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ABBREVIATIONS 

BU Bottom up 

CPTAC Clinical Proteomic Tumor Analysis Consortium 

DE Differential Expression 

GELFrEE Gel-Eluted Liquid Fraction Entrapment Electrophoresis 

HCD Higher-energy collisional dissociation 

IF Intermediate filament 

K2C8 Type 2 cytoskeletal keratin 8 

NCI National Cancer Institute 

NGS Next-generation sequencing 

NSJ Novel Splice Junction 

PDX Patient-derived xenograft 

PFR Proteoform record 

PTM Post-translational modification 

QMT Quantitation mass target 

RPLC Reverse-phase liquid chromatography 

SNP Single nucleotide polymorphism 

TCGA The Cancer Genome Atlas 

TD Top down 

WGS Whole genome sequencing 

WHIM Washington University Human in Mouse 
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SUMMARY 

Bottom-up proteomics relies on the use of proteases and is the method of choice for 

identifying thousands of protein groups in complex samples. Top-down proteomics has been 

shown to be robust for direct analysis of small proteins and offers a solution to the “peptide-to-

protein” inference problem inherent with bottom-up approaches. Here, we describe the first 

large-scale integration of genomic, bottom-up and top-down proteomic data for the comparative 

analysis of patient-derived mouse xenograft models of basal and luminal B human breast 

cancer, WHIM2 and WHIM16, respectively. Using these well-characterized xenograft models 

established by the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium, 

we compared and contrasted the performance of bottom-up and top-down proteomics to detect 

cancer-specific aberrations at the peptide and proteoform levels, and to measure differential 

expression of proteins and proteoforms. Bottom-up proteomic analysis of the tumor xenografts 

detected almost 10 times as many coding nucleotide polymorphisms and peptides resulting 

from novel splice junctions than top-down. For proteins in the range of 0-30 kDa, where 

quantitation was performed using both approaches, bottom-up proteomics quantified 3,519 

protein groups from 49,185 peptides, while top-down proteomics quantified 982 proteoforms 

mapping to 358 proteins. Examples of both concordant and discordant quantitation were found 

in an approximately 60:40 ratio, providing a unique opportunity for top-down to fill in missing 

information. The two techniques showed complementary performance, with bottom-up yielding 8 

times more identifications of 0-30 kDa proteins in xenograft proteomes, but failing to detect 

differences in certain post-translational modifications (PTMs), such as phosphorylation pattern 

changes of alpha-endosulfine. This work illustrates the potency of a combined bottom-up and 

top-down proteomics approach to deepen our knowledge of cancer biology, especially when 

genomic data are available. 
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INTRODUCTION 

Recent advances in high-throughput genomics have allowed deep characterization of 

cancer at the DNA and RNA level. Large-scale initiatives, such as The Cancer Genome Atlas 

(TCGA) at the National Cancer Institute (NCI), have provided comprehensive genomic analyses 

of human tumors from many cancer types, and thus, the prospect for novel insights into the 

pathways leading to cancer and new possibilities for medical advances. It is well known that 

genomic aberrations and an inability to properly maintain and repair genetic material enable 

tumor initiation and progression (1). The large-scale mapping of cancer genomes has provided 

a detailed catalogue of mutations and polymorphisms that may translate into proteome variation 

and has left researchers wondering which genomic abnormalities drive tumor biology and which 

are functionally irrelevant. Although RNA sequencing can provide supporting evidence for the 

translation of DNA-level mutations into the proteome and alternative splicing, events including 

signal peptide cleavage and a multitude of biologically active post-translational modifications 

(PTMs) can significantly increase protein variation that RNA-seq data could not reliably predict. 

Recent studies have also shown that RNA transcript measurements poorly predict protein 

abundance differences between tumors (2). Thus, detection of mutations and PTMs at the 

protein level provides a direct readout of the biological impact of cancer-related genomic 

abnormalities.  

Proteomic technologies, especially those based on mass spectrometry (MS), have the 

potential to detect genetic aberrations at the protein level. These technologies aim to identify the 

genes that give rise to proteins, characterize any modifications from the primary amino acid 

sequence, and quantify differences in relative expression levels between samples. Ideally, these 

techniques will be operable for all the proteins expressed in a cell, tissue, or other complex 

protein mixture; however, this is not the case. Different technologies exist, each with its unique 

strengths and weaknesses. Two forms of proteomics analyses are shotgun bottom-up (BU) and 

top-down (TD) (3). In BU proteomics, the proteins are digested with a protease, such as trypsin, 
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prior to peptide detection and sequencing using tandem mass spectrometry. Protease digestion 

results in a complex mixture of peptides between 500-3500 Da that are usually separated by 

reverse phase liquid chromatography or multidimensional chromatography in-line with a mass 

spectrometer (4, 5). Precursor mass measurements, along with MS/MS fragmentation 

information, allow inference of the protein composition of the sample via these peptides. 

Extremely sensitive BU methods have been developed, and are capable of identifying >5,000 

protein groups within a single sample, with some peptide sequences present in multiple proteins 

or isoforms. Such shared peptides can lead to ambiguities in identifying the unique proteins 

present in the sample, the so called protein parsimony problem (6). Also, enzymatic digestion 

can result in the loss of information about combinatorial PTMs and sequence variants. 

Top-down (TD) proteomics, on the other hand, does not rely on the use of proteases and 

examines proteins as a whole. In doing so, top-down proteomics can fully characterize the 

composition of individual proteoforms (7), including proteolysis products, signal peptide 

cleavage, sequence variants, and PTMs co-occurring on the same molecule. A typical TD 

workflow consists of single or multi-step protein separations, such as RPLC (8) and GELFrEE 

(9), and the resulting protein fractions are further separated by liquid chromatography in line 

with a mass spectrometer. Advances in MS instruments and protein separations have allowed 

TD proteomics to become a robust technique for the identification and characterization of 

~2,000-3,000 proteoforms (8-10). Unlike BU, TD proteomics routinely links proteins to their 

parental genes without the problem of protein inference. 

