be gathered, 

such as profiles of application performance, unexpected behavior, or suggestions for 

future enhancements. Beyond the collection of application information, the segregation of 

the document into appropriate sections allows for shorter search times among users 

allowing them to focus on sections of the document of most interest. To provide 

segregation of information collection and retrieval, an ASL document consists of 

application name and description, installation requirements, job invocation requirements, 

and hints. 



 
 

257 
 

The sections are not directly connected to each other, but the data is stored only once 

per ASL document. Because of this, inadvertent references to information provided in 

other parts of the document may exist. These sections are correspondingly mapped to 

XML with appropriate tags. Each of the sections is described below and the schema is 

provided for the given section. 

B.1.1 Application name and description 

The application name and description section contains the most basic information 

about an application and acts as the application identification component. It specifies the 

name and version of the application as can be found in an application repository. This 

section also contains sub-elements such as the application description describing the 

application in a human readable format. The description identifies the problem the 

application solves and maps the application to an application category. The application 

category element is limited to a predefined set of values as described in Section ##. It is 

intended to offer better understanding of the application deployment process on the grid 

and it is essential in classifying different types of applications deployed in a grid 

environment.  

When selecting the application category for an ASL specification, the following 

considerations should be examined by a user composing the document. Applications that 

belong to categories (1) and (2) can be distributed and scheduled across any available 

computational resource on the grid because there is no synchronization or coordination 

required between individual tasks. However, applications in categories (3) and (4) must 

be scheduled on a single computational resource and cannot be distributed across 

multiple resources. This does not imply that the application may not use additional, 



 
 

258 
 

distributed resources. If an application has been developed specifically for the grid, it can 

utilize middleware components to enable cross-resource task execution. In that case, task 

scheduling is the responsibility of the application itself because it would be deployed on a 

dedicated resource. Applications in categories (5) and (6) expect that the individual 

applications are distributed and assume that the individual tasks are scheduled to execute 

at the same time (through advanced reservation or mutual agreement with the resource 

providers). Workflow applications (category 7) assume that the scheduler can trigger the 

execution of one or more applications as described by the workflow. Because most of the 

existing schedulers [85, 87, 97, 111] do not handle advance reservation, the use of 

workflow applications is limited and intended mostly for future generations of 

applications and grid schedulers. 

The remaining elements in this section are illustrated in Figure 59. Category element 

set has a predefined set of values from which a user must choose. The remaining 

elements found in this schema section do not have their values predefined, but can be 

defined by the person creating the document enabling desired application description.  

-  

Figure 59. Application Description section schéma 



 
 

259 
 

B.1.2 Installation requirements 

The installation requirements section of an ASL document contains a set of required 

elements that describe the installation requirements and the installation procedure. Some 

of the examples of this type of element set include minimum processor speed, processor 

architecture, minimum amount of memory needed for installation of the application, 

libraries, applications required for the installation procedure (e.g., compilers, 

(un)packaging tools), licenses needed for application installation, network requirements, 

and required amount of disk space for the installation. The tags used are simple 

declarations that specify the value of a predefined type (e.g., string, integer). Even though 

this model may result in unnecessary inconsistencies between application descriptions, 

we believe at this stage of ASL development and definition this variability is necessary to 

allow the correct words to be selected from a constrained set of choices. The full schema 

of the installation requirements section is given in Figure 60.  

Among the elements defined in the installation category are SoftwareDependencies 

and Applications Required tags. The information these tags contain is intended strictly to 

be used during the installation procedure. The SoftwareDependencies tag refers to any 

other software that will be needed for the application execution. This can be viewed as a 

prerequisite for the installation; i.e., in case software packages declared within this tag are 

not installed, the application cannot be expected to execute. Examples of such software 

dependencies would include Perl [207] with certain libraries and Postgres database [208]. 

With respect to installation, the ApplicationsRequired tag refers to other complete 

applications required to perform the installation. These applications may be invoked 



 
 

260 
 

during the installation procedure, such as unpackaging and installation tools (e.g., Ant, 

make). 

