Computational methods for
integrative omics and relation
discovery between biomedical

entities
Feb 11, 2016

Karan Uppal (PhD) and Sophia A. Banton (MS, PhD
candidate)

Clinical Biomarkers Laboratory
Emory University School of Medicine



Learning Objectives

e Data-driven methods for integrating paired —
omics data and visualizing associations (Karan
Uppal)

 Knowledge-driven methods for integrating
paired —omics data (Sophia Banton)



Patient
(disease/symptoms)

1

T « Patient
w medical

. >
A) Electronic records

Clinician

Data sources to
support healthcare
decision making and
facilitate precision
medicine

Health Records * Clinical notes
* Lab results,

~_(EHR)
etc.

- / PubMed /
B) Scientific \
Cochrane
Library

literature
Systems Biology

C) Omics data

/ Other // Transcrlptoml // Epigenomics // GWAS // Metabolo // Proteoml/
“omes” mics




Introduction: A Systems Biology Framework

 The goal of Systems Biology:

— Systems-level understanding of biological systems

— Analyze not only individual components, but their interactions as well and

emergent behavior

Exposures

Internal measurements
Disease states

Y

Systems Biology

“Integrative approach in which scientists study pathways and

networks will touch all areas of biology, including drug
discovery’
C. Henry and C. Washington 4



Dissecting the Biological system via -omics
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Dissecting the Biological system via -omics
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Methods of omics integration

a Concatenation-based integration b Transformation-based integration ¢ Model-based integration
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Meta-dimensional analysis can be divided into three categories. a | Concatenation-based integration involves combining data sets
from different data types at the raw or processed data level before modelling and analysis. b | Transformation-based integration
involves performing mapping or data transformation of the underlying data sets before analysis, and the modelling approach is
applied at the level of transformed matrices. ¢ | Model-based integration is the process of performing analysis on each data type
independently, followed by integration of the resultant models to generate knowledge about the trait of interest. miRNA, microRNA;

SNP, single-nucleotide polymorphism.

Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. 2015. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev
Genet 16:85-97. 7



Data-driven methods for
Integration



Paired integrative —omics analysis

* Discover networks of associations or correlated
variables (genes, proteins, metabolites, microbiome,
epigenetic alterations, clinical variables, etc.) from
paired —omics data measured across same samples

— Univariate or multivariate regression
— Example: explaining protein abundance with respect to
gene expression

 Determine if different —omics data point to same
disease mechanism

* Generate novel hypotheses for further investigation



Metabolomics data Transcriptomics data

(n subjects X p metabolites) (n subjects X g genes)
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Metabolomics data
(n subjects X p metabolites)

Microbiome data
(n subjects X q bacterial species)

M1 M2 - Mn B1 B2 - Bn
Subjectl | 199 19 - 100 Subjectl | 19 19 - 100
Subject2 | 10 40 90 Subject2 | 10 40 - 90
SUbJectN 50 30 _ 20 SUbjectN 10 40 - 50
\ Association matrix /
Univariate

Bl B2 ' Bn * Pearson Correlation

M1 04 03 - 0.3 * MetabNet (Uppal2015)
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\ *  mixOmics (Cao 2009)
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Relevance networks

 Whatis a network (or graph)?
— A set of nodes (vertices) and edges (links)
— Edges describe a relationship (e.g. correlation) between the nodes

e Whatis a relevance network?

— Networks of highly-correlated biomedical/clinical entities (Butte 2001;
PNAS)

— Metabolomics x Proteomics, Transcriptomics x Proteomics,
Metabolomics x Microbiome, Metabolomics x Clinical variables/
phenotypes, etc.

— Generate a bipartite graph network .
using a association threshold ' —
(e.g. 0.5) to visualize positive or -
negative associations

Circles: microbial species —
Rectangles: metabolome features



Methods for generating relevance
networks

* Univariate
— Pairwise Pearson or Spearman correlation between data from different
biomedical/clinical technologies (Butte et al. 2009, Uppal et al. 2015)

— Software:
* MetabNet (Uppal 2015; R package for performing pairwise correlation analysis and
generating relevance networks)
— Application: Integration of TCE exposure data and physiological markers with metabolomics
(Douglas I. Walker et al. submitted)

e Multivariate

— Multivariate regression techniques such as partial least squares (PLS), sparse
partial least squares regression (sPLS), multilevel sparse partial least squares

(msPLS) regression, etc.