With the recent advent of methods for differential quantitation using TD on proteins 

below 30 kDa (11), it is now possible to begin comparing BU and TD techniques for three 

primary proteomic tasks: gene identification, whole proteoform characterization, and detection of 

differential expression. While some efforts have explored the complementarity of BU and TD 

technologies in the study of less complex proteomes (12, 13) and the structural analysis of 

antibodies (14, 15), herein we describe the first evaluation of the complementarity of BU and TD 
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technologies for the qualitative and quantitative analysis of cancer proteomes. To accomplish 

this task, we employed two samples from patient-derived xenografts (PDXs) established from a 

basal-like (WHIM2-P32) and luminal B (WHIM16-P33) breast cancer (16-18). Patient-derived 

breast cancer xenografts have been established as reliable models of human tumors that 

provide a renewable resource for studying the human disease (16, 19, 20). These patient-

derived xenograft tumor lines are genomically well-characterized (16, 17) and have been used 

to generate Comparison Reference (CompRef) samples within the Clinical Proteomic Tumor 

Analysis Consortium (CPTAC) (21) for performance validation of mass spectrometry protocols 

and workflows. Genome and RNA sequencing of the xenografts has provided us with lists of 

sequence variants, due to single nucleotide polymorphisms (SNPs), and novel splice junctions 

(NSJs). Using these well-characterized xenograft models, we compared and contrasted the 

performance of BU and TD proteomic approaches to detect cancer-specific aberrations at the 

peptide and proteoform levels, and to measure differential expression of proteins and 

proteoforms. 

This work represents the first large-scale integration of genomic, BU and TD proteomic 

data for comparative analysis of PDXs comprised of the studies described in Table 1. In brief, 

Study 1 was designed to provide information on the ability to detect tumor-specific features 

informed by prior RNA-seq data of these samples (16, 17). Study 2 tested the applicability of the 

recently established label-free top-down quantitative proteomics platform (11) for the analysis of 

tumors. Finally, Study 3 sought to detect differential expression of proteins and proteoforms 

between basal and luminal B breast cancer samples for the low molecular weight proteome 

(<30 kDa).  

 

EXPERIMENTAL PROCEDURES 

Sample preparation. Cryopulverization of tumor xenografts was performed at 

Washington University in St. Louis using the established protocols of CPTAC as previously 
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described (22). One of the driving motivations for creating the CompRef samples was to 

evaluate the capacity for mass spectrometry protocols to consistently provide both qualitative 

and quantitative data between samples. The two Washington University Human-in-Mouse 

(WHIM) models chosen for this purpose represent two subtypes of breast cancer with very 

different intrinsic biologies (17, 18). WHIM2 is derived from a basal-like (ER-, PR+, Her2-) 

breast cancer whereas WHIM16 is derived from a luminal B (ER+, PR+, Her2-) breast cancer 

(16, 17). To prepare the samples, tumors were harvested from established xenografts, pooled 

and subjected to cryopulverization to create two different homogeneous samples, P32 (WHIM2) 

and P33 (WHIM16). The pulverized tissue from each CompRef sample (263 mg WHIM16, P33) 

and (257 mg WHIM2, P32) was solubilized in 1200 µL or 1100 µL lysis buffer (4% sodium 

dodecyl sulfate, 100 mM Tris-HCl, pH 7.5) supplemented with 50 mM DTT (Thermo, Rockford, 

IL), 10 mM sodium butyrate and phosphatase and protease inhibitors (Thermo, Rockford, IL). 

The samples were then sonicated using a Covaris S220X focused ultrasonicator (Covaris, 

Woburn, MA) set to PIP (Peak Incident Power) = 100, DF (duty factor) = 10, CPB (cycles/burst) 

= 500, Duration = 60 s at 6°C. The protein concentrations determined using the Advanced 

Protein Assay (Cytoskeleton, Denver, CO) were 12.7 mg/mL and 11.2 mg/mL for P32 and P33, 

respectively. Samples were frozen at -80°C and shipped to Northwestern University on dry ice. 

GELFrEE separation was performed as previously described (23, 24). Briefly, 400 µg of 

protein were precipitated with cold acetone to remove salts and suspended in 4% SDS solution 

prior to the addition of GELFrEE loading buffer. Separation was achieved using a commercial 

GELFREE 8100 fractionation system (Expedeon, Cambridge, UK) with either 8 or 10% 

cartridges to isolate proteins in ~5 kDa bins from 3.5 kDa to approximately 100 kDa 

(Supplemental Fig. S1). SDS was removed using the method described by Wessel and Flügge 

(25), unless otherwise noted. Tumor samples were centrally prepared at Northwestern 

University, some of which were shipped back to Washington University in St. Louis for BU 

proteomic analyses. 
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Bottom-up Proteomics 

 Endoprotease digestion of GELFrEE fractions. The proteins in GELFrEE fractions for 

Study 1 were precipitated using acetone. Protein pellets were dissolved in 20 µL of Tris buffer 

(100 mM, pH 8.5) containing 8M urea. GELFrEE fractions for Study 3 were received as protein 

pellets and dissolved in 20 µL of Tris buffer (100 mM, pH 8.5) containing 8M urea. Horseradish 

peroxidase (1 µg) was added to each digest for Study 1 and Study 3 samples as a digest 

standard. The proteins were reduced using TCEP (5 mM) (Thermo Pierce, Rockford, IL) for 30 

min, and alkylated with iodoacetamide (40 mM) (Sigma) at room temperature in the dark for 30 

min. The reaction was quenched with DTT (20 mM) (Sigma) for 15 min. The methods described 

by Zybailov et al (26) were followed with minor modifications. Specifically, the proteins were 

digested for 4h with endoprotease LysC (5 µg) (Sigma) on Thermomixer (750 rpm) at 37°C. The 

digests were then diluted 4-fold with Tris buffer (100 mM, pH 8.5) and trypsin (5 µg) was added 

with continued incubation overnight. Due to the different protein concentrations of the individual 

GELFrEE fractions, the enzyme to protein ratio for the LysC and trypsin digests ranged from 

1:25-1:50 and 1:5-1:10, respectively. The digests were acidified to 5% formic acid (Fluka) and 

filtered through a Microcon centrifugal filter (30K molecular weight cut off) (Millipore). The  

peptides were desalted in parallel on Glygen Nutips containing C4 and graphitic carbon solid 

phase on a Biomek NXP (Beckman Coulter), as previously described (27). The eluted peptides 

were dried in a SpeedVac and dissolved in water/acetonitrile/formic acid (98%/1%/1%) and 

transferred to autosampler vials (SUN-SRI Cat No. 200-046) for storage at -80ºC prior to LC-MS 

analysis.  