 

Figure 60. Application Installation section schéma 

B.1.3 Job invocation requirements 

The job invocation requirements section focuses on providing a user with the 

information needed to execute the application. Starting with the executable name, it also 

provides the available switches and minimum hardware requirements, as well as allows 

the developer to specify the number of input and output files with examples of their 

respective formats. This section does not represent a duplication of effort found in 

JSDL/RSL, but it is alternatively used to specify requirements for the entire application. 

Such specification is needed not only when executing a single job, but to describe the 



 
 

261 
 

available options and how to use them. Rather than specifying exact input files and other 

job-specific parameters, the category defines application requirements, such as: the 

required input files, required format of those files, any output files and corresponding 

format of the output files, libraries required to invoke the application, and licenses needed 

to run the application. This capability can be viewed as a more detailed version of man 

pages in UNIX. This category allows the developer to be shielded through a contract-like 

document; i.e., if any of the requirements are not met, the application cannot be expected 

to execute correctly. 

The majority of the application description is provided in this section of the ASL 

document, so it is natural for a set of tools to be based on this category. An example tool 

is a translator that formats the appropriate information into a web page allowing the 

information to be read through a browser, or a correct and application-specific job 

submission interface. Another example tool serves as a data verification tool that ensures 

input files are in the correct format. The complete schema is shown in Figure 61. Similar 

to the installation section, the application invocation section has elements 

SoftwareDependencies and RequiresApplications. In this context, software dependencies 

refer to any software packages that are necessary and will be used as part of the 

application during its execution. An example would include a call to a Perl module. The 

description of the application requirements tag is similar to the description from the 

application installation section of ASL, where it specifies any other applications that may 

be invoked during this application’s execution. This tag can be used to specify the 

requirements for a workflow, even though any further enforcement and coordination 

during execution must be done within the given application. 



 
 

262 
 

 

Figure 61. Application Invocation section schema 



 
 

263 
 

 

B.1.4 Hints 

The inherent variability of applications results in information describing an 

application not to be adequately captured in the preceding sections of ASL because of 

non-compliance and uniqueness of the application. Also, the succinctness of available 

options in ASL tags or already existing data may prevent additional and possibly more 

complete application information to be stored. In order to accommodate for these 

possible shortcomings, there is an additional section found in every ASL document, 

which is entitled Hints. This section contains instructions and comments, mostly in 

natural language, which provide additional information about the application. The 

purpose of this information is to allow detailed descriptions for areas of high application 

complexity, either for the users of the applications or other developers who may use this 

application as a base layer for development. Another important goal behind this section 

and its element set is that it can be accessed and edited by a wide user group. 

Performance information may be stored in this section to specify the optimal parameters 

on a particular hardware architecture.  

Depending on application type (e.g., sequential, embarrassingly parallel, MPI-based 

application), certain input parameters (e.g., size of input file, input file format, number of 

processors) may alter application performance and thus information found here could be 

useful for the resource owner, end user and even the scheduler developer. By giving 

permissions to a wide range of users, known bugs as well as suggestions for future 

advancements can be documented. A large portion of its use can be found in 



 
 

264 
 

troubleshooting an application where expected errors can be explained. Figure 62 depicts 

the Hints section schema. 

 

Figure 62. Hints section schéma 

B.2 Example ASL Documents  

This section demonstrates the use of ASL to describe an initial set of applications 

that show the ability of the language to specify and distinguish applications. In these 

examples, ASL was manually generated by providing the values associated with 

appropriate tags as defined in the schema. This generation is quite straightforward, which 

provides the user variability in selecting the tags to be defined depending on the 

application. The rest of this section provides snippets of ASL documents with their 

respective applications. Differences between applications are outlined and the ability of 

ASL to capture these differences is discussed. 

Application Descriptions 

To show the ability of ASL to capture descriptions of applications belonging to 

different categories, three applications are specified, each from a different application 

category. The first two applications correspond to the sample scenario described in the 

Grid Application Deployment Scenario section. The first application is a sequential 



 
 

265 
 

application implemented in Perl called QuerySplit that performs segmentation of the 

BLAST input query file (please see Figure 64). The QuerySplit application takes a text 

file as a parameter, which contains query sequences of variable length. It then proceeds to 

analyze the file and create several smaller files, each containing a number of queries so 

that the overall size of all the files is as close to each other as possible. This application is 

used by the second application called Dynamic BLAST – a master-worker type 

application [154] (please see Figure 65 and Figure 66). Dynamic BLAST is a custom-

built application intended to maximize use of small, distributed, readily available 

resources found in the grid to minimize time needed to perform BLAST searches [15]. It 

uses established grid protocols for communication and task coordination while the 

custom scheduler handles task allocation and data transfers. The final application for this 

appendix is a parallel implementation of matrix-matrix multiplication using Cannon’s 

algorithm [209] (please see Figure 67 and Figure 68). Figure 63 illustrates relationships 

between application categories, applications, and corresponding ASL documents. 