— Software:
* mixOmics (Cao et al. 2009, Liquet et al. 2012; R package for integration and variable
selection using multivariate regression)

— Applications:
* Transcriptome x Metabolome (Roede, Uppal et al. 2013)
* Microbiome x Metabolome (Cribbs, Uppal et al. 2016 in press)



Univariate methods



MetabNet (R package; Uppal 2015)

* Performs pairwise correlation (Pearson or Spearman) or
partial correlation analysis to generate association matrix
(p x ) and relevance network using the data measure on
same N

e Large number of possible associations (p x q)

— E.g.: 2x1078 possible associations for 20,000 genes x 10,000
metabolic features

— Computationally intensive and hard to interpret results

e More suitable when number of variables in at least one
layer (p or q) is small

* Availability: Software and tutorial available on sourceforge
(https://sourceforge.net/projects/metabnet/)



Case Study 1: Using MetabNet for cross-platform paired
integrative analysis. Integration of TCE exposure data and
physiological markers with metabolomics
(Walker, Uppal et al. manuscript submitted)



@ Urinary TCE exposure markers
Renal biomarkers

Immunological markers
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Courtesy:
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Multivariate methods



Generating relevance network using
SPLS or msPLS techniques (Cao 2009,
Liqguet 2012)

sparse partial least squares (sPLS) regression or
multilevel partial least squares (msPLS) method

One-step procedure for variable selection as well as
integration

Comparison of different multivariate integration
techniques showed that sPLS generates (Cao 2009)

Implemented in the R package mixOmics

Generates association matrix and allows visualization
of associations using bipartite relevance networks
(Liquet 2012)



sPLS method

SPLS is a variable selection and dimensionality reduction method that
allows integration of heterogeneous omics data from same set of samples

Robust approximation of Pearson correlation using regression and latent
(principal) variates
Eg: transcriptome (matrix X) and metabolome (matrix Y) data

where,

matrix X is an n x p matrix that includes n samples and p metabolites
matrix Y is an n x g matrix that includes n samples and g genes

Objective function

max cov(X,Y,)
where
u,, U,..uy and vy, v,...v, are the loading vectors
H is the number of PLS-DA dimensions

A Lasso based optimization is used to select most relevant variables



multilevel sPLS method for experiments with
repeated measurements

If X'is an (N x p) intensity matrix, where N is the number of samples and p is the
number of m/z features, then

1) Split-up variation:
X,,= X + X, .+ X

subject x Stimulation + Xsubject x time

+X

stimulation

+ X

time stimulation x time residual

2) sparse PLS objective function:

max cor(Y,X )var(X,)
where
Y is the matrix indicating group of each sample
X is the split-up variation
u,, U,..u, are the loading vectors
H is the number of PLS-DA dimensions

A Lasso based optimization is used to select most relevant variables



Case Study 2: Application of SPLS technique for cross-
platform paired integrative analysis. Integration of targeted
bile acids measurements and clinical variables (age, BMI,
etc.) with metabolomics
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Case Study 3: Application of sPLS technique for
integrative —omics. Microbiome-Metabolome Wide
Association Study of Lung BAL: Global integration of 5930
m/z features with 153 microbial species using sparse Partial
Least Squares regression



Legend
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Integrating data from other
sources (e.g. PubMed)



Text mining tools for literature-based
relation discovery biomedical text
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Association mining algorithm for
constructing relation trees

Pointwise Mutual Information(t,, t,)= v, * log, p(t; and t,)

p(ty) p(ty)
where

v;is 1if termt, is present in the controlled vocabulary, 0 otherwise;

p(t,) is the probability of term 1 in the corpus,

p(t,) is the probability of term 2 in the corpus, and

p(t; and t,) is the probability of co-occurrence of terms 1 and 2 in the corpus
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Knowledge-Based Approaches of Data Integration

Sophia A. Banton, Shuzhao Li
Clinical Biomarkers Laboratory

Emory University School of Medicine



Introduction: biological networks

* Types of biological networks:
— Intra-cellular networks

Transcriptional regulatory networks
Metabolic networks
RNA networks

Protein-protein interaction (PPI) networks
Cell signaling networks

— Other biological networks

Neuronal synaptic connection networks

Brain functional networks

Ecological food webs

Phylogenetic networks

Correlation networks (e.g., gene co-expression)
Disease — “disease gene” association networks
Drug — “drug target” networks

31



Transcriptional regulation networks and modules

 Model regulation of gene expression
— Gene 2 mRNA - protein
* Nodes correspond to genes