High-performance liquid chromatography with high-resolution tandem mass 

spectrometry. A NanoLC 2D Plus System with a cHiPLC-Nanoflex and AS2 autosampler 

(ABSciex, Dublin, CA) was configured with two columns in parallel. One cHiPLC column 

(ChromXP C18 (200 µm x 15cm; particle size 3 µm, 120 Å) was used to inject calibrant solution 
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(β-galactosidase peptides (625 pmol/vial, part# 4333606)) and the other cHiPLC column was 

used for sample analysis. The calibrant solution (500 fmol) was injected in solvent A 

(water/acetonitrile/formic acid, 98%/1%/1%). The samples were loaded in a volume of 10 µL at 

a flow rate of 0.8 µL/min followed by gradient elution of peptides at a flow rate of 800 nL/min.  

The calibrant solution was eluted with the following gradient conditions with solvent B 

(water/formic acid/acetonitrile, 1%/1%/98%):0, 2%; 3 min, 2%; 73 min, 50%; 83 min, 80%; 86 

min, 80%; 87 min 2%; 102 min, 2%. The digests from the 5 fractions from 0-30 kDa (Study 3) 

were analyzed under the following gradient conditions (time, percent solvent B): 0, 2%; 5 min, 

2%; 365 min, 35%; 400 min, 80%; 405 min, 2%; 425 min, 2%. The digests from the 12 

GELFrEE fractions (Study 1) were analyzed under the following gradient conditions (time, 

percent solvent B): 0, 2%; 5 min, 2%; 650 min, 35%; 695 min, 80%; 700 min, 2%; 720 min, 2%. 

 Data acquisition was performed with a TripleTOF 5600+ mass spectrometer (AB SCIEX, 

Concord, ON) fitted with a PicoView Nanospray source (PV400) (New Objectives, Woburn, MA) 

and a 10 µm Silica PicoTip emitter (New Objectives, Woburn, MA) for bottom up proteomics. 

Data were acquired using an ion spray voltage of 2.9 kV, curtain gas of 20 PSI, nebulizer gas of 

25 psi, and an interface heater temperature of 175°C. The MS was operated with a resolution of 

greater than or equal to 25,000 (fwhm) for TOF-MS scans. For data dependent acquisition, 

survey scans were acquired in 250 ms from which 100 product ion scans were selected for MS2 

acquisition for a dwell time of 20 ms. Precursor charge state selection was set at +2 to +5. The 

survey scan threshold was set to 100 counts per second. The total cycle time was fixed at 2.25 

seconds. Four time bins were summed for each scan at a pulser frequency value of 15.4 kHz 

through monitoring of the 40 GHz multichannel TDC detector with four-anode/channel detection. 

A rolling collision energy was applied to all precursor ions for collision-induced dissociation as 

described in the Analyst software. 

 The raw LC-MS data (*.wiff) were converted to *.mzML format utilizing the AB SCIEX 

MS Data Converter v1.3 (AB SCIEX, Foster City, CA) within PEAKS STUDIO 
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7.0 (Bioinformatics Solutions Inc., Waterloo, Canada) (28). The resulting files were used for 

database searching by the PEAKS software using the following databases. Tumor-specific 

protein sequence databases were created by starting with RefSeq release 50, and adding 

variants detected in whole genome sequencing (WGS) of the xenografts and the corresponding 

germline. Alternative splice forms detected by RNA-Seq of the tumors were also added to the 

protein sequence database. The variant calling for the WGS data was done using GATK version 

2.6 and the RNA-Seq data was analyzed using TopHat version 2.0.3. The searches were 

conducted with trypsin cleavage specificity, allowing 3 missed cleavages, oxidation of 

methionine and carbamidomethylation of cysteine as variable and fixed modifications, 

respectively. A parent ion tolerance of 25 ppm and a fragment ion tolerance of 100 millimass 

units were used. The MS2-based peptide identifications were validated within PEAKS software 

using a modified target decoy approach, decoy fusion, to estimate the false discovery rate 

(FDR).  A 1% FDR for peptide spectral matches was used as the quality filter to identify 

peptides and an FDR of <0.1% for proteins with at least two unique peptides. A spectral count 

of 3 within the same LC/MS run was used as a quality threshold for peptides identified as 

resulting from SNPs or alternative splicing events. The bottom-up data was quantified using 

spectrum counting. The spectral counting was done using in-house developed scripts for label-

free quantitation. 

 

Top-Down Proteomics 

LC/MS. For all studies, proteins were resuspended by pipetting vigorously with 40 µL 

solvent A (95% water, 5% acetonitrile, 0.2% formic acid) after SDS removal. Resuspended 

protein fractions (5 µL) were injected onto a trap column (150 µm ID × 3 cm) using an 

autosampler (Thermo Dionex). For Study 1, a nanobore analytical column (75 µm ID × 15 cm) 

was coupled to the trap in a vented tee setup. Upstream of the column a 15 µm spray tip from 

New Objective was connected. The trap and analytical column were packed with polymeric 
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reverse phase (PLRP-S, Phenomenex) media (5 µm dp, 1,000 Å pore size). The Dionex 

Ultimate 3000 system was operated at a flow rate of 2.5 µL/min for loading samples onto the 

trap. Proteins were separated on the analytical column and eluted into the mass spectrometer 

using a flow rate of 300 nL/min and the following gradient: 5% B at 0 min.; 15% B at 5 min.; 55% 

B at 55 min.; 95% B from 58-61 min.; 5% B from 64 to 80 min. Solvent A consisted of 95% 

water, 5% acetonitrile, 0.2% formic acid and solvent B consisted of 5% water, 95% acetonitrile, 

0.2% formic acid. In Studies 2 and 3, proteins were injected onto a PepSwift trap column (200 

µm ID × 5 mm, Thermo Fisher) at 10 µL/min, separated onto a monolithic ProSwift RP-4H 

analytical column (100 µm ID × 50 cm) and eluted into the mass spectrometer using a flow rate 

of 1 µL/min. and the following gradient: 1% B at 0 min.; 55% B at 55 min.; 95% B from 58-61 

min.; 5% B from 64 to 80 min. 