QuerySplit 
ASL

Dynamic 
BLAST

ASL

Cannon’s 
Matrix Mult 

ASL

QuerySplit 
Application

Dynamic 
BLAST 

Application

Cannon’s 
Matrix Mult 
Application

Figure 61 Figures 62 & 63 Figures 64 & 65

Sequential 
Application

Master-
Worker 

Application

Tightly 
Parallel 

Application

 

Figure 63. Relationship between application categories, applications and shown ASL 
documents 



 
 

266 
 

ASL is a schema and tag driven language enabling a new type of communication 

between heterogeneous grid resources. As indicated earlier by Figure 57, ASL enables 

capturing of application developer specific information and subsequent communication 

between other existing languages. In this context, the information that needs to be 

communicated is the information that can be compared to information already existing in 

other, currently available languages. In the grid environment, the goal of such 

information is to mitigate inherent heterogeneity of underlying resources, and thus the 

information needs to be capable of representing individual components of communicating 

systems that are the cause of this heterogeneity.  

B.2.1 ASL Document Snippets 

This section provides selected snippets with essential parts of the application 

descriptions outlining capabilities of ASL to capture application information and how 

dependencies can be drawn between applications, software packages and required 

libraries.  

Figure 64 is an example of a complete ASL JobInvocationSection section for the 

QuerySplit application described in the previous section. This description starts off by 

capturing all the basic application run-time information (lines 2 through 9), such as the 

application invocation method, the minimum amount of memory required for the 

application to run, as well as the minimum speed of a host CPU. The most significant part 

of the provided example is to show how to describe an input file for an application. Lines 

10 through 38 point out that the given application requires one input file to be provided in 

plain text (i.e., ASCII) and should be formatted according to the comments available in 

lines 19 through 37. In particular, lines 20 and 21 indicate that the properties input file  



 
 

267 
 

 

Figure 64. ASL document snippet showing Job Invocation Section for QuerySplit 
application. 

must contain two plain text fields with user name and job name, respectively, followed by 

a pointer to another input file. The format of the contained input file is described as being 

1. <asl:JobInvocationRequirements> 
2. <asl:ExecutableName>QuerySplit</asl:ExecutableName> 
3. <asl:ExecutionInstructions>Usage: perl QuerySplit propertieFile 

</asl:ExecutionInstructions> 
4. <asl:PhysicalMemory> 
5. <asl:LowerBoundedRange>5.0</asl:LowerBoundedRange> 
6. </asl:PhysicalMemory>                 
7. <asl:IndividualCPUSpeed> 
8. <asl:LowerBoundedRange>200.0</asl:LowerBoundedRange> 
9. </asl:IndividualCPUSpeed> 
10. <asl:InputFiles> 
11.   <asl:NumberOfInputFiles>1</asl:NumberOfInputFiles> 
12.   <asl:InputFile> 
13.     <asl:Name>PropertiesFile</asl:Name>  
14.     <asl:Required>true</asl:Required> 
15.     <asl:Description>Job properties file whose format is  
16.   described below. 
17.  </asl:Description> 
18.     <asl:FileType>ASCII</asl:FileType> 
19.     <asl:Format> 
20.       <asl:Text required="1">userName</asl:Text> 
21.       <asl:Text required="1">jobName</asl:Text> 
22.       <asl:InputFile> 
23.            <asl:Name>queryInputFileName</asl:Name> 
24.            <asl:Required>true</asl:Required> 
25.            <asl:Description>This input file is submitted as   
26.     part of the properties  
27.     input file. A query input file in FASTA format  
28.     containing at least one  
29.     query.</asl:Description> 
30.            <asl:FileType>FASTA</asl:FileType> 
31.            <asl:Format> 
32.             >gi|5524211|gb|AAD44166.1| cytochrome b (Elephas  
33.     maximus maximus) 
34.          LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQ 
35.      MSFWGATVITNLFSAIPYIGTNLVEWIWGGFSVDKATLNRFFAFHFIL 
36.      PFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLGLL 
37.           </asl:Format>                 
38.      </asl:InputFile> 
39.      <asl:Text required="0">totalNumFragments</asl:Text> 
40.    </asl:Format>                 
41. <asl:SizeLimit> 
42.  <asl:UpperBound>0.1</asl:UpperBound> 
43. </asl:SizeLimit> 
44. </asl:InputFile> 
45. </asl:InputFiles> 
46. </asl:JobInvocationRequirements> 