* Directed edges correspond to interactions through which the products of one gene
affect those of another
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Blood Transcription Modules (BTMs)

Human blood Master network

: 17,397 genes
trangcriptomes 604,363 interactions Seedei? & c'jseeg;)c\;?
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Blood Transcription Modules (BTM) as a powerful new tool. High quality gene network was first inferred
from public transcriptomic data. Context specific subnetworks were derived by intersecting GO, cell types,
interactome and bibliome. Gene modules were extracted from these subnetworks by search algorithms that
take into account connection density and underlying conditions. KEGG, BioCarta, PID, Reactome and TF
targets were integrated as search seeds. These BTM modules can be used as alternative to pathways, and

often offer better sensitivities.

33
Li et al., 2014. Nature Immunology, 15:195



Metabolic networks

e Used for studying and modeling metabolism
— Biochemical reactions in cells that allow an organism to carry out essential life functions

3 Lipid Carbohydrate Cofactor
etabo metabolism metabolism metabolism

Energy Other secondary
metabolism metabolism

Banton et al 2016. JAALAS -KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway mapping of marmoset plasma metabolites associated with a change
from the NE diet to the purified diet. The black dots represent metabolites in the pathways that were identified by using Mummichog 34



Metabolites

Small molecules
Macromolecules

Metabolic pathways

Series of successive
biochemical reactions
for a specific metabolic
function, e.g.,
glycolysis, or penicillin
synthesis, that convert
one metabolite into
another

Metabolic networks
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Banton et al 2016. JAALAS. Metabolic network activity of plasma amino acid
concentrations affected by changes between the baseline, standard, and synthetic diets
fed to the common marmoset (Callithrix jacchus). 35



Metabolic model at Genome-scale: need for
bioinformatics tools

O metabolite [|enzyme  reaction

&

"And that's why we need a computer.”

— Courtesy: Keck Graduate Institute



Mummichog: rewriting metabolomics workflow

Conventional approach
l Processed samples ‘

"
l LC/MS spectra !

*
{ Feature table ‘ ®

mummichog

L =l

l Class comparison }

‘

—> Metabolite identification

"
l Pathway/network mapping }- ’ @

A) In the work flow of untargeted metabolomics, the conventional approach requires the
metabolites to be identified before pathway/network analysis, while mummichog (blue arrow)
predicts functional activity bypassing metabolite identification. B) Each row of dots represent
possible matches of metabolites from one m/z feature, red the true metabolite, gray the false
matches. The conventional approach first requires the identification of metabolites before
mapping them to the metabolic network. C)mummichog maps all possible metabolite matches to
the network and looks for local enrichment, which reflects the true activity because the false
matches will distribute randomly.

37
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Case Studies

Reanalysis of Snyderome using new tools
Galactosemia: GALT transcriptomics and metabolomics integration
Formation of memory CD8+ T cells

Integration of Metabolomics and Transcriptomics to evaluate the effect
pyrimethamine on plasma hemoglobin using Group LASSO



Case Study 1: Reanalysis of Snyderome using new tools
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Case Study 1: Mummichog interpretation of Snyder metabolome
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Case Study 1: Reanalysis of Snyderome using new tools

The transcriptomics signature during RSV infection, using BTMs. Enrichment test was performed within GSEA

software, using BTMs as custom gene sets.

Name

Enriched in monocytes (I1) (M11.0)

Enriched in monocytes (1) (M4.15)

RIG-1 like receptor signaling (M68)

Complement Activation (I) (M112.0)

Enriched in monocytes (l1l) (M73)

Cell Activation (IL15, IL23, TNF) (M24)

Cell Cycle and Growth Arrest (M31)

Formyl peptide receptor mediated neutrophil response (M11.2)
RA, WNT, CSF receptors network (Monocyte) (M23)
Extracellular Matrix, Collagen (M210)

Signaling in T Cells (1) (M35.0)

Myeloid cell enriched receptors and transporters (M4.3)
Inflammatory response (M33)

Enriched in activated dendritic cells (11) (M165)

Viral sensing & immunity; irf2 targets network (1) (M111.0)
Blood Coagulation (M11.1)

TLR and Inflammatory Signaling (M16)

Lysosome (M209)

Innate Antiviral Response (M150)
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Day Number (Pelative to 1* infection)

NES
2.386807
2.08188
1.867297
1.948812
1.932553
1.89332
1.892822
1.920023
1.842038
1.76067
1.743513
1.942556
1.636564
1.918629
1.815972
1.855351
2.084829
1.678483
1.679814