MS data were obtained on an Orbitrap Elite (Thermo) mass spectrometer fitted with a 

custom nanospray ionization source. Previous studies (10, 29) have demonstrated that high 

energy collisional dissociation (HCD) results in higher number of identifications than other 

fragmentation techniques, such as electron transfer dissociation (ETD) and thus, HCD was the 

fragmentation of choice in the work described here. For proteins of molecular weight <30 kDa, 

the MS method included the following events: 1) FT scan, 4 microscans, m/z 500–2,000, 

120,000 resolving power at m/z 400 and 2) data-dependent MS/MS on the top 2 peaks in each 

spectrum from scan event 1 using higher-energy collisional dissociation (HCD) with normalized 

collision energy of 25, isolation width 50 m/z, 4 microscans and detection of ions with resolving 

power of 60,000 (at m/z 400). For proteins of molecular weight >30 kDa, the MS method 

included the following events: 1) precursor scan, ion trap, 25 microscans, m/z 500–2,000, and 

2) data-dependent MS/MS on the top 2 peaks in each spectrum from scan event 1 using HCD 

with normalized collision energy of 25, isolation width 200 m/z, 4 microscans and detection of 

ions with resolving power of 60,000 (at m/z 400).  
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Study 1: Qualitative BU-TD comparison of CompRef samples (multiple fractions up to 

100kDa). A 10% GELFrEE cartridge was used to obtain 12 protein fractions ranging in MW from 

0 to 100 kDa for each tumor sample. After SDS removal, proteins were resuspended in solvent 

A and injected onto the PLRP-S LC setup described above. Each fraction was analyzed in 

triplicate, resulting in a total of 72 RAW files. 

Data Analysis: ProSightPC PUF files were created using a custom version of the 

cRAWler application. These neutral mass data were searched against an eight-step search tree 

(Supplemental Fig. S2). First, each target was searched with strict search criteria (mass 

tolerance of 2.2 Da for precursor mass and 10 ppm for fragment masses) against a mouse-

specific database (UniProt Release 2014_05) to remove proteins that were a good match to the 

murine xenograft host. This implies that proteins with identical sequence in both human and 

mouse will be filtered from further analysis. The filtered proteins are listed in Supplemental 

Table 1 under the heading Search 0. Next, a WHIM-specific PTM-annotated database was 

created according to the workflow in Supplemental Fig. S3. Any target failing to be identified 

with the mouse search was then searched against this database; first with a strict absolute 

mass search (i.e., mass tolerances of 2.2 Da for precursor mass and 10 ppm for fragment 

masses), followed by a strict biomarker search (i.e., mass tolerance of 10 ppm for precursor and 

fragment masses). This step identified proteoforms from the xenograft that were a good match 

to non-sample-specific proteoforms. The remaining unidentified proteoforms were then 

searched against sample-specific databases to identify proteoforms that are uniquely 

associated with genetic events in each of the WHIM2 and WHIM16 tumor samples. Lastly, still 

unidentified targets were subjected to broad searches designed to identify previously unknown 

proteoforms. Supplemental Table 1 lists the number of targets identified at each of these steps. 

Study 2: Label-free top-down quantitation (single fraction up to 30 kDa). An 8% 

GELFrEE cartridge was used to obtain a single fraction containing proteins of MW from 0 to 30 

kDa. After SDS removal, proteins were resuspended in solvent A and injected onto the RP-4H 
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LC setup described above. The GELFrEE was performed 3 times for each CompRef sample 

and the resulting protein fractions were analyzed in 6 LC/MS replicates, for a total of 18 RAW 

files per sample. Neutral mass data were created and searched as described in Study 1 above, 

and quantitative results generated by the same ANOVA analysis described in Study 3 below. 

Study 3: Quantitative BU-TD comparison of CompRef samples (multiple fractions up to 

30 kDa). A 10% GELFrEE cartridge was used to obtain 5 protein fractions ranging in MW from 0 

to 30 kDa for each sample. After SDS removal, proteins were resuspended in solvent A and 

injected onto the RP-4H LC setup described above. The GELFrEE was performed 3 times for 

each CompRef sample and the resulting protein fractions were analyzed in 5 LC/MS replicates, 

for a total of 150 RAW files. The research design is illustrated in Supplemental Fig. S4. 

Data Analysis: The RAW files (150) generated for this study were analyzed in two steps: 

quantitation and proteoform identification. To identify proteoforms, for each MS1-based mass-

group, neutral masses were determined from all 150 RAW files, and ProSightPC PUF files were 

created using a custom version of the cRAWler application. These neutral mass data were 

searched as described above for Study 1. In the quantitation step, neutral masses were inferred 

from all files, and then only those with identifications from tandem MS were grouped based on 

accurate MS1 mass, and retention time. Next, the intensity from the mass groups, for each 

proteoform, were standardized within each fraction. Specifically, the average intensity for all 

measurements of a given proteoform was subtracted from each measurement, and the resulting 

difference was divided by the standard deviation of all measurements of that proteoform. 

Subtracting the mean centers the proteoform intensity data on zero, and the division rescales 

the data into units of standard deviations. The standardized values were then subjected to a 

hierarchical linear model-based ANOVA, with Benjamini and Hochberg FDR correction at α = 

0.05, to find proteoforms that were differentially expressed between WHIM2 and WHIM16.  

TD and BU Comparisons: TD measures intact proteoforms, while BU measures tryptic 

peptides derived from sets of proteoforms sharing amino acid sequences. In order to 
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consistently compare these two techniques, we chose to call sets of peptides from BU that map 

to a single RefSeq identifier as detecting a “protein”. Likewise, TD frequently identified more 

than one proteoform associated with a single RefSeq ID. Therefore, the number of proteoforms 

reported from each study is greater than the number of proteins identified by TD; if five 

proteoforms associated with a single RefSeq identifier were discovered with TD, this was 

reported as one protein and five proteoforms. In this study, unlike TD, BU analysis of CompRef 

sets allowed comprehensive identification of protein groups without any MW restriction.  All of 

the primary mass spectrometry data are deposited at the CPTAC Data Coordinating Center as 

raw files for public access (https://cptac-data-portal.georgetown.edu).  

