

Non-mass spec verification of prostate peptide

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Western blot analysis for PF4

ELISA analysis for PF4

Moral: proteomics is a serious business that requires multiple dimensions of separation - glib methods don't work

Steve Barnes 2-10-06 Lam et al., Proteomics 5, 2927

Finding a phosphate group

Several methods are in current use for detection of phosphopeptides

- use of parent ion or neutral loss scanning
- phosphatase sensitivity
- affinity methods for enrichment of phosphopeptides
 - antiphospho-Ser/Thr/Tyr antibodies
 - metal ion affinity
 - chemical reaction/biotin affinity

Steve Barnes 2-10-06

Parent ion scanning to detect phosphopeptides

• The procedure depends on the detection of the *m/z* 79 ion fragment (PO₃-) during collision-induced dissociation in a triple quadrupole instrument operating in the negative ion mode

- Parent ion scanning is a reversal of the more familiar daughter ion MS-MS where the parent ion is selected (in Q1) and a mass spectrum of the daughter ion fragments is obtained by scanning in Q3
- In parent ion scanning, the daughter ion fragment (in this case m/z 79) is held constant in Q3 and a mass spectrum of parent ions that give rise to the daughter ion obtained by scanning in Q1.
- having identified the phosphopeptides, the sample can be reanalyzed to obtain daughter ion MS-MS spectra on selected ions in the positive ion mode

Steve Barnes 2-10-06

Selective enhancement of phosphopeptides in tryptic digests

- Immobilized metal affinity chromatography (IMAC). Similar to Niaffinity resins used in the purification of 6xHis-tagged proteins. The affinity phase can be charged with different metal ions (as their chlorides)
- Fe(III) and Ga(III), and to a lesser extent Zr(IV), were the most effective for the recovery of two synthetic phosphopeptides
- A tryptic digest containing both phosphorylated and nonphosphorylated peptides is passed over the IMAC column at acid pH (pH 2.5-3)
- The column is washed with 0.1 M acetic acid to remove unbound peptides
- Elute with sodium phosphate (have to desalt) or with NH₄OH
- Esterification may prevent Asp- or Glu-containing peptides from binding

Steve Barnes 2-10-06

Undetected actin peptides with tyrosine nitration

1	MDDDIA	ALVV	DNGSGMCKAG	FAGDDAPRAV	FPSIVGRPRH	QGVMVGMGQK
51	DSYVGD	EAQS	KRGILTLK <u>YP</u>	IEHGIVTNWD	DMEK IWHHTF	YNELRVAPEE
101	HPVLLT	EAPL	NPKANREK <mark>MT</mark>	QIMFETFNTP	AMYVAIQAVL	SLYASGRTTG
151	IVMDSG	DGVT	HTVPIYEGYA	LPHAILRLDL	AGRDLTDYLM	KILTERGYSF
201	TTTAER	EIVR	DIKEKLCYVA	LDFEQEMATA	ASSSSLEKSY	ELPDGQVITI
251	GNERFR	CPEA	LFQPSFLGME	SCGIHETTFN	SIMKCDVDIR	KDLYANTVLS
301	GGTTMY	PGIA	DR MQKEITAL	APSTMKIKII	APPERKYSVW	IGGSILASLS
351	TFQQMW	ISKQ	EYDESGPSIV	HRKCF		
	69	YPTEH	GTVTNWDDMEK		= 1991.89	
	133/143	MTQIM	FETFNTPAM <mark>Y</mark> VAI	QAVLSL <mark>Y</mark> ASGR	= 3298.60,	3343.59
	166/169	.66/169 TTGIVMDSGDGVTHTVPIYEGYALPHAILR		= 3230.64,	3275.63	
	188	DLTDYLMK			= 1043.48	
	218	LCYVALDFEQEMATAASSSSLEK			= 2539.81	
	294/306	DLYAN	TVLSGGTTMYPGI	ADR	= 2260.06,	2305.05
	337 Y SVWIGGSILASLSTFQQMWISK			= 2647.33		
Stovo Parnos 2-10-06						
01010 Builles 2-10-00						

Alternative digestion with Glu-C

1	MDDDIAALVV	DNGSGMCKAG	FAGDDAPRAV	FPSIVGRPRH	QGVMVGMGQK	
51	DSYVGDEAQS	KRGILTLKYP	IEHGIVTNWD	DMEKIWHHTF	YNE LRVAPEE	
101	HPVLLTEAPL	NPKANREKMT	QIMFETFNTP	AMYVAIQAVL	SLYASGRTTG	
151	IVMDSGDGVT	HTVPIYEGYA	LPHAILRLDL	AGRDLTDYLM	KILTERGYSF	
201	TTTAEREIVR	DIKEKLCYVA	LD FEQEMATA	ASSSSLEKSY	E LPDGQVITI	
251	GNERFRCPEA	LFQPSFLGME	SCGIHETTFN	SIMKCDVDIR	KDLYANTVLS	
301	GGTTMYPGIA	DRMQKEITAL	APSTMKIKII	APPERKYSVW	IGGSILASLS	
351	TFQQMWISKQ	EYDESGPSIV	HRKCF			
53	SYVGD	= 585.22	198	RGYSFTTTAE	= 1177.52	
69	AQSKRGILTLKYPI	E = 1761.99	218	KLCYVALD	= 969.48	
91	KIWHHTFYNE	= 1419.65	240	KSYE	= 571.24	
133/143 TFNTPAMYVAIQAVLSLYASGRTTGIVMD 294/306 LYANTVLSGGTTMYPGIAD						
= 3090.56, 3135.54 = 1988.93, 2033.92						
166	GVTHTVPIYE	= 1160.56	337	RKYSVWIGGSILAS	LSTFQQMWISKQE	
					= 3188.63	
169	GYALPHAILRLD	= 1384.74	362	YD	= 342.10	
188	YLMKILTE	= 1055.55				
Use of Glu-C would reveal whether 69Y 166Y 169Y 188Y 218Y and						
possibly ^{294/300} Y are nitrated						
Steve Barnes 2-10-06						

Std mix	cdc2p complex	Lone protoine	
10 pmol of stds and 1 pmol of Pi- protein: 8 M urea- 100 mM Tris-HCl, pH 8.5 added (30 μl)	15 μg dissolved in 40 μl of 8 M urea-100 mM Tris-HCl, pH 8.5	Lens blended in 0.1 ml 20 mM sodium phosphate buffer-1 mM EGTA buffer - spun at 10,000g for 30 min Supernatant dissolved in 8 M urea-100 mM Tris- HCI, pH 8.5	
Add 0.8 µl 100 mM DTT, incubate at 50°C for 25 min Cool and add 1.7 µl 100 mM iodoacetamide to alkylate	Add 0.8 μl 100 mM Tris (2-carboxyethyl)- phosphine, incubated at room temp for 25 min Add 1.7 μl 100 mM iodoacetamide to alkylate Steve Barnes 2-10-06	Add DTT to 2 mM, incubate at 50°C for 25 min Add 20 mM iodoacetamide to alkylate MacCoss et al, 2002	

PTMs in α -crystallin						
	Known	New				
lphaa-Crystallin $lpha$ b-Crystallin	S45, S122 S19, S45, S59	T13, T140 S53, S76				
αa-Crystallin αb-Crystallin		Y18, Y34, M138 Y48, W60, M68				
αa-Crystallin		K70, K78, K88, K145 R1, K88				
αb-Crystallin		K92 R22, R50				
	Steve Barnes 2-10-06	MacCoss et al, 2002				