NOM p-val
0
0.005102
0.00978
0.011086
0.011905
0.012136
0.016908
0.021028
0.022321
0.025316
0.027972
0.02849
0.029056
0.02973
0.03038
0.030691
0.031884
0.032407
0.033413
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Case Study 2: Background
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 Galactosemia is an autosomal recessive condition that affects an individual's ability to metabolize
galactose

* In Drosophila melanogaster dGALT is the presumed ortholog of the human GALT gene which converts
Galactose-1-phosphate to UDP-Galactose

* Genotypes:
— Ap2is the imprecise excision of a p element in the dGALT gene and results in loss of dGaLT activity (Knockout).
— C2is the precise excision of the same p element and results in normal GALT activity (Wild-type).

Transcriptome x Metabolome

Transcriptomics Metabolomics
15-20 ug of Larva were used for each Human Data
RNA extraction and subsequent cDNA » 3 Cases and 6 controls

synthesis. » Using 19,505 metabolite features
Fly Data

Dye hybridization and microarray were * 9 Knockout and 9 Wild-Type

performed using Nimblegen technology. * Using 9,767 metabolite features
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Case Study 2: Transcriptome x Metabolome
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o Case Study 3: Transcriptome x Metabolome

immunology

Autophagy is essential for effector CD8* T cell
survival and memory formation

Xiaojin Xul>>, Koichi Arakil%, Shuzhao Li?, Jin-Hwan Han!, Lilin Ye!, Wendy G Tan!, Bogumila T Konieczny!,
Monique W Bruinsma?3, Jennifer Martinez*, Erika L Pearce?, Douglas R Green*, Dean P Jones?,
Herbert W Virgin? & Rafi Ahmed!
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Enzymes associated with
significant metabolites

IR o 2.5.1.56,2.7.1.91,2.4.2.9,24.2.8, Gpd1l, Kdsr, Ado, Acox1, Gmpr2, Tkt, Alg5,

s as e 1.14.16.4, 1.14.16.5, 3.6.1.22, Alg13, Hprt, Nampt, Gsta4, Gstk1, Gstm1,

e w S 24.2.1,2.4.1.80,3.1.4.35,2.4.24, Gstm4, Gsto1, Gstp1, Gstp2, Gstt2, Hpgds,
2427,24.214,24.2.11,24.212, Gfpt1, Adk, Nagk, Dck, Sphk1, Sphk2, Prps1,
3.5.4.17,2.4.2.19,1.1.1.94, 3.1.6.8, Prps2, Cept1, Ept1, Cept1, Cdipt, Plb1, Acot2,

Enzymes 3.1.6.1,4.3.2.2,1.14.14.1, 3.1.3 .4, Genes Lpin1, Lpin2, Pde1b, Pde2a, Pde3b, Pde4a,
3.1.3.5,3.1.4.46, 2.4.1.141, Pde4d, Pde7a, Pde8a, Pde5a, Arsa, Gba2,
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Metabolites 3.5.1.23, 1.13.11.11, 2.6.1.7,
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Enrichment score (ES)

Ranked list metric (PreRanked)

Enrichment plot: FIL_PATH_BOTHGENES
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Case Study 4: Integration of Metabolomics and Transcriptomics to evaluate the effect
of subcurative doses of pyrimethamine on plasma hemoglobin in Rhesus macaques
using Group LASSO



Experimental Design

 Five macaques were each delivered a sub-curative dose of pyrimethamine at Day 21, and 3-day
curative doses commencing at Days 52 and 90, in each case immediately following peripheral blood
sampling. This results in two pre-drug, three post-drug, and two inter-drug treatments as indicated.

 Plasma samples were collected over the course of 100 days.

Day: 0 20 27 52 59 90 98
Pre1 Pre2 Post3 Inter4 Post5 Inter6 Post7

 These correspond to:

Time Point 1 = Day 0 (Baseline Sampling Point)
Time Point 2 = Day 21
Time Point 3 = Day 27
Time Point 4 = Day 52
Time Point 5 = Day 59
Time Point 6 = Day 90
Time Point 7 = Day 98
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Analysis Summary

Question 1: Are there genes and metabolites that are associated with hemoglobin
levels?