 

RESULTS 

We set out to compare the ability of TD and BU to 1) identify the genes from which 

protein products were derived, 2) characterize proteoforms, including any PTMs, SNPs, and 

novel splice junctions (NSJs), and 3) detect differential expression of proteins and proteoforms 

between a basal-like (WHIM2) and a luminal B (WHIM16) breast tumor xenograft sample. The 

three studies employed are described in Table 1. The workflow for all 3 studies included 

GELFrEE separation prior to LC/MS and data analysis as illustrated in Fig. 1. It was expected 

that TD would identify fewer molecular entities, but that these would be characterized 

proteoforms, while BU would identify a greater number of proteins, but do so with lower 

sequence coverage. 

Protein Identifications. Studies 1 and 3 offered head-to-head comparisons of TD and BU. 

Using GELFrEE to separate the proteome into molecular weight bins, we obtained information 

about proteins present with molecular weights ranging from 0-100 kDa and 0-30 kDa in Studies 

1 and 3, respectively. The number of protein and proteoform identifications is enumerated in 

Table 1 and a detailed list is included in Supplemental Tables 1 and 2, for TD and BU, 

respectively. In all TD analyses, any proteoform that was consistent with mouse, even when 
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having sequence homology with human, as in the case of histones, was removed from the 

counts. In both studies, BU resulted in a greater number of protein identifications than TD, as 

anticipated. Despite significant improvements for top-down proteomics in discovery mode (9), 

BU outperforms TD in the >40 kDa range. 

Identification of sequence variants and alternative sequences unique to the WHIM tumor 

samples. Whole genome and RNA sequencing of the WHIM2 and WHIM16 PDX models, as 

well as the corresponding primary tumor sample (16, 17) provide an excellent foundation for 

evaluating the proteomic technology capacity for detecting sample or “WHIM-specific” coding 

SNPs and alternate splice variants that may give rise to unique proteoforms. The BU datasets 

included the detection of 188 peptides containing sample-specific SNPs and 27 peptides 

crossing the junction of sample-specific NSJs for each WHIM sample. In comparison, analysis 

of the TD datasets allowed the detection of 10 proteins containing WHIM-specific SNPs as 

shown in Table 2. A single proteoform resulting from a WHIM-specific NSJ was also detected in 

both WHIM2 and WHIM16 samples and its sequence coverage by TD appears in Supplemental 

Fig. S5. Since proteoforms containing sequences differing by one amino acid, for example, a 

reference protein sequence and a protein containing a cSNP, will likely co-elute, TD was 

expected to be well suited for detecting allelic expression ratios. Indeed, as demonstrated in Fig. 

2, gamma-synuclein (RefSeq:NP_003078, UniProt:O76070) and ribosomal protein L35 

(RefSeq:NP_009140, UniProt:P42766) displayed that protein products from heterozygous 

alleles are being expressed at a roughly 1:1 ratio. In both cases, TD detected both protein forms 

and gave relative quantitative information about the abundance of the protein products resulting 

from the expression of the two different allelles. BU could provide that information only for 

gamma-synuclein, while in the case of ribosomal protein L35, peptides containing the site of the 

coding SNP were not detected.  

Label-free top-down quantitative analysis. Recently, a workflow for label-free top-down 

quantitation in discovery mode was described (11). Study 2 was designed to demonstrate the 
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efficacy of this new method on the CompRef samples. In this scenario, a 2×3×6 study design 

(i.e., two states, three GELFrEE replicates, and six LC/MS injection technical replicates) was 

established for the comparative proteome analysis of WHIM2 and WHIM16. Proteins ranging 

from 0-30 kDa were isolated using GELFrEE followed by LC-MS/MS as described above. Next, 

a hierarchical linear model was applied to quantify intact proteoforms within the samples. A 

volcano plot (Fig. 3A) was generated, in which each proteoform was represented as a function 

of estimated effect size (in log2 fold-change) and the statistical confidence (FDR) that there was 

a difference in the normalized intensities between the two samples. Of the 5,975 quantitation 

mass targets (QMTs) detected in total, 1,031 of them were above the 5% FDR value comparing 

the WHIM2 and WHIM16 samples. Of all the QMTs, 538 were unambiguously identified using 

MS/MS information obtained during LC-MS. Among the differentially expressed proteoforms is 

the canonical isoform of gamma-synuclein (Fig. 2A), a protein known to be expressed in late 

stage breast tumors (30). A list of all differentially expressed proteoforms from this study 

appears in Supplemental Table 3. 

Comparison of TD and BU Label-Free Quantitation. In Study 3, the ability of TD and BU 

to quantify proteoform differential expression was evaluated. As described above, TD label-free 

quantitation is limited to the low MW proteome (<30 kDa). Briefly, GELFrEE separation of 0-30 

kDa proteins into 5 discrete fractions was performed and fractions were run by both BU and TD 

methods. As such a direct comparison had not been achieved before, it is the trends and not the 

depth of proteome coverage that were of interest in the study, a design for which is shown in 

Supplementary Fig. S4. Volcano plots are shown (Fig. 3B and 3C) for the TD and BU results, 

respectively. Notice that the TD results have much greater spread in the fold change estimates, 

but also that many proteoforms have much higher confidence in their differential expression, as 

represented by the correspondingly smaller instantaneous q values (the Y axis). This effect 

comes from proteoforms spanning multiple GELFrEE fractions, and treating each fraction as a 

separate measure of the proteoforms’ differential expression. For BU, 777,850 total spectra 
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from 30 LC-MS/MS runs provided 49,185 uniquely identified peptides and a missing value 

percentage of 78.50%.  For TD, a total of 4,950 quantitation mass targets were associated with 

proteoforms, with 67,434 MS1 observations used for quantification; 54.6% of the theoretically 

possible MS1 observations were missing. Since many proteoforms were found to elute across 

multiple GELFrEE fractions, only those mass groups which had been associated with 

proteoforms were quantified. The MS1 intensity values were standardized within fractions prior 

to the ANOVA. 

