Proteins?

Protein function

Protein folding

Protein folding diseases

Protein interactions

Macromolecular assemblies

The end product of Genes

Protein Unfolding

 EX_1 mechanism: $k_{ch} > k_{cl}$

$$k_{ex} = k_{op}$$

 EX_2 mechanism: $k_{ch} < k_{cl}$

$$\mathbf{k}_{\mathsf{ex}} = \mathbf{K}_{(\mathsf{op/cl})} \cdot \mathbf{k}_{\mathsf{ch}}$$

"pH dependent"

Cooperative Unfolding

Cooperative Unfolding

Cytochrome C

Cytochrome C Folding Pathway

 $U \rightleftharpoons ryg\mathbf{B} \rightleftharpoons ry\mathbf{GB} \rightleftharpoons r\mathbf{Y}\mathbf{GB} \rightleftharpoons N$

Hoang, et. al. 2002

Multi-state vs Two State Protein Unfolding

Englander, et. al. 2002

NMR H/D exchange

Individual amide proton exchange rates Sensitive to subtle protein dynamics Used extensively to study protein folding

Problems

Need pure sample Need high concentrations Only small proteins

Mass Spec H/D exchange?

David Smith, (Zhang et al 1993)

Sample need not be pure

Low sample concentrations

Large proteins

Macromolecular complexes

Problems

Digestion coverage

Exchange rate is averaged over the whole peptide

Buffer intolerance

H/D Exchange Experimental Protocol

MALDI Analysis of Pulse labeled proteins "SUPREX"

SUPREX; Stability of Unpurified Proteins from Rates of H/D Exchange

Unpurified proteins

•Rapid analysis

•High throughput

•Protein stability in the cell

4-oxalocrotonate tautomerase

SUPREX analysis of mutations and protein stability

Maltose binding protein

Association detected by SUPREX

Protein Stability in Cells

Ghaemmaghami, et. al. 2001

MALDI Analysis of Pulse labeled proteins "SUPREX"

Unpurified proteins

•Rapid analysis

•High throughput

•Protein stability in the cell

Continous H/D Exchange

Protein folding

Protein interfaces

Quantitatively determine rates

?

H/D Exchange Experimental Protocol

Identification of protein interaction interfaces

Detection of PKI Interaction with PKA

Mandell et al. 1998

PKI, PKA, and ATP

Epitope mapping of a monoclonal antibody against thrombin by H/D-exchange

Novel Approaches for Understanding Virus Assembly and Dynamics.

Lanman et al. 2003

Image Reconstructions of Procapsid and Mature Virion

The Coat Protein Subunit has a Two Domain Structure

A domain-shuffling model for capsid expansion

The Model Predicts Trapping of Deuterium during Expansion

Changes in Exchange Protection during Assembly & Maturation

Tuma, et. al. 2000

HIV Assembly & Maturation

Thin-Section EM Analysis of Assembly Products

CA is Comprised of Distinct N- and C-Terminal Structural Domains

CA Cylinders are Based on a Hexamer Lattice

From Li et al, Nature 407:409 (2000)

Hypothesis: The CA that does not form dimers, because of a mutation at the dimer interface should form hexamers at high NaCl concentrations

Hypothesis: The CA that does not form dimers, because of a mutation at the dimer interface should form hexamers at high NaCl concentrations

CA does not form hexamers with out C-domain (dimer) interaction.

H/D exchange analyzed with FT-MS

H/D Exchange Experimental Protocol

Time

With High Resolution Peptides of Similar m/z can be Analyzed

744.842 within 1 ppm 746.390 within 0.5 ppm

Peptides Covering 95% of the Sequence have Been Assigned

121

NPPIPVGEIY KRWIILGLNK IVRMYSPTSI LDIRQGPKEP FRDYVDRFYK TLRAEQASQE

!

181

VKNWMTETLL VQNANPDCKT ILKALGPGAT LEEMMTACQG VGGPGHKARV L

Extremely High Resolution is Achievable with FT-MS

The Related Peaks are Analyzed to Determine the Distribution

The Centroids of the Distribution are Calculated

The Bottom of Helix III becomes Protected

Changes in Exchange Rates due to CA Assembly

Lanman, et. al. 2003

SEC separation of cross-linked CA monomer and dimer

Mass spectra of the cross-linked species

Three Sites of Interaction During Assembly

Advantages of Hydrogen/Deuterium Exchange

- •Small quantities required (10⁻¹² mole)
- •Needn't be pure
- •No symmetry constraints
- •Can provide time resolved or dynamic information

The future of H/D exchange

Multi protein macromolecular complexes

Cooperativity in large proteins or macromolecular complexes

Exchange rates for individual amide protons

Protein dynamics during motor motions