Correlation Analysis
— 305 metabolites are significantly correlated with Hgb levels
— 1074 genes are significantly correlated with Hgb levels

Question 2: Are there features that separate subjects based on drug exposure (pre
vs. inter vs. post)

Differential Expression Analysis

— 1660 metabolites can separate the subjects into inter and post drug exposure groups
— 925 genes can separate the subjects into pre, inter and post drug exposure groups

Conclusion

— The list of potential targets is cumbersome (information overload)



Can a single test answer two questions?

*  Which features from both platforms are associated with drug exposure?

* Among those features, which of them are specifically associated with
hemoglobin levels?



Hybrid concatenation and transformation based integration using
Group LASSO (Banton et al.)

Pathways
.Genes > Standardized —>
GROUP
PATHWAY

Pathways . /
‘Metabolites —> Standardized \)

LASSO

Contributions of the method

» Allows integration of multiple omics data types

* The method is not platform specific or dependent

+ The method retains functional information provided by pathways 51
The method allows prediction of outcomes and thus can be used in the development of clinical biomarkers



Least Absolute Shrinkage and Selection Operator (LASSO)

A popular model selection and shrinkage estimation method (Tibshirani 1995).
The lasso estimator is defined as:

4, -argmin(Y - X8 A3 8, )
B =

Where A is the tuning parameter

Extended from the lasso penalty, the group lasso estimator is:

X G
B, = arg;nin(HY—X/)’Hi +AE 2)
g=1
1

g : the index set belonging to theg th group of variables.

The penalty does the variable selection at the group level, belonging to the intermediate
between/l- and [2- type penalty.

It encourages that either ﬁg =0 or/}’g’j = () forall je{l,---,dfg}

Meier L, Geer Svd, Bihlmann P. 2008. The Group Lasso for Logistic Regression. Journal of the Royal Statistical Society Series B (Statistical Methodology)
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Integration with Group LASSO

N V o
c9@"Q 0&°°Q ‘oonb 0&°°Q
A (—H
( \
Y Pathway1 Pathway 2 Pathway 3 Pathway n

y PC1 PC2 PC3 |PC1 PC2 PC1 PC2 PC1
y PC1 PC2 PC3 PC1 PC2 PC1 PC2 PC1
y PC1 PC2 PC3 PC1 PC2 PC1 PC2 PC1
Outcome PC1 PC2 PC3 PC1 PC2 PC1 PC2 PC1
y PC1 PC2 PC3 PC1 PC2 PC1 PC2 PC1
y PC1 PC2 PC3 PC1 PC2 PC1 PC2 PC1
y PC1 PC2 PC3 PC1 PC2 PC1 PC2 PC1
- PC1 PC2 PC3 PC1 PC2 |PC1 PC2 PC1

\ )

Model*

Where Y is the hemoglobin level in each subject

*Model built using cross-validation



Results*: Number of Targets is drastically reduced

Number Number
Pathway of Genes of Metabolites
Ascorbate and aldarate metabolism (Vitamin C) 5 4
Glycerophospholipid metabolism 53 7
Linoleic acid metabolism 6 6
Cysteine and methionine metabolism 26 11
Porphyrin and chlorophyll metabolism 20 9
Retinol metabolism (Vitamin A) 16 6
Valine, leucine and isoleucine degradation 38 6
Nicotinate and nicotinamide metabolism 18 3
Total features 182 52

*Lambda min = 0.009
Lambda se = 0.1872



Proof of Concept: Correlations between Hgb and significant genes/metabolites selected by

Group Pathway Lasso

Pathway: Porphyrin and chlorophyll metabolism (Heme dysregulation in first, second, and eighth steps of biosynthetic

Gene = FECH

Inter

Post

pathways)
Step 1: Heme biosynthesis (ALAS2 gene -> aminolevulinic Step 8: Terminal step in Heme biosynthesis (FECH
acid synthase) gene)
175Gene=ALA82 Pearson's r=-0.53 p = 0.0069 m/z=154.0472 Pearson's = 0.43 p = 0.0332 Gene =FECH Pearson's r =-0.49 p =0.0127
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Summary: methods of omics integration
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Meta-dimensional analysis can be divided into three categories. a | Concatenation-based integration involves combining data sets
from different data types at the raw or processed data level before modelling and analysis. b | Transformation-based integration
involves performing mapping or data transformation of the underlying data sets before analysis, and the modelling approach is
applied at the level of transformed matrices. ¢ | Model-based integration is the process of performing analysis on each data type
independently, followed by integration of the resultant models to generate knowledge about the trait of interest. miRNA, microRNA;

SNP, single-nucleotide polymorphism.

Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. 2015. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev
Genet 16:85-97. 56
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