 When comparing the two proteomic techniques, it must be remembered that TD and BU 

proteomics measure different molecular entities. In comparing the differential results of the two 

techniques, there are a fixed number of distinct logical outcomes for a given protein. Both 

techniques can agree and show the identified protein to be either differentially expressed (DE) 

or not; the two techniques can disagree with one showing DE while the other does not; or one of 

the two techniques could have failed to observe the protein. All of these cases and the 

corresponding counts of proteins and proteoforms are shown in Table 3.  Notice first that there 

are 3,109 protein groups detected by BU that were not detected by TD, while only 64 proteins 

were uniquely detected by TD. This reflects the well-known advantage of BU in identifying large 

numbers of proteins present in a mixture. Nevertheless, TD provides a complementary look of 

the tumor proteome. 

Of those proteins detected by both methods and mapping to the same RefSeq 

identifiers, the TD and BU quantitation agreed that there was differential expression at 60% of 

the time at the protein level.  BU can only quantify what is happening on average to all 

proteoforms of a given protein due to prior proteolysis, and not the individual proteoforms 

themselves. However, it is often the relative abundance of proteoforms harboring PTMs that 

changes and not the absolute abundance of the protein group. With regards to DE 

concordance, we found that many of the measurements agreed between the two methods. 

Disagreements in DE often arise from changes in PTM stoichiometry, creating dynamic 
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behavior in TD proteomics, which is often obscured through peptide-protein inference in BU 

proteomics. Furthermore, the estimates of fold change between the two techniques agreed 

somewhat for those proteins and proteoforms where both methods agreed on differential 

expression (R-squared of 0.39, R=0.62), as seen in Fig. 3D. 

 

DISCUSSION 

Across all three studies comparing the WHIM samples, it is clear that BU proteomics is 

able to identify more proteins than TD. However, TD proteomics identifies and characterizes 

different entities than BU, namely intact proteoforms (i.e., the different molecular forms of a 

protein arising from a single gene). The number of proteoforms per RefSeq identification as 

discovered by TD varies significantly and the level of variation can be seen in Supplemental Fig. 

S6. Of note, only 21% of proteoforms are the sole representative of a RefSeq ID, and 52% of 

RefSeq IDs are seen by only one proteoform. The ability to detect and quantify proteoforms 

makes TD more sensitive at determining changes in PTMs and variant expression within 

complex samples that may be crucial in biological processes responsible for signal transduction.  

One clear example of these differences comes from alpha-endosulfine (RefSeq: 

NP_996929, UniProt:O43768) from Study 3, as shown in Fig. 4. It is known that phosphorylation 

of this protein affects its secondary structure and its corresponding protein-protein interactions 

(31). Both techniques found a greater abundance of the unmodified protein in WHIM2 (Fig. 4A 

and 4C). However, TD discovered a significant difference in phosphorylation stoichiometry that 

accompanied the abundance change, and detected a diphosphorylated proteoform that was 

only present in WHIM16. Both methods had strong supporting evidence (Fig. 4B); TD 

confidently detected Isoform 1 of this protein with 121 observations of the unmodified form, and 

48 observations on the diphosphorylated form, and BU detected the protein with 5 matched 

peptides covering 39.2% of the sequence and with 302 spectral counts. Although the BU 
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analysis detected a peptide spanning one of the two phosphorylation sites, the analysis did not 

detect the phosphorylated peptide. As seen from Fig. 4D, the level of phosphorylation in 

WHIM16 is higher than in WHIM2, with both mono- and di- phosphorylated forms at higher 

relative abundance than in WHIM2, yet the unmodified form is higher in WHIM2. Despite the 

excellent sequence coverage by BU, it was not possible to capture this level of dynamism in 

PTM levels. Phosphopeptide enrichment prior to BU may have resulted in the detection of these 

phosphorylations, as shown in the analysis of similar xenografts (22). However, BU could not 

possibly report on the exact proteoform present, as co-occurrence information of PTMs is lost 

during proteolysis. 

Now consider an example from those proteins that TD detected as differentially 

expressed, but were not classified as such by the BU analysis. Fig. 5A shows the results for D-

dopachrome decarboxylase (RefSeq: NP_001346, UniProt: P30046), a protein in this class. 

Based on 24 MS1 observations and a strong characterization, TD data (Fig. 5E) showed this 

protein to be DE with an estimated fold change of over 36x more abundant in WHIM16 than 

WHIM2 (instantaneous q=0.00001). The BU analysis had 91.5% sequence coverage from 18 

different peptides and 786 spectral observations. The t-test used to detect differential 

expression of the protein had a p value of 0.0086, but the critical value to maintain the 1% FDR 

for this test was 0.0019, thus, the protein was not considered DE by BU. Fig. 5B shows the BU 

results for androgen-induced gene 1 (RefSeq: NP_057192, UniProt: Q9NVV5), a protein not 

detected by TD. The t-test for this protein had a p score five ranks better than D-dopachrome 

decarboxylase, but it was identified by only 5 peptides, four of which were only seen once, and 

the other peptide had at most only 3 spectra in a single file. The effect of these marginal 

identifications is that they lengthen the list of identifications and force stronger identifications 

such as D-dopachrome decarboxylase to meet more stringent criteria in the DE analysis. This is 

an inherent tradeoff in quantitative omics studies. Less stringent criteria can be used to accept 

more identifications, but in doing so, entities with less support are passed forward to the DE 
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analysis. These less well-supported entities, in this case BU protein IDs, increase the difference 

in treatment means needed for all entities detected to pass the multiple testing correction. 

Decisions made in the data analysis pipeline can have a drastic effect on the sensitivity 

of either technique. Differences in the statistical criteria used in the DE analysis can cause a 

protein to be identified by BU as DE, but not so by TD. An example is illustrated in the case of 

Cytochrome b-c1 complex subunit 8 (RefSeq: NP_055217, UniProt: O14949) (Fig. 5C). The 

classification of DE hinges on the assumption of uniform variances in the log-transformed 

spectral counts. For the BU analysis, we assumed the log-transformed spectral counts between 

the WHIM2 and WHIM16 GELFrEE replicates had equal variance, and thus the corresponding 

increase in p value of the t-test was sufficient to move this result onto the DE list for the BU 

study; if that assumption is relaxed, then the results are not sufficiently great for this protein to 

be considered DE, and the protein would be in agreement with the hierarchical linear model 

used for the TD analysis as not DE.   

