Navigating ARPA-H

Matt Might | might@uab.edu | @mattmight HUGH KAUL PRECISION MEDICINE INSTITUTE

Advanced Research Projects Agency for Health

Where did it come from?

What are "ARPA-class" projects?

Tips for ARPA-H funding

Eisenhower learns of Sputnik

ARPA is born, 1958

Typical ARPA project

The Internet (originally called ARPANet)

Rebranded in 1972: DARPA

And also...

- 1. Advanced Robotics
- 2. Artificial Intelligence (AI)

- 5. Cybersecurity

- 8. Hypersonics
- 10. Health and Medical Technologies
- 11. Space Technologies
- 12. Energy and Power Systems

- 15. High-Energy Laser Systems

3. Precision Medicine and Biotechnology

4. Autonomous Vehicles and Unmanned Systems

6. Materials Science and Manufacturing 7. Neuroscience and Brain-Computer Interfaces

9. Quantum Computing and Communications

13. Human Performance and Bioenhancement

14. Advanced Sensors and Detection Systems

High risk, high reward

Parallel approaches

Short timelines

Fail fast philosophy

Significant deliverables

High autonomy for PMs

Limited terms for PMs

Examples: My DARPA projects

CRASH: Create unhackable OS

APAC: Malware-proof phones

STAC: Leak-proof programs

PREVENT, TREAT, CURE

Born in 2022

Modeled on DARPA

(perhaps too closely)

Inspired by Operation Warp Speed

Two new ARPA-H Projects

MATRIX project w/ Dave Fajgenbaum: \$48 million

Al search for treatments for all 10,000 rare disorders

AI-Enabled Biomedical Data Fabric: \$9 million

Collect => Harmonize => Analyze

Ex: Importing patient data via phone

6:26		···· 🗢 🗖
K Back	Health Records	3 of 3
How wou	uld vou like to share ne	w records?
SHARING	NEW RECORDS	
Ask Befo	ore Sharing	~
Automat	ically Share	
"FHIR-HOS records as will ask ea	SE" will have access to your of November 16, 2023 at 6: ch time before accessing ne	current 26 AM and w records.
	Done	

10:19

{"display":"Candace

three times per {"display":"Candace hours"}]}

"status":"activo","patior

Automated analysis: CHARM-GPT

CHARM-GPT \sim

Drug Response Profiling Sample Data Age 36 1 2 49 3 44 4 40 5 37 Ø

<u>≁</u> ⊾⊿

Tumor Size Reductio	Gene Expression Sco	Side Effect Sever
95.985284373248	90.495128632644	1.028468876827:
05	76	232
88.033450352296	88.638900372842	1.184829137724C
26	31	5
91.2421773338813	85.824582803960	0.092900825439
6	84	9545
70.617534828874	92.237057894447	1.2150897038028
07	59	767
99.097295564859	82.789877213040	0.341048247374!
83	84	8306

I need to identify clusters in this drug response profiling data for a new drug for breast cancer. Please conduct a clustering analysis.

python

import pandas as pd

```
# Load the data
file_path = '/mnt/data/Drug_Response_Profiling_Sample_Data.csv'
data = pd.read_csv(file_path)
```

data.head()

Result

	Age	Tumor	Size	Reduction	(%)
0	36			95.985	5284
1	49			88.033	8450
2	44			91.242	2177
3	40			70.617	7535
4	37			99.097	296

Side Effect Severity (0-10) 1.028469 0 1.184829 0.092901 1.215090 0.341048

CHARM-GPT writes code to look at the data and understand its format/structure.

The dataset contains the following columns:

- Age: Age of the patient.
- Tumor Size Reduction (%): Percentage reduction in tumor size.
- Gene Expression Score: A score representing gene expression levels.
- Side Effect Severity (0-10): Severity of side effects on a scale from 0 to 10.

Let's proceed with the clustering analysis. I'll perform k-means clustering to identify clusters in this data.

Steps:

- 1. Normalize the data.
- 2. Determine the optimal number of clusters using the elbow method.
- 3. Perform k-means clustering.
- 4. Visualize the clusters.