 
 

268 
 

in FASTA format [210] whose sample is also provided in the format tag. The tags used 

for capturing necessary information (e.g., text) map favorably to individual components 

of a job submission interface (e.g., HTML). By analyzing the available tags and provided 

information, enough details are available to fully automate creation of a job submission 

interface by a higher level tool with items such as text boxes, radio buttons and drop 

down menus with entries predefined in the ASL document. Through this approach, an 

application-specific job submission interface can be generated directly from the 

application description, thus properly directed by an application developer rather than an 

application deployer. 

 

Figure 65. Job Invocation Section of an ASL document for Dynamic BLAST application 
showing input file options. 

Figure 65 provides an example of how an application developer can provide all the 

available values for a selected application invocation option, even within an input file. 

The XML snippet describes an application’s single input file argument options. These are 

listed in lines 8 through 15, which limit the user’s choice to any single value when 

1. … 
2. <asl:InputFiles> 
3. <asl:NumberOfInputFiles>1</asl:NumberOfInputFiles> 
4.     <asl:InputFile> 
5.         <asl:Name>PropertiesFile</asl:Name> 
6.         … 
7.         <asl:List> 
8.             <asl:Radio> 
9.  <asl:lText>blastp</asl:lText> 
10.  <asl:lText>blastn</asl:lText> 
11.  <asl:lText>blastx</asl:lText> 
12.  <asl:lText>tblastn</asl:lText> 
13.  <asl:lText>tblastx</asl:lText> 
14.  <asl:lText>psiblastpn</asl:lText> 
15.             </asl:Radio> 
16.         </asl:List> 
17.         … 
18.     </asl:InputFile> 
19.     ... 
20. </asl:InputFiles> 



 
 

269 
 

invoking the application. This is an additional example of how ASL information can be 

applied in dual context for automated interface generation denoting that this information 

belongs to a single list and can be organized into a radio button group. 

 

Figure 66. Job Invocation Section of an ASL document for Dynamic BLAST application 
showing application, library, and software dependencies 

Figure 66 is a continuation of the ASL document for a Dynamic BLAST application. 

This snippet highlights the application, library, and software dependencies that Dynamic 

BLAST depends on or requires. As can be seen from the XML, a Dynamic BLAST 

application depends on being able to correctly invoke two other applications, namely 

GridWay [118] and QuerySplit, whose description was provided in Figure 64. This idea, 

although simple to comprehend, has a significant potential in terms of application 

dependency visualization and installation tools. Through the use of this formalized 

method of declaring direct dependencies, much automation can be achieved. The 

1. <asl:ApplicationsRequired> 
2.     <asl:ApplicationRequired> 
3.          <asl:Name>GridWay</asl:Name> 
4.          <asl:Version>5.0+</asl:Version> 
5.     </asl:ApplicationRequired> 
6.     <asl:ApplicationRequired> 
7.         <asl:Name>QuerySplit</asl:Name> 
8.         <asl:Version>1.0</asl:Version> 
9.     </asl:ApplicationRequired> 
10. </asl:ApplicationsRequired> 
11. <asl:RequiredLibraries> 
12.     <asl:RequiredLibrary> 
13.         <asl:Name>org.ggf.drmaa.*</asl:Name> 
14.     </asl:RequiredLibrary> 
15. </asl:RequiredLibraries> 
16. <asl:SoftwareDependencies> 
17.     <asl:SoftwareDependency> 
18.         <asl:Name>GlobusToolkit</asl:Name> 
19.         <asl:Version>4.0.2+</asl:Version> 
20.     </asl:SoftwareDependency> 
21.     <asl:SoftwareDependency> 
22.         <asl:Name>java</asl:Name> 
23.         <asl:Version>1.5+</asl:Version> 
24.     </asl:SoftwareDependency> 
25. </asl:SoftwareDependencies> 



 
 

270 
 

remainder of the application description, shown in lines 11 through 15, indicates that 

Dynamic BLAST requires a specified library. Finally, lines 16 through 25 denote other 

software packages required to run Dynamic BLAST.  