In some cases, the two methods can simply disagree as shown in the case of protein 

phosphatase 1 regulatory subunit 1B (RefSeq: NP_115568, UniProt: Q9UD71) (Fig. 5D). BU 

found 10 peptides each with 1 to 3 spectral counts in those LC runs that detected them in 

WHIM2, while no spectra were detected in WHIM16, leading to the conclusion that the protein is 

present in WHIM2 and absent in WHIM16. Meanwhile, TD had 33 observations, 12 from 

WHIM16 where they showed no difference in mean intensity (fig. 5G). This case highlights the 

inferential problems that can arise from datasets containing many missing values. The BU 

dataset has 78.5% missing values. Therefore, when the WHIM2 data are near the detection 

threshold, i.e., no single file spotted any supporting peptide more than three times, the total 

absence of spectral counts from the WHIM16 LC-MS/MS runs is not necessarily compelling 

evidence of the protein not being expressed. In TD, it is easy to determine if the intensity of a 

proteoform is near the detection limit by looking at the signal-to-noise ratio of the intact 

measurement. 
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  The difference in the ability of the two techniques to characterize major changes to 

proteins is highlighted by the response to cytoskeletal keratins. Keratin, in general, is an 

intermediate filament (IF) protein and one of the most common contaminants of proteomic 

studies. Like other IF proteins, keratins come in two complementary types, Type 1 and Type 2, 

and form polymeric complexes that shape both intracellular and extracellular structures (32). 

Type 2 IF proteins are known to have unique head and tail regions which differentiate their 

cellular function, while retaining the highly conserved central region responsible for forming the 

filamentous dimers (33). Forming the primary component of human hair and skin, and 

containing a large and highly conserved middle rod section, keratins are frequently dismissed in 

MS-based proteomics as contaminants from sample preparation.  

 Type 2 cytoskeletal keratin 8 (K2C8, RefSeq: NP_002264, UniProt: P05787), however, 

is a cytoplasmic keratin used as a variable diagnostic tool in differentiating lobular and ductal 

breast cancers (34). Ductal carcinomas tend to stain diffusely positive for K2C8 markers (35), 

while lobular do not. In Study 3, the BU experiment found 98 peptides spanning nearly the entire 

length of K2C8 with 88.2% sequence coverage. The BU analysis found a strong increase of 

K2C8 in WHIM16 (1,727 versus 639 spectral counts; instantaneous q = 3.5x10-5; 2.7x fold 

increase in WHIM16). Unfortunately, because of the conserved nature of keratins, these results 

are easily dismissed as contamination. Panel A of Supplemental Fig. S7 shows that much of the 

BU data comes from peptides unique to K2C8, and it is easy to see both its increase in WHIM 

16, and a fairly uniform distribution of peptides across all three regions of the protein (head, rod, 

and tail). 

By virtue of the ‘biomarker’ search strategy (effectively a ‘no-enzyme’ type search for TD 

data, see experimental section), the TD study found 17 proteoforms derived from K2C8, all of 

which were proteolytic fragments from the unique head or tail regions (see Supplemental Fig. 

S7). Eight out of 17 of the proteoforms were significantly increased in WHIM16 (ranging from 2 

– 18 fold), the luminal-B cancer sub-type. Two of the DE proteoforms from the N-terminal 
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variable region contain phosphorylation and one also contains a 3-hydroxy-L-proline. These 

proteoforms cannot be explained as hair or skin contamination as they represent unique 

sequences found only in the cytoplasmic keratin. Furthermore, all of the proteoforms from the 

head region end either one or two amino acids from S74, which is known to play an important 

role in keratin filament reorganization (35). These observations are consistent with increased 

proteolytic release of the head and tail domains of K2C8 in luminal vs. basal PDX models. While 

cytokeratins and intermediate filaments have been identified as possible probes of breast 

cancer subtypes previously (33), these are the first such observations of head/tail proteolytic 

events only made possible via detection of intact proteoforms instead of tryptic peptides. 

Summary and Future Directions. While BU and TD generally display complementary 

sensitivities, the trends found within the data here provide a first tranche of specific 

observations. For example, BU identified 7.4 times as many proteins as TD, and 6.3 times as 

many proteins were found to be differentially expressed. TD proved sensitive for detecting 

proteoform-level differences below 30 kDa, such as the multiple phosphorylation forms of alpha- 

endosulfine, relative expression of heterozygous alleles like in gamma-synuclein or ribosomal 

protein L35, and domain-specific regions of keratin. BU discovered 10 times as many cancer 

specific events, but was not able to accurately predict which of these events were DE. While 

precise mapping of BU and TD data is complicated because they measure fundamentally 

different things, an early estimate of the proteoform-level dynamics not captured by BU can be 

made: for small, abundant proteins, changes in primary structure not captured by BU occurs in 

about 40% of cases.  Future quantitative TD studies will benefit from the analysis of larger 

proteins (30-60 kDa) as many proteins fall within that MW range. Given this study (and others), 

it is clear that there are significant benefits from the integration of BU and TD proteomics 

analyses, as a strong complementarity exists between peptide- and proteoform-level 

measurements. 
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FIGURE LEGENDS 

Figure 1. Workflow for the qualitative and quantitative analysis of CompRef tumor xenografts by 

bottom-up and top-down.  

Figure 2. Protein identifications in WHIM2 and WHIM16. A) TD spectrum of gamma-synuclein 

displaying the distinctive pattern of a heterozygote genotype at this locus, and sequence of 

gamma-synuclein including fragment ions (flags) detected by TD and peptide sequences 

(underlined) detected by BU. The highlighted N-terminal amino acid indicates an N-terminal 

acetylation. The cSNP E110V is circled. Both technologies provided evidence of the cSNP. B) 

TD spectrum of ribosomal protein L35 displaying the distinctive pattern of a heterozygote 

genotype at this locus, and sequence of ribosomal protein L35 including fragment ions (flags) 

detected by TD and peptide sequences (underlined) detected by BU. The cSNP N101H is 

circled. Only TD provided evidence of the cSNP. 