Let's start with data normalization and determining the optimal number of clusters using the elbow method. (>-)

CHARM-GPT decides on a strategy for analyzing the data.

method. (>-)

Analyzed

python

from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans import matplotlib.pyplot as plt

Select the features for clustering

Normalize the data

scaler = StandardScaler() normalized_data = scaler.fit_transform(features)

sse = []

for k in range(1, 11):

sse.append(kmeans.inertia_)

```
# Plot the elbow method result
plt.figure(figsize=(10, 6))
plt.plot(range(1, 11, 1), sse, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Sum of Squared Distances (Inertia)')
plt.title('Elbow Method for Determining Optimal Number of Clusters')
plt.grid(True)
plt.show()
```

CHARM-GPT writes code to use the elbow method to estimate the number of clusters.

choose 3 clusters to proceed with the k-means clustering.

CHARM-GPT estimates 3 clusters from the elbow method.

Analyzed

python

 $optimal_clusters = 3$ kmeans = KMeans(n_clusters=optimal_clusters, random_state=0) clusters = kmeans.fit_predict(normalized_data)

Add the cluster labels to the original data data['Cluster'] = clusters

Visualize the clusters in a 3D plot from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(12, 8)) ax = fig.add_subplot(111, projection='3d')

Scatter plot for each cluster legend1 = ax.legend(*scatter.legend_elements(), title="Clusters") ax.add_artist(legend1)

Labels and title

ax.set_xlabel('Tumor Size Reduction (%)') ax.set_ylabel('Gene Expression Score') ax.set_zlabel('Side Effect Severity (0-10)') ax.set_title('3D Visualization of Clusters')

plt.show()

CHARM-GPT writes code to run k-means clustering with 3 clusters.

The 3D scatter plot visualizes the clusters based on the tumor size reduction percentage, gene expression score, and side effect severity. Each color represents a different cluster identified by the k-means algorithm.

To summarize the clustering analysis:

- clusters.
- We performed k-means clustering with 3 clusters.
- The resulting clusters were visualized in a 3D plot.

If you need further analysis or specific insights into each cluster, please let me know! [>-]

CHARM-GPT visualizes the 3 clusters.

• We normalized the data and used the elbow method to determine the optimal number of

The 3D scatter plot visualizes the clusters based on the tumor size reduction percentage, gene expression score, and side effect severity. Each color represents a different cluster identified by the k-means algorithm.

To summarize the clustering analysis:

- clusters.
- We performed k-means clustering with 3 clusters.
- The resulting clusters were visualized in a 3D plot.

If you need further analysis or specific insights into each cluster, please let me know! [>-]

CHARM-GPT visualizes the 3 clusters.

• We normalized the data and used the elbow method to determine the optimal number of

CHARM-GPT ~

Looking at the statistics for each cluster, how might one characterize them in English?

Summary

- Cluster 0 represents patients with moderate response and moderate side effects.
- Cluster 1 represents older patients with low response and high side effects.
- Cluster 2 represents younger patients with high response and low side effects.

One more moving forward...

HealthyDocs: Secure medical records: \$10 million

Line terment the .

• 1855

Tips on ARPA-H proposals

Highly focused calls

Short turnarounds: 3-4 weeks

~75 pages for technical section

PMs have high discretion

Needs a "secret weapon"

Makes impossible goal possible

Teaming often encouraged

Teaming can be forced post-award!

So, team or be teamed

Deliverables must be delivered

Payment only upon delivery

Budgets broken out by milestone

Contracting is a nightmare

Subcontracting is awful

Risky if deliverable spans subs

Contracting is lethargic
MATRIX: Intent to award in Nov

MATRIX: Still in subcontracting

BDF: Intent to award in February

BDF: Still in subcontracting

Use Al for RFA analysis

Use Al to make checklist

Use AI for proposal critique

Use AI for "Task Description Doc"

Also, don't use ChatGPT

Do use Microsoft Copilot

Thank you!