 

Figure 67.  Job Invocation Section of an ASL document for parallel matrix-matrix 
multiplication application showing and describing application invocation options and 

arguments 

Figure 67 also depicts the job invocation section of a parallel matrix-matrix 

multiplication. Lines 2 and 3 specify the format of the invocation command with several 

options. Lines 7 through 11 point out the necessary details about the first argument (e.g., 

argument description, whether it is required or optional). The remainder of the argument 

descriptions are omitted for brevity, but the information provided shows the ability of 

ASL to structurally and formally capture such information while allowing the user 

enough freedom to describe each of the arguments at the desired level of detail. 

1. <asl:ExecutableName>pmatmul</asl:ExecutableName> 
2. <asl:ExecutionInstructions>Usage: mpirun -np [numCPUs]  
3. pmatmul [N] [P] [Q] [flag]  
4. </asl:ExecutionInstructions> 
5. <asl:Options> 
6.     <asl:Option> 
7.         <asl:Arguments> 
8.             <asl:Argument>N</asl:Argument> 
9.             <asl:Description>Matrix size. Works for  
10.     square matrices only.</asl:Description> 
11.         </asl:Arguments> 
12.         <asl:Required>true</asl:Required>                 
13.     </asl:Option> 
14.     <asl:Option> 
15.     … 
16.     </asl:Option> 
17. </asl:Options> 



 
 

271 
 

 

Figure 68. Job Invocation Section of an ASL document for parallel matrix-matrix 
multiplication application showing ability of ASL to capture memory and network 

requirements 

Finally, Figure 68 points out two more interesting points supported by ASL. Lines 4 

through 6 deal with network requirements. Because this application is an example of a 

tightly coupled parallel application, the communication patterns are frequent throughout 

the algorithm iterations and thus the message passing requires the existence of a fast-

speed, local network. Although this requirement can be built into an ASL definition and 

made a default requirement for all applications of this type, advances in message-passing 

technologies are enabling the communication to take place across administrative domains 

(e.g., MPICH-G2 [55]), which would make this a possible hindrance to future 

applications. To avoid this limitation, the network type tag accepts ‘single’ as its value 

denoting this application can be executed only on a local network, limited to a single 

resource. There are other possibilities here, but these options would all require 

relationships to be made between parts of an ASL document. The final interesting feature 

found in this part of the sample ASL document is the use of formulas as part of the 

application description (line 2). This information can be used by a scheduler when the 

input data is already known to perform not only application-specific but also data-specific 

scheduling. 

 

1. <asl:PhysicalMemory> 
2.     <asl:Formula>5*N^2/sqrt(P)</asl:Formula>             
3. </asl:PhysicalMemory> 
4. <asl:Network> 
5.     <asl:Type>single</asl:Type> 
6. </asl:Network> 
7. <asl:CPUCount> 
8.     <asl:LowerBoundedRange>2.0</asl:LowerBoundedRange> 
9. </asl:CPUCount> 



 
 

272 
 

 

APPENDIX C 

TECHNICAL RESOURCE DETAILS 

  



 
 

273 
 

The following table contains technical details about compute resources utilized 

during the work presented throughout this document. 

Table 8. Technical details of resources used during performed experiments. 

Resource 
Name 

CPU 
Type 

CPU Clock 
Frequency 

(GHz) 

CPU 
Instructions 

per Cycle 

Number 
of Cores 

per 
Node 

Memory 
per 

Node 
(GB) 

Scheduler Operating 
System 

Ferrum 
Intel 
Xeon 

E5345 
2.3 4 8 12 SGE 6.0 

Linux 
2.6.9 

Olympus 
Intel 
Xeon 

3.2 2 2 4 SGE 5.3 
Linux 
2.4.21 

Everest 
AMD 

Opteron 
265 

1.6 2 2 2 SGE 6.0 
Linux 
2.6.9 

Cheaha 1 
AMD 

Opteron 
265 

1.6 2 2 2 SGE 6.0 
Linux 
2.6.9 

Cheaha 2 
Intel 
Xeon 

E5450 
3.0 4 8 16 SGE 6.0 

Linux 
2.6.18 

Coosa 
Intel 
Xeon 

3.6 2 2 2 SGE 6.0 
Linux 
2.6.9 

Wave 
Intel 

Pentium 
D 

3 2 2 1 Fork 
Linux 
2.6.18 

iBook 
Intel 

Core 2 
Duo 

2.33 2 2 2 Fork Mac OS X 

Dual 
Opteron 

AMD 
Opteron 

265 
1.8 2 4 8 Fork 

Linux 
2.6.9 

 

 


	Utility Driven Grid Scheduling Framework
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Grid and Applications
	Resource Influence
	Parameters' Influence
	Data Influence
	Grid Access

	Problems with Current Grid Access Model
	Research Objectives
	Approach Overview
	Contributions

	Broader Impact
	Overview

	Background and Motivation
	Glossary of Frequently Used Terms
	Grid Computing
	Grid Applications
	Grid Application Classification

	Grid Languages and Technologies
	Resource Specification Language (RSL)
	Job Submission Description Language (JSDL)
	Resource Description Language (RDL)

	Scheduling Background
	Local Resource Managers
	Grid Metaschedulers
	Types of Metascheduling

	Grid Scheduler Approaches and Implementations
	Community Scheduler Framework (CSF)
	AppLeS Project
	GrADS Project
	Condor-G
	Nimrod/G
	Gridbus Broker
	Michigan Advanced Resource Scheduler (MARS)
	GridWay
	Workflows and Multi-objective Scheduling
	Critique

	Application Performance Modeling and Monitoring
	Using Historical Information to Predict Application Run Times
	Prophesy Performance Database
	GridBench
	GrapBench
	BioPerf
	STAPL
	Application Skeletons
	Critique

	Embarrassingly Parallel (EP) Application Domain
	Selection of the EP Application Domain
	EP Applications
	EP Application Metascheduling Considerations

	Other Related Work
	Bioinformatics Application Domain
	Statistical Genomics Domain
	Simulating Grid Resources
	Automating Service Descriptions
	Cloud Computing


	Approach
	Complexity of Grid Job Metascheduling
	Rationale
	Approach Overview
	Requirements for Described Approach
	Application-oriented Metascheduling
	Application Specification Language (ASL)
	Historical Application Performance Database (AppDB)
	GridAtlas
	Security Considerations in AIS
	Composition of Services
	AIS Implementation
	AIS Usage Scenario

	User-oriented Metascheduling
	Interacting with a User

	Realizing Described Approach

	Performance Analysis and Modeling
	EP Application Metascheduling
	EP Application Taxonomy
	EP Application Execution Model
	EP Application Scheduling Framework

	Performance Analysis
	Task Input Data Influence
	Task Execution Resource Influence
	Task Parameters Influence
	Job  Parameterization
	Performance Analysis Observations

	Metascheduling Models
	Homogeneous Resources Model
	Heterogeneous Resources Model

	Reflections on the Approach

	Realizing Application- and User-oriented Metascheduling
	Bioinformatics Application
	Dynamic BLAST Architecture
	Dynamic BLAST Performance Results

	Statistical Genetics Domain
	Realizing User-oriented Metascheduling
	OptionView Architecture
	The Controller
	Metascheduling Algorithm
	User Interaction Module
	Experimental Validation of OptionView through Simulation
	Experimental Validation of OptionView on Real-World Resources


	Summary and Conclusions
	Selected Highlights
	Contributions
	Validation
	Future Directions

	Vision

	Future Work
	Extensions
	Automating the Process
	Metascheduler Pool
	Workflow Applications
	Extensions Beyond EP Applications

	Moving into the Clouds
	Metascheduling-as-a-Service (MaaS)

	LIST OF REFERENCES
	GRID USER CATEGORY CLASSIFICATION
	APPLICATION SPECIFICATION LANGUAGE
	TECHNICAL RESOURCE DETAILS