Figure 3. Summary of quantitative results from Study 3. A) Volcano plot obtained using label-

free TD quantitative analysis from comparison of 0-30kDa proteins in WHIM2 and WHIM16 

(Study 2), B) Volcano plot obtained using label-free TD quantitative analysis from comparison of 

0-30kDa proteins in WHIM2 and WHIM16 (Study 3), C) Volcano plot obtained using label-free 

BU quantitative analysis from comparison of 0-30kDa proteins in WHIM2 and WHIM16 (Study 

3), D) Correlation of BU and TD fold change estimates for significantly different entities. 

Figure 4. Differential expression of alpha-endosulfine. A) bottom-up heatmap illustrating number 

of alpha-endosulfine peptides identified in each replicate. Each row represents a separate 

peptide reporting uniquely on alpha-endosulfine, while columns in the map represent separate 

LC-MS/MS runs. Red represents one spectral count in the run, yellow 2, light green 3, and dark 

green 4 or more spectral counts.  B) sequence of alpha-endosulfine including fragment ions 

(flags) detected by TD and peptide sequences (underlined) detected by BU. Two 

phosphorylation sites detected by TD are circled. The highlighted N-terminal amino acid 

indicates an N-terminal acetylation. C) boxplots illustrating abundance differences of alpha-

 



endosulfine in WHIM2 (blue) and WHIM16 (orange) samples. The box in the boxplots show the 

median, first and third quartiles of all MS1 intensities detected for the protein. The bars show the 

range of the observed data. D) mass spectrum of alpha-endosulfine showing phosphorylation 

pattern changes of alpha-endosulfine in the two WHIM samples. 

Figure 5. Discordant examples of differential expression profiles as measured by BU and TD. 

Panels A-D show heatmaps generated from BU spectral count data, while panels E-G contain 

corresponding boxplots from TD MS1 intensity data.  Each row of the BU heatmaps represents 

a separate peptide reporting uniquely on the corresponding protein, while columns in the map 

represent separate LC-MS/MS runs. Red represents one spectral count in the run, yellow 2, 

light green 3, and dark green 4 or more spectral counts. The box in the boxplots show the 

median, first and third quartiles of all MS1 intensities detected for the protein. The bars show the 

range of the observed data. Panels 5 A and E represent D-dopachrome decarboxylase 

(NP_001346) BU and TD data respectively, C and F represent Cytochrome b-c1 complex 

subunit 8 (NP_055217), while D and G represent Protein phosphatase 1 regulatory subunit 1B 

(NP_115568). Panel B shows BU data for androgen-induced gene 1 (NP_057192) 

 

  

 



TABLES 

Table 1. Summary of experiments comparing the performance of TD and BU proteomics to 

detect and quantify cancer specific aberrations 

Study Description Bottom-up  Top-down 

1 
Qualitative comparison of WHIM2 and 

WHIM16 (BU/TD) 
Protein MW range 0-100 kDaa 

10,453 proteinsb 
(82,156 peptides) 

197 SNPs / 11 NSJsd 

2,006 proteoforms 
(370 proteinsc) 

5 SNPs / 0 NSJs 

2 
Label-free TD quantitation of WHIM2 

vs WHIM16 
Protein MW range 0-30 kDaa 

N/Pe 
1,334 proteoforms 

(218 proteinsc) 
3 SNPs / 1 NSJs 

3 
Quantitative comparison of WHIM2 and 

WHIM16 
Protein MW range 0-30 kDaa 

3,367 proteinsb 
(49,185 peptides) 

41 SNPs / 11 NSJsd 

3,125 proteoforms 
(438 proteinsc) 

7 SNPs / 1 NSJs 

 a proteins were fractionated using GELFrEE. Representative fractionations for each study are 
illustrated in Supplemental Fig. S1. 
b the term proteins corresponds to protein groups as defined by Peak Studio, ver. 7 
c the term proteins corresponds to a single RefSeq identifier 
d identification required a spectrum count of 3 within a single LC/MS run  
e not performed 
  

 



Table 2. Coding polymorphisms (cSNPs) detected and genotyped by TD proteomics. 

RefSeq Uniprot 
accession Protein description cSNP WHIM2 WHIM16 

NP_000995 P05387 60S acidic RP P2 S64I S64 & I64 S64 

NP_001093162 Q6IS14 eIF-5A1-like V137L V137 V137 & L137 

NP_001120865 P56378 6.8kDa mitochondrial 
proteolipid I26V I26 & V26 I26 

NP_003078 O76070 γ-synuclein E110V E110 E110 & V110 

NP_003854 O94777 DPM synthase 
subunit 2 T76S N/D* S76 

NP_005013 P07737 Profilin-1 N10S N10 N10  & S10 

NP_006734 P98179 Putative RNA-
binding protein 3 Y117D Y117 Y117 & D117 

NP_009140 P42766 RP L35 N101H N101 N101 & H101 

NP_037519 Q9UDW1 Cytochrome b-c1 
complex subunit 9 I47V I47 & V47 I47 

NP_543011 Q96KR6 Protein FAM210B P126S P126 & S126 P126 

*not detected 

  

 



Table 3.  Overall quantitative results for Study 3 reveal a prevalence of concordant examples 

where proteoform-level changes differ substantially from that determined by BU. 

 Differentially 

Expressed by TD 

Not Differentially 

Expressed by TD  

Not Detected 

by TD 

Differentially Expressed 

by BU 

12 proteins 

27 proteoforms 
 

14 proteins 

18 proteoforms 
 

314 proteins 

N/A 
 

Not Differentially 

Expressed 

by BU 

152 proteins 

233 proteoforms 
 

232 proteins 

584 proteoforms 
 

2,795 proteins 

N/A 
 

Not Detected 

by BU 

0 proteins 

0 proteoforms 
 

64 proteins 

99 proteoforms 
 

 

Top number are the RefSeq IDs detected in each cell, while the bottom number are the number 
of proteoforms detected. 
TD often has more than 1 proteoform per RefSeq ID, and so the same ID may be in two or more 
boxes (as some proteoforms are differentially expressed, and others are not). 